electrical system form fsae-e2013 university of california, san … · 2018. 9. 10. · electrical...

48
Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215 Contact: Prithvi Sundar (408) 348-9441 [email protected]

Upload: others

Post on 14-Oct-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

Electrical System Form FSAE-E2013

University of California, San Diego

Triton Racing

Car: E215

Contact:

Prithvi Sundar

(408) 348-9441

[email protected]

Page 2: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University Name, Car Number Table of Contents

__________________________________________________________________________

2013 Formula SAE Electric ii

Table of Contents

Table of Contents ............................................................................................................................ ii

I List of Figures .......................................................................................................................... vi

II List of Tables .......................................................................................................................... viii

III List of Abbreviations ................................................................................................................ ix

1 System Overview ..................................................................................................................... 2

2 Electrical Systems .................................................................................................................... 4

2.1 Shutdown Circuit ............................................................................................................... 4

2.1.1 Description/concept .................................................................................................... 4

2.1.2 Wiring / additional circuitry ......................................................................................... 5

2.1.3 Position in car ............................................................................................................ 5

2.2 IMD ................................................................................................................................... 7

2.2.1 Description (type, operation parameters) ................................................................... 7

2.2.2 Wiring/cables/connectors/ .......................................................................................... 8

2.2.3 Position in car ............................................................................................................ 8

2.3 Inertia Switch .................................................................................................................... 9

2.3.1 Description (type, operation parameters) ................................................................... 9

2.3.2 Wiring/cables/connectors/ .......................................................................................... 9

2.3.3 Position in car ............................................................................................................ 9

2.4 Brake Plausibility Device ................................................................................................. 10

2.4.1 Description/additional circuitry ..................................................................................... 10

2.4.2 Wiring .......................................................................................................................... 10

2.4.3 Position in car/mechanical fastening/mechanical connection ....................................... 11

2.4.4 Wiring/cables/connectors/ ........................................................................................ 11

2.4.5 Position in car .......................................................................................................... 11

2.5 Reset / Latching for IMD and BMS .................................................................................. 12

2.5.1 Description/circuitry .................................................................................................. 12

2.5.2 Wiring/cables/connectors ......................................................................................... 12

2.5.3 Position in car .......................................................................................................... 12

2.6 Shutdown System Interlocks ........................................................................................... 12

2.6.1 Description/circuitry .................................................................................................. 12

Page 3: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 Table of Contents

__________________________________________________________________________

2013 Formula SAE Electric 3

2.6.2 Wiring/cables/connectors ......................................................................................... 13

2.6.3 Position in car .......................................................................................................... 13

2.7 Tractive system active light ............................................................................................. 13

2.7.1 Description/circuitry .................................................................................................. 13

2.7.2 Wiring/cables/connectors ......................................................................................... 13

2.7.3 Position in car .......................................................................................................... 13

2.8 Measurement points ........................................................................................................ 14

2.8.1 Description ............................................................................................................... 14

2.8.2 Wiring, connectors, cables ....................................................................................... 14

2.8.3 Position in car .......................................................................................................... 14

2.9 Pre-Charge circuitry ........................................................................................................ 14

2.9.1 Description ............................................................................................................... 14

2.9.2 Wiring, cables, current calculations, connectors ....................................................... 14

2.9.3 Position in car .......................................................................................................... 15

2.10 Discharge circuitry ........................................................................................................... 15

2.10.1 Description ............................................................................................................... 15

2.10.2 Wiring, cables, current calculations, connectors ....................................................... 15

2.10.3 Position in car .......................................................................................................... 16

2.11 HV Disconnect (HVD) ...................................................................................................... 16

2.11.1 Description ............................................................................................................... 16

2.11.2 Wiring, cables, current calculations, connectors ....................................................... 16

2.11.3 Position in car .......................................................................................................... 16

2.12 Ready-To-Drive-Sound (RTDS) ...................................................................................... 17

2.12.1 Description ............................................................................................................... 17

2.12.2 Wiring, cables, current calculations, connectors ....................................................... 18

2.12.3 Position in car .......................................................................................................... 18

3 Accumulator ........................................................................................................................... 19

3.1 Accumulator pack 1 ......................................................................................................... 19

