electrical power and machines-power_1

23
Chapter 11 AC Power Analysis

Upload: dhanis-paramaguru

Post on 17-Jul-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Electrical Power and Machines-Power_1

TRANSCRIPT

Chapte

r 11

AC

Pow

er A

naly

sis

�In

sta

nta

ne

ou

s P

ow

er

�A

ve

rag

e P

ow

er

�E

ffe

ctive

or

RM

S V

alu

e

Lecture Outline

�T

he r

ate

of energ

y b

ein

g a

bsorb

ed,

rele

ased b

y o

r tr

ansfe

rred thro

ugh a

syste

m.

�T

he e

nerg

y m

ight

be in t

he form

of kin

etic,

pote

ntial,

therm

al, lig

ht,

chem

ical or

ele

ctr

ical.

�E

lectr

ical pow

er

is a

pro

duct

of curr

ent and v

oltage

Power

�E

lectr

ical pow

er

is a

pro

duct

of curr

ent and v

oltage

�E

lectr

ical pow

er:

�A

resis

tor

absorb

s p

ow

er

supplie

d to it and t

urn

s t

hem

into

heat.

�In

ducto

rs a

nd c

apacitors

absorb

, sto

re a

nd r

ele

ase p

ow

er.

�A

circuit c

onsis

ting o

f re

sis

tors

, in

ducto

rs a

nd c

apacitors

genera

lly a

bsorb

s p

ow

er

and t

urn

s it

into

heat.

�Low

pow

er

consum

ption is g

enera

lly d

esired in c

ircu

it

desig

n.

Pow

er

at any insta

nt

of tim

e

)(

)(

)(

ti

tv

tp

⋅=

Units: Watt = Volt x Ampere

Instantaneous Power

Units: Watt = Volt x Ampere

tV

tv

cos

)(

=

)cos(

)(

φω

−=

tI

ti

m

If the current lags the voltage by a phase φ

)cos(

cos

)(

φω

ω−

⋅=

tI

tV

tp

mm

)cos(

cos

)(

φω

ω−

⋅=

tI

tV

tp

mm

)]2

cos(

[cos

)(

ωφ

−+

=t

IV

tp

Apply

ing 2

cos A

cos B

= c

os (A

-B) + c

os (A

+B

)

Components of Instantaneous

Power

)]2

cos(

[cos

)(

21φ

ωφ

−+

=t

IV

tp

mm

Tim

e-c

onsta

nt,

depends o

n p

hase

diffe

rence b

etw

een

voltage a

nd c

urr

ent

Tim

e-v

ari

able

,

sin

usoid

al w

ith

frequency tw

ice the

voltage a

nd c

urr

ent

time

function

Components of Instantaneous

Power (cont.)

φcos

)]2

cos(

[cos

)(

21φ

ωφ

−+

=t

IV

tp

mm

time

constant

0.40

0

0.80

0

1.20

0

1.60

0

0.4

0.8

1.2

1.6

Not

e th

at

Not

e th

at

Not

e th

at

Not

e th

at

Inst

anta

neou

s In

stan

tane

ous

Inst

anta

neou

s In

stan

tane

ous

Pow

er fr

eque

ncy

Pow

er fr

eque

ncy

Pow

er fr

eque

ncy

Pow

er fr

eque

ncy

is tw

ice

thos

e of

is

twic

e th

ose

of

is tw

ice

thos

e of

is

twic

e th

ose

of

voltage

power

Graphical Representation of

Instantaneous Power

-1.6

00

-1.2

00

-0.8

00

-0.4

00

0.00

0

010

020

030

040

050

060

070

0

Tim

e-1

.6

-1.2

-0.8

-0.4

0.0

01

00

20

03

00

40

05

00

60

07

00

Tim

e

is tw

ice

thos

e of

is

twic

e th

ose

of

is tw

ice

thos

e of

is

twic

e th

ose

of

curre

nt a

nd

curre

nt a

nd

curre

nt a

nd

curre

nt a

nd

volta

ge.

volta

ge.

volta

ge.

volta

ge.

current

�C

alc

ula

te t

he

in

sta

nta

ne

ou

s p

ow

er

if:

)20

10

cos(

80

)(

°+

=t

tv

)60

10

sin(

15

)(

°+

=t

ti

Instantaneous Power: Example

)60

10

sin(

15

)(

°+

=t

ti

)30

10

cos(

15

°−

=t

)30

10

cos(

)20

10

cos(

15

80

)(

)(

)(

°−

°+

⋅=

⋅=

tt

ti

tv

tp

)]10

20

cos(

)50

[cos(

600

°−

=t

W)10

20

cos(

600

7.385

°−

+=

t

0.0

0.4

0.8

1.2

1.6

Insta

nta

neous

Pow

er

changes in

Problem with Instantaneous Power

-1.6

-1.2

-0.8

-0.4

0.0

01

00

20

03

00

40

05

00

60

07

00

Tim

e

changes in

tim

e, so it is

difficult to

measure

.