3.1.1 Overview/description/parameters ............................................................................. 19

3.1.2 Cell description ........................................................................................................ 19

3.1.3 Cell configuration ..................................................................................................... 20

3.1.4 Cell temperature monitoring ..................................................................................... 21

Page 4: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 Table of Contents

__________________________________________________________________________

2013 Formula SAE Electric 4

3.1.5 Accumulator insulation relays ................................................................................... 22

3.1.6 Fusing ...................................................................................................................... 22

3.1.7 Battery management system .................................................................................... 23

3.1.8 Accumulator indicator ............................................................................................... 24

3.1.9 Wiring, cables, current calculations, connectors ....................................................... 24

3.1.10 Charging .................................................................................................................. 25

3.1.11 Mechanical Configuration/materials .......................................................................... 25

3.1.12 Position in car .......................................................................................................... 27

4 Energy meter mounting .......................................................................................................... 28

4.1 Description ...................................................................................................................... 28

4.2 Wiring, cables, current calculations, connectors .............................................................. 28

4.3 Position in car ................................................................................................................. 28

5 Motor controller ...................................................................................................................... 29

5.1 Motor controller 1 ............................................................................................................ 29

5.1.1 Description, type, operation parameters ................................................................... 29

5.1.2 Wiring, cables, current calculations, connectors ....................................................... 29

5.1.3 Position in car .......................................................................................................... 30

6 Motors .................................................................................................................................... 31

6.1 Motor 1 ............................................................................................................................ 31

6.1.1 Description, type, operating parameters ................................................................... 31

6.1.2 Wiring, cables, current calculations, connectors ....................................................... 33

6.1.3 Position in car .......................................................................................................... 33

7 Torque encoder ...................................................................................................................... 34

7.1 Description/additional circuitry ......................................................................................... 34

7.2 Wiring .............................................................................................................................. 34

7.3 Position in car/mechanical fastening/mechanical connection........................................... 34

8 Additional LV-parts interfering with the tractive system ........................................................... 36

8.1 LV part 1 ......................................................................................................................... 36

8.1.1 Description ............................................................................................................... 36

8.1.2 Wiring, cables, ......................................................................................................... 36

8.1.3 Position in car .......................................................................................................... 36

9 Overall Grounding Concept .................................................................................................... 37

Page 5: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 Table of Contents

__________________________________________________________________________

2013 Formula SAE Electric 5

9.1 Description of the Grounding Concept ............................................................................. 37

9.2 Grounding Measurements ............................................................................................... 37

10 Firewall(s) ........................................................................................................................... 38

10.1 Firewall 1 ......................................................................................................................... 38

10.1.1 Description/materials ................................................................................................ 38

10.1.2 Position in car .......................................................................................................... 38

11 Appendix ............................................................................................................................ 38

Page 6: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 I List of Figures

2013 Formula SAE Electric vi

I List of Figures

Figure 1 System Block Diagram.........................................................................................................2

Figure 2 Car Isometric View...............................................................................................................3

Figure 3 Car Back View......................................................................................................................6

Figure 4 ESS View.............................................................................................................................6

Figure 5 IMD Schematic.....................................................................................................................7

Figure 6 Rear Electrical Components................................................................................................8

Figure 7 Dashboard...........................................................................................................................9

Figure 8 Brake Plausibility Device....................................................................................................10

Figure 9 Pedal Assembly Isometric View.........................................................................................11

Figure 10 Shutdown Interlocks.........................................................................................................12

Figure 11 HVD parts.........................................................................................................................17

Figure 12 HVD Removal..................................................................................................................17

Figure 13 RTDS circuit.....................................................................................................................18

Figure 14 Accumulator Schematic...................................................................................................21

Figure 15 Temperature Multiplexer Arrangement............................................................................22

Figure 16 Battery Pack Front Isometric View...................................................................................26

Figure 17 Battery Pack Back Isometric View...................................................................................26

Figure 18 Battery Pack Top View.....................................................................................................27

Figure 19 Motor Torque/Horsepower vs RPM..................................................................................32

Figure 20 Motor Speed vs Power.....................................................................................................32

Figure 21 Motor Schematic..............................................................................................................33

Figure 22 Firewall Section 1 Isometric View....................................................................................38

Page 7: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 I List of Figures

2013 Formula SAE Electric vii

Figure 23: Firewall Section 1 Secondary View………………………………………..........................39

Figure 24: Firewall Section 2 Isometric View………………………………………............................39

Page 8: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 II List of Tables

2013 Formula SAE Electric viii

II List of Tables Table 1.1 General parameters ................................................................................................ 3

Table 2.1 List of switches in the shutdown circuit ................................................................... 5

Table 2.2 Wiring – Shutdown circuit ....................................................................................... 5

Table 2.3 Parameters of the IMD ............................................................................................ 8

Table 2.4 Parameters of the Inertia Switch ............................................................................. 9

Table 7.1 Torque encoder data ............................................................................................ 10

Table 2.6 Parameters of the TSAL ....................................................................................... 13

Table 2.7 General data of the pre-charge resistor ................................................................ 15

Table 2.8 General data of the pre-charge relay .................................................................... 15

Table 2.9 General data of the discharge circuit .................................................................... 16

Table 3.1 Main accumulator parameters .............................................................................. 19

Table 3.2 Main cell specification ........................................................................................... 20

Table 3.3 Basic AIR data ...................................................................................................... 22

Table 3.4 Basic fuse data ..................................................................................................... 22

Table 3.5 Fused Components Rating Data ........................................................................... 24

Table 3.6 BMS Lithiumate Lite Data ..................................................................................... 25

Table 3.7 Belden, 0.81 mm^2 ............................................................................................... 25

Table 3.8 Radicle, 1/0 AWG ................................................................................................. 25

Table 3.9 General charger data ............................................................................................ 25

Table 5.1 General motor controller data ............................................................................... 29

Table 6.1 General motor data ............................................................................................... 31

Table 7.1 Torque encoder data ............................................................................................ 34

Page 9: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 III List of Abbreviations

__________________________________________________________________________

2013 Formula SAE Electric ix

III List of Abbreviations

BMS: Battery Management System

IMD: Insulation Monitoring Device

ESS: Emergency Shutdown Switch

LSD: Left Shutdown (Left ESS)

RSD: Right Shutdown (Right ESS)

FSD: Front Shutdown (Front ESS)

KSI: Key Switch Ignition

HVD: High Voltage Disconnect

TSAL: Tractive System Active Light

TSMS: Tractive System Master Switch

CSMS: Control System Master Switch

GLVMS: Ground Low Voltage Master Switch (same as CSMS)

AIRs: Accumulator Isolation Relays

ECU: Electrical Control Unit

TSMP: Tractive System Measuring Point

GLVMP: Ground Low Voltage Measuring Point

OT: Over Travel

PCB: Printed Circuit Board

Page 10: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 1 System Overview

__________________________________________________________________________

2013 Formula SAE Electric 2

1 System Overview High energy density Lithium Cobalt pouch cells designed into an in-house fabricated battery

pack. The light cells distributed into 4 banks drive a powerful motor with high torque output.

Figure 1: System Block Diagram

Maximum Tractive-system voltage: 120VDC

Nominal Tractive-system voltage: 118VDC

Control-system voltage: 12VDC, 24VDC

Accumulator configuration: 9p32s

Black, Red, Blue = 18 AWG

Orange = 1/0 AWG

*shared nodes shown with black dot

*only one microcontroller, split up to make wiring visual

easier to follow

Page 11: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 1 System Overview

__________________________________________________________________________

2013 Formula SAE Electric 3

Total Accumulator capacity: 45Ah

Motor type: 3 phase AC induction motor

Number of motors: 1

Maximum combined motor power in kW 55kW

Table 1.1 General parameters

Figure 2: Car Isometric View

Page 12: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 4

2 Electrical Systems

2.1 Shutdown Circuit

2.1.1 Description/concept

There are various components in the car that make up the shutdown circuit. The main purpose of

this circuit is to open the ground low voltage system of the car in the event of a potentially unsafe

electrical event, which in turn will open the AIRs rendering the car un-drivable. The following is the

procedure to power on the ground low voltage system (control circuit of the car):

1. Close all safety shutdown buttons (front, right, and left)

2. Close brake over travel switch

3. Make sure IMD is installed and turned ON

4. Make sure BMS is installed and turned ON

5. Close inertia switch

6. Check pedal position, so brake plausibility device is not tripped

7. Make sure High Voltage Disconnect is installed

8. Make sure ECU is installed

9. Turn on CSMS

10. Turn on TSMS

11. Turn on KSI

Part Function

Main Switch (for control and tractive-system;

CSMS, TSMS)

Normally open

Brake over travel switch (BOTS) Normally closed

Shutdown buttons (SDB): Front, Right, Left

ESS

Normally closed

Page 13: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 5

Insulation Monitoring Device (IMD) Normally open

Battery Management System (BMS) Normally open

Inertia Switch Normally closed

Interlocks Normally Open, Closed when circuits (HV

and LV) are connected

Brake Plausibility Device Normally Open

High Voltage Disconnect (HVD) Normally Closed

ECU shutdown Normally Open

Motor Controller shutdown (Main Relay) /

Key Switch Ignition

Normally Open

Table 2.1 List of switches in the shutdown circuit

2.1.2 Wiring / additional circuitry

Total Number of AIRs: 5

Current per AIR: 3 Amps initial, 0.1 Amps Holding Current

Additional parts consumption within the

shutdown circuit:

2A

Total current: 15A

Cross sectional area of the wiring used: 0.81 mm²

Table 2.2 Wiring – Shutdown circuit

2.1.3 Position in car

See below and Figure 2 for more information.

Page 14: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 6

Figure 3: Car Back View

Figure 4: ESS view

Page 15: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 7

2.2 IMD

2.2.1 Description (type, operation parameters)

The Insulation Monitoring Device used in our car is the A-Isometer IR155-3203. The IMD light is

hooked up to a battery through a transistor that routes current to the light whenever there is an IMD

fault.

Figure 5: IMD Schematic

Supply voltage range: 10..36VDC

Supply voltage: 12VDC

Environmental temperature range: -40..105°C

Selftest interval: Always at startup, then every 5 minutes

Page 16: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 8

High voltage range: DC 0..1000V

Set response value: 60kΩ (500Ω/Volt)

Max. operation current: 150mA

Approximate time to shut down at 50% of the

response value:

20s

Table 2.3 Parameters of the IMD

2.2.2 Wiring/cables/connectors/

All of the wiring that is associated with the IMD is routed into the ECU box where the IMD is

housed. The wiring up to the box containing the IMD wiring will be routed through a braided cable

cover.

High voltage side and low voltage side leading up to the IMD are mated with Molex Minifit Jr.

connectors using AWG 18 wires.

2.2.3 Position in car

Figure 6: Rear Electrical Components

Page 17: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 9

2.3 Inertia Switch

2.3.1 Description (type, operation parameters)

The inertia switch used in our car is a mechanically triggered and resettable switch. It features a

magnet restrained mass inertia system. It is responsive to a 360 degree impact. It does not use

any form electricity for power.

Inertia Switch type: Sensata

Supply voltage range: N/A

Supply voltage: N/A

Environmental temperature range: -40..105°C

Max. operation current: 10 Amps

Trigger characteristics: 15 ms for 10g, 45 ms for 5g

Table 2.4 Parameters of the Inertia Switch

2.3.2 Wiring/cables/connectors/

The inertia sensor is positioned in the dashboard of our car. There are other switches on the dash

that are part of GLVS. This allows there to be one inlet cable to the dash and one outlet cable from

the dash.

18 AWG wires terminated with Krimptite™ Quick Disconnect Terminal will be used to incorporate

the inertia switch in the GLVS.

2.3.3 Position in car

Figure 7: Dashboard

Page 18: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 10

2.4 Brake Plausibility Device

2.4.1 Description/additional circuitry

The brake plausibility device will be part of a PCB. It will take in the raw throttle signal and brake

signal. Through a comparator the device will determine if there is an implausibility. If there is an

implausibility, the throttle signal will then be cut from being sent to the motor controller and the

arduino will open the GLVS system which in turn opens the AIRs.

Brake sensor used: Bourns 3046 Linear Motion Potentiometer

Torque encoder used: Bourns 3046 Linear Motion Potentiometer

Supply voltages: 5V

Maximum supply currents: 20mA

Operating temperature: -55 °C to +125 °C

Output used to control AIRs: Open a relay

Table 2.5 Torque encoder data

2.4.2 Wiring

Figure 8: Brake Plausibility Device

Page 19: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 11

2.4.3 Position in car/mechanical fastening/mechanical connection

The potentiometers will be incorporated into the pedal assembly. Separate fixtures for each of the

components will be fabricated that will allow us to bolt the sensors to the pedal assembly. Similarly,

the PCB that acts as the Brake Plausibility Device will be housed in a small shock resistant box

which will be affixed to the Pedal assembly through mounting screws.

2.4.4 Wiring/cables/connectors/

All of the wiring associated with this device and the throttle inputs will be routed through the Brake

Plausibility Device Box. This will allow us to run only one braided cable from the front of the car to

the ECU box where all the processing will occur.

A Molex Minifit Jr. Connectors will be incorporated into the design of the board therefore all of the

sensor wire will be able to connect to the board and a single output connector can be used.

2.4.5 Position in car

Figure 9: Pedal Assembly Isometric View

Page 20: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 12

2.5 Reset / Latching for IMD and BMS

2.5.1 Description/circuitry

Both the IMD and BMS have their own separate battery for power. A simple reset switch will be

used in series with their supply voltages to reset each of the devices. After proper rectification of

the error this button can be pressed to allow the driver to drive the car.

See Figure 1 for schematic.

2.5.2 Wiring/cables/connectors

The reset switches for both devices will be located on the dash, as described for the inertia switch

(see 2.3.2). Krimptite™ Quick Disconnect Terminal terminating AWG 18 wires will be used.

2.5.3 Position in car

See Figure 7 in section 2.3.3

2.6 Shutdown System Interlocks

2.6.1 Description/circuitry

There are three other relays and contactors which also are able to open the GLVS and in turn the

AIRs in the event of an unsafe event. These components are:

1. BMS relay (acts through the ECU relay)

2. IMD relay

3. ECU relay

Figure 10: Shutdown Interlocks

Page 21: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 13

2.6.2 Wiring/cables/connectors

These relays will be incorporated onto a PCB, which will have Krimptite™ Quick Disconnect

Terminals terminating AWG 18 wires.

2.6.3 Position in car

These relays will be housed in the ECU box. (See Figure 6 in section 2.2.3)

2.7 Tractive system active light

2.7.1 Description/circuitry

The tractive system active light blinks at a certain frequency to show that the main contactors have

been closed and the GLVS and Tractive System are linked. A light is wired in series with the AIRS

so it will turn on only when all the AIRs have closed.

Supply voltage: 12VDC

Max. operational current: 500mA

Lamp type Halogen

Power consumption: 6 W

Brightness 450 Lumen

Frequency: 1.5Hz

Size (length x height x width): 101.6mm x 101.6mm x 101.6mm

Table 2.6 Parameters of the TSAL

2.7.2 Wiring/cables/connectors

The TSAL and the RTDS will be housed within the same case. This will allow us to run the supply

and signal lines to both the TSAL and RTDS in a single braided cable. A Molex Minifit Jr. with 18

AWG wire will be used and plugged into the side of the TSAL/RTDS box.

The TSAL can be seen in Figure 1, incorporated into the safety shutdown circuit.

2.7.3 Position in car

The TSAL will be affixed on the main hoop, while the TSAL circuit will contained in the ECU box

since it requires both HV and 24V.

See Figure 4 in section2.1.3

Page 22: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 14

2.8 Measurement points

2.8.1 Description

Our car uses 2 red 4 mm banana jacks marked with polarity for the HV as the TSMPs. 1 yellow 4

mm banana jack and 1 black 4 mm banana jack will be marked with polarity for the GLVMP.

2.8.2 Wiring, connectors, cables

The TSMPs will be located on the exterior of the ECU box. A simple acrylic cover that is hinged will

be installed over the TSMPs and GLVMPs to avoid possible interaction with the environment.

A pair of AWG18 wires are used to connect the banana jacks to the HV circuit, at the B+ and B-

position of the accumulator pack. A seperate pair of AWG 18 wires are use used to connect the

banana jacks to the GLVS.

2.8.3 Position in car

See Figure 6 in section 2.2.3.

2.9 Pre-Charge circuitry

2.9.1 Description

The Pre-Charge circuitry is internally built into the Curtis 1238-7601 controller that our car uses. By

default the pre-charge circuit is enabled, this can be changed through Vehicle Control Language

(VCL). Due to the proprietary nature of the product we were unable to gain access to technical

specifications of the pre-charge circuitry.

2.9.2 Wiring, cables, current calculations, connectors

With the pre-charge function enabled, power will be supplied to the capacitor bank until the voltage

is within 3 volts of KSI, or pre-charge second has expired, or the pre-charge resistor energy range

has been exceeded. The current state of pre-charge is shown by the pre-charge variable

(Precharge_State), which has the following values:

0 – Pre-charge has not yet been done.

1 – Pre-charge is in progress.

2 – Pre-charge has passed.

3 – Pre-charge has been aborted by the Disable_Precharge() function.

4 – Pre-charge has exceeded the pre-charge resistor energy

Page 23: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 15

Resistor Type: Undisclosed

Resistance: Undisclosed

Continuous power rating: Undisclosed

Overload power rating: Undisclosed

Voltage rating: Undisclosed

Cross-sectional area of the wire used: N/A

Table 2.7 General data of the pre-charge resistor

Relay Type: Undisclosed

Contact arrangment: Undisclosed

Continuous DC current: Undisclosed

Voltage rating Undisclosed

Cross-sectional area of the wire used: Undisclosed

Table 2.8 General data of the pre-charge relay

2.9.3 Position in car

The pre-charge circuitry is contained within the Curtis 1238R-7601 motor controller.

See Figure 6 in section 2.2.3.

2.10 Discharge circuitry

2.10.1 Description

The Curtis 1238R-7601 controller takes in the battery DC inputs at the B+ and B- terminals and

transforms it into a 3 phase AC signal discharged to the motor.

2.10.2 Wiring, cables, current calculations, connectors

The discharge circuitry is internally built into the Curtis 1238R-7601 controller that our car uses. By

default the discharge circuit is enabled. Due to the proprietary nature of the product we were

unable to gain access to technical specs of the pre-charge circuitry

Page 24: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 16

Resistor Type: Undisclosed

Resistance: Undisclosed

Continuous power rating: Undisclosed

Overload power rating: Undisclosed

Voltage rating: Undisclosed

Maximum expected current: Undisclosed

Average current: Undisclosed

Cross-sectional area of the wire used: Undisclosed

Table 2.9 General data of the discharge circuit

2.10.3 Position in car

The pre-charge circuitry is contained within the Curtis 1238R-7601 motor controller.

See Figure 6 in section 2.2.3.

2.11 HV Disconnect (HVD)

2.11.1 Description

Our car will feature the EV EZ Safe Disconnect along with the Anderson Power Products SB 2-pole

electrical connectors, models SB175. The lever on top of the mechanism makes disconnection and

reconnection of the circuit easy and direct, while a pull-cable attachment allows for disconnection

from a distance. The lever must be pusshed to disengage connection.

2.11.2 Wiring, cables, current calculations, connectors

The HVD will be placed on the exterior of the ECU box, which is located next to the Master

Switches and TSMPs.

2.11.3 Position in car

For positioning see Figure 6 in section 2.2.3.

Page 25: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 17

Figure 11: HVD parts

Figure 12: HVD Removal

2.12 Ready-To-Drive-Sound (RTDS)

2.12.1 Description

The RTDS in our car is a simple piezoelectric buzzer operated by the ECU. As soon as the TSMS

is closed a secondary transistor allows current to flow to the ECU which in turn actuates the RTDS.

Page 26: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 2 Electrical Systems

__________________________________________________________________________

2013 Formula SAE Electric 18

Figure 13: RTDS circuit

2.12.2 Wiring, cables, current calculations, connectors

As mentioned in section 2.7.2 for the TSAL, the RTDS and TSAL will be housed in the same case.

As mentioned in 2.7.2 there will be a single Molex Minifit Jr connector to interface with the TSAL

and the RTDS.

2.12.3 Position in car

See Figure 2.

Page 27: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 19

3 Accumulator

3.1 Accumulator pack 1

3.1.1 Overview/description/parameters

The accumulator pack is made up of 288 low profile pouch cells. They are configured in such a

way that if one cell fails the entire circuit does not shut off unless the BMS does so. The cells are

divided into 4 subsections and contained in an acrylic container.

Maximum Voltage: 134.4VDC

Nominal Voltage: 118VDC

Minimum Voltage: 0VDC

Maximum output current: 900A for 10s

Maximum nominal current: 650A

Maximum charging current: 90A

Total numbers of cells: 288

Cell configuration: 9p32s

Total Capacity: 5.328 kWh or 19.1808 MJ

Number of cell stacks < 120VDC 4

Table 3.1 Main accumulator parameters

3.1.2 Cell description

The cells in our accumulator are a low profile Lithium Cobalt Cell capable of high discharge and

high capacity.

Cell Manufacturer and Type Turnigy Lipoly

Cell nominal capacity: 5 Ah

Page 28: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 20

Maximum Voltage: 4.2 V

Nominal Voltage: 3.7V

Minimum Voltage: 2.8V

Maximum output current: 20C for 10s

Maximum nominal output current: 15C

Maximum charging current: 2C

Maximum Cell Temperature (discharging) 65°C

Maximum Cell Temperature (charging) 55°C

Cell chemistry: LiCo

Table 3.2 Main cell specification

3.1.3 Cell configuration

Each of the 4 containers of the battery pack will contain 72 cells. Each “battery” will contain 9 cells

in parallel. 8 of these “batteries” will then be hooked up in series. The AIRS will serve as the

junction between each of the isolated containers. Each cell will have an 80 Amp fusible link wired

to its negative terminal.

Page 29: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 21

Figure 14: Accumulator Schematic

3.1.4 Cell temperature monitoring

22 of the cells in each of the containers will be monitored using analog temperature sensors. The

temp sensors will be affixed to the cell center with thermal paste. The signals from each of the

temperature sensors will be fed into a PCB that contains a multiplexing array that will allow us to

read the temperature of each cell being monitored.

Figure 15: Temperature Multiplexer Arrangement

Page 30: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 22

3.1.5 Accumulator insulation relays

Our car features 5 Kilovac EV-200AAANA contactors. They are single-pole, normally-open

contacts, hermetically sealed, with built-in arc suppression diodes and pre-charge circuits. The

case is made from a high temperature plastic.

Relay Type: EV200 Series Contactor (CZONKA® Relay, Type III)

Contact arragment: 1 Form X (SPST-NO-DM)

Continous DC current rating: 500A

Overload DC current rating: 2000A for 12 msec

Maximum operation voltage: 900VDC

Nominal coil voltage: 12VDC

Normal Load switching: Make and break up to 650A

Maximum Load switching 10 times at 2500A

Table 3.3 Basic AIR data

3.1.6 Fusing

Fuse type: American Round Fuses – A30QS

Continous current rating: 500A

Maximum operating voltage 300VDC

Type of fuse: Fast Acting

I2t rating: 130A2s at 300VDC

Interrupt Current (maximum current at which

the fuse can interrupt the current)

4500A

Table 3.4 Basic fuse data

Page 31: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 23

Component Current Rating

Curtis 1238-7601 Motor Controller 650 Amps

Wiring: 1/0 AWG 350A @100% Duty Cycle (670A @ 20% Duty

Cycle)

Table 3.5 Fused Components Rating data

3.1.7 Battery management system

Each “battery” is defined as 9 cells in parallel. These batteries will be monitored by our digital BMS,

the Lithiumate Lite which is manufactured by e-lithion. It uses distributed cell boards to monitor cell

voltages and temperatures.

-Fusible link wire will be integrated into connections from BMS Slave boards.

-BMS reacts to an upper voltage of 4.2 Volts and Lower Voltage of 3.7 Volts per “battery”. BMS

reacts by actively shutting down the GLVS which opens the AIRs and cuts the load on the

batteries.

-When more than 65 Degrees Celsius detected, the BMS will open the GLVS circuit using the

interlock shutdown system.

Supply Voltage 12VDC

Nominal current 50 mA

Number of monitored banks 8

Bidirectional Load Current Up to 900 A

Bidirectional Charger Current Up to 30 A

Table 3.6 BMS Lithiumate Lite data

-9 cells will be sensed by each set of BMS slaves (consists of 2 end boards and a middle board).

-Communication ports between boards are protected through the connectors that are used to

secure them.

-The GLVS will be opened through a relay which will in turn open the AIRs if an error is detected

Page 32: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 24

3.1.8 Accumulator indicator

Each container of the accumulator will only contain a max of 30 VDC when the AIRs are not

closed. Therefore, once the AIRs are closed, the accumulator indicator will turn on. See Figure 14.

3.1.9 Wiring, cables, current calculations, connectors

The maximum voltage is 120VDC and the maximum current is 900A. The motor controller will take

a max of 650A and a continuous rating of 155A from the batteries. 1/0 AWG wires will satisfy the

amperage range with minimal energy loss. The fuse symbols represent fusible links and they will

be connected to the positive terminal of each battery cell. The orange colored lines are 1/0 wires

and black and red lines are 18 AWG wires (see wiring diagram).

Wire type Belden, 18 AWG

Continuous current rating: No continuous rating, 20A max

Cross-sectional area 0.81 mm²

Maximum operating voltage: 600VDC

Temperature rating: -40°C To +105°C

Wire connects the following components: AIRs, BMS

Table 3.7 Belden, 0.81mm²

Wire type: RADAFLEX® 1/0 AWG, 50mm²

Current rating: 350A @100% Duty Cycle (670A @ 20%

Duty Cycle)

Maximum operating voltage: 600V

Temperature rating: -30 °C to 90°C

Wire connects the following componets: Accumulator Containers

Table 3.8 Radicle, 1/0 AWG

Page 33: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 25

3.1.10 Charging

The wires from the battery pack to the B+ and B- terminals to the motor controller will be

disconnected. The terminating ring type connectors will be attached to the alligator clips of the

charger. BMS and IMD will be powered through their own auxiliary batteries, to ensure safe

charging. The charger will be hooked up to the BMS as well during the charging process to avoid

over and under charging of cells. Active monitoring of BMS can be done through a computer

connection if needed.

Charger Type: HWC4 6 Stage

Maximum charging power: 1.2kW

Maximum charging voltage: 120V

Maximum charging current: 10A

Interface with accumulator Alligator clips to ring type connectors

Input voltage: 220 VAC

Input current: 11.7A

Table 3.9 General charger data

3.1.11 Mechanical Configuration/materials

Note that in the following renderings the dividing walls have been removed to better show the

internal configuration of the cells.

Page 34: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 26

Figure 16: Battery Pack Front Isometric View

Figure 17: Battery Pack Back Isometric View

Page 35: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 3 Accumulator

__________________________________________________________________________

2013 Formula SAE Electric 27

Figure 18: Battery Pack Top View

3.1.12 Position in car

See Figure 1.

Page 36: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 4 Energy meter mounting

__________________________________________________________________________

2013 Formula SAE Electric 28

4 Energy meter mounting

4.1 Description

The ECU box will have leads of the B+ and B- terminals available for the Energy Meter to mount to.

The top of the ECU box will be made of a see-through plastic allowing the meter to be visible.

4.2 Wiring, cables, current calculations, connectors

Energy will pass directly through the energy meter from the battery pack to the motor controller and

vice versa. Inside the ECU box the terminals of the 2/0 AWG wire will have a mating connector

allowing it to interface with the Energy Meter.

4.3 Position in car

The Energy Meter will be mounted inside of the ECU box. See Figure 6 in Section 2.2.3.

Page 37: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 5 Motor Controller

__________________________________________________________________________

2013 Formula SAE Electric 29

5 Motor controller

5.1 Motor controller 1

5.1.1 Description, type, operation parameters

The Curtis 1238R-7601 motor controller was specifically design for the HPEVS