A w

ay t

o o

verc

om

e t

his

is t

o d

eal w

ith

Avera

ge P

ow

er

inste

ad.

Avera

ge o

f th

e insta

nta

neous p

ow

er

over

one p

eri

od.

∫=

T

dt

tp

P )

(1

Average Power

∫=

dt

tp

TP

0 )

(

)]2

cos(

[cos

)(

21φ

ωφ

−+

=t

IV

tp

mm

∫−

+=

T

mm

dt

tI

VT

P0

21

)]2

cos(

[cos

ωφ

Inte

gral

of a

sin

usoi

d In

tegr

al o

f a s

inus

oid

Inte

gral

of a

sin

usoi

d In

tegr

al o

f a s

inus

oid

over

its

perio

d is

zer

o.ov

er it

s pe

riod

is z

ero.

over

its

perio

d is

zer

o.ov

er it

s pe

riod

is z

ero.

φcos

21m

mI

VP=

φcos

21m

mI

VP=

If Φ ΦΦΦ

=0 =0=0=0, t

he c

urre

nt in

a c

ircui

t is

in p

hase

w

ith th

e vo

ltage

, the

circ

uit h

as a

pur

e m

mI

VP

21=

Resistive & Reactive Loads

ivθ

θφ

−=

with

the

volta

ge, t

he c

ircui

t has

a p

ure

resi

stiv

e lo

adre

sist

ive

load

resi

stiv

e lo

adre

sist

ive

load

. The

circ

uit a

bsor

bs p

ower

at

all t

imes

.If Φ ΦΦΦ

=90

=90

=90

=90o ooo

, the

cur

rent

in a

circ

uit i

s ou

t-of-

phas

e by

900

with

the

volta

ge, t

he c

ircui

t ha

s a

pure

reac

tive

load

reac

tive

load

reac

tive

load

reac

tive

load

. The

circ

uit

abso

rbs

no a

vera

ge p

ower

. It a

bsor

bs a

nd

rele

ase

equa

l am

ount

of p

ower

with

in it

s pe

riod.

mmI

VP

2=

0=

P

�C

alc

ula

te the a

vera

ge p

ow

er

if:

)20

10

cos(

80

)(

°+

=t

tv

)60

10

sin(

15

)(

°+

=t

ti

Calc

ula

ting a

vera

ge

pow

er is

much

sim

ple

r th

an

Average Power: Example 1

)30

10

cos(

15

°−

=t

φcos

21m

mI

VP=

))30

(20

cos(

15

80

21−

−⋅

= W7.

385

=

W)10

20

cos(

600

7.385

)(

°−

+=

tt

p

Note that the average

power is the constant

component of the

instantaneous power.

sim

ple

r th

an

calc

ula

ting

insta

nta

neous p

ow

er

Average Power: Example 2

Determine the power generatedby each

source and the average power absorbed

by

each passive elem

ent in the circuit.

Must evaluate the

current flow in each

mesh and the voltage

across the current

source. Can use

mesh analysis.

Average Power: Example 2 (cont.)

mesh analysis.

A 4

1=

I

030

60

5)

4(

10

22

∠+

−−

II

jj

V 2.

698

.184

)1.

79

58

.10

4(10

)4(

20

∠=

°∠

−+

=j

V

A 1.

79

58

.10

∠=

⇒I

Power flow across the current source;

W8.67

3

)0

21

.6

cos(

498

.184

21

1−

−⋅

=P

Power is supplied

by the current source.

P <

0,

pow

er

is

bein

g s

upplie

d

A 4

1=

I

V 80

)20

(4

2=

=V

W60

1 4

80

212

=⋅

=P

Average Power: Example 2 (cont.)

V 9.

11

8.105

)1.

79

58

.10

(10

∠=

°−

∠⋅

=j

V

A79.1

-10.58

1.

79

58

.10

42

°∠

∠−

=I-

I 1

Power absorbed by

the resistor;

2

W0

))1.

79

(9.

11

cos(

58

.10

8.105

213

−−

⋅=

P Power flow across the inductor

Average Power: Example 2 (cont.)

A 1.

79

58

.10

∠=

I

V 9.

11

9.52

1.79

58

.10

5C

°−

∠=°

∠⋅

−=j

V

W0

))1.79

9.11

cos(

58

.10

9.52

214

−−

⋅=

P

Power flow across the capacitor;

Average Power: Example 2 (cont.)

Power flow across the voltage source;

W207.8

)1.

79

30

cos(

58

.10

60

215

−°⋅

=P Power is absorbed

by the voltage source.

A 1.

79

58

.10

∠=

I

P >

0,

pow

er

is

bein

g a

bsorb

ed

Average Power: Example 2(cont.)

W60

12=

P

W04=

P

W03=

P W8.

67

31=

P

W207.8

5=

P

Power

supplied

Power

absorbed

Power

absorbed

& released

Circuit Element

Average Power

V or I source

P = ½

VM IM cos(θ v- θ i)

Resistor

P = ½

VM IM = ½ IM2 R

Average Power Summary

Resistor

P = ½

VM IM = ½ IM R

Capacitor or

Inductor

P = 0

Does t

he e

xpre

ssio

n f

or

the r

esis

tor

pow

er

look

identical to

that fo

r D

C c

ircuits?

Fo

r th

e s

am

e a

mo

un

t o

f a

ve

rag

e

po

we

r a

bso

rbe

d b

y t

he

re

sis

tor,

A s

inu

so

ida

l cu

rre

nt

is f

low

ing

th

rou

gh

a r

esis

tor.

A c

ert

ain

a

mo

un

t o

f p

ow

er

is a

bso

rbe

d b

y

the

re

sis

tor.

Effective Value

po

we

r a

bso

rbe

d b

y t

he

re

sis

tor,

w

ha

t w

ou

ld b

e t

he

cu

rre

nt

va

lue

if it is

a d

c c

urr

en

t?

Th

is v

alu

e o

f th

e c

urr

en

t is

ca

lled

th

e e

ffe

ctive

va

lue

of

the

cu

rre

nt.

Th

is v

alu

e is h

igh

ly

use

ful in

an

aly

sin

g t

he

po

we

r flo

w in

a c

ircu

it. V

oltm

ete

rs a

nd

a

mm

ete

rs a

re d

esig

ne

d t

o r

ea

d

dir

ectly th

e e

ffe

ctive

va

lue

s o

f vo

lta

ge

an

d c

urr

en

t.

�R

oo

t-m

ea

n-s

qu

are

va

lue

(fo

rmu

la r

ea

ds lik

e th

e

na

me

: rm

s)

∫∫

++

==

Tt

rms

Tt

rms

dt

tv

Vand

dt

ti

I0

0

)(

1)

(1

22

Effective or RMS Values

�F

or

a s

inu

so

id:I

rms= IM/√2;

Vrm

s= V

m/√2

�F

or

exa

mp

le, A

C h

ou

se

ho

ld o

utle

ts a

re a

rou

nd

12

0 V

olts-r

ms

∫∫

==

t

rms

t

rms

dt

tv

TV

and

dt

ti

TI

00

)(

)(

Average Power

(in terms of rms values)

()

()

IV

IV

Pi

vrms

rms

iv

MM

source

cos

cos

21−

=−

θθ

θ

•The a

vera

ge p

ow

er

(P)

is:

RI

R

VI

VI

VP

rms

rms

rms

rms

MM

resistor

iv

rms

rms

iv

MM

source

2

2

212

==

==

�W

he

n w

e b

uy c

on

su

me

r e

lectr

on

ics, th

e

face

pla

te s

pe

cific

atio

ns p

rovid

e t

he

rm

s v

olta

ge

a

nd

cu

rre

nt

va

lue

s

�F

or

exa

mp

le,

wh

at

is th

e r

ms c

urr

en

t fo

r a

12

00

W

att

ha

ird

rye

r (a

lth

ou

gh

th

ere

is a

sm

all

fan

in

a

RMS in Everyday Life

Wa

tt h

air

dry

er

(alth

ou

gh

th

ere

is a

sm

all

fan

in

a

ha

ird

rye

r, m

ost

of th

e p

ow

er

go

es t

o a

re

sis

tive

h

ea

tin

g e

lem

en

t)?

�W

ha

t h

ap

pe

ns w

he

n t

wo

ha

ird

rye

rs a

re t

urn

ed

o

n a

t th

e s

am

e t

ime

in

th

e b

ath

roo

m?

�H

ow

ca

n I

de

term

ine

wh

ich

use

s m

ore

e

lectr

icity--

-a p

lasm

a o

r a

n L

CD

HD

TV

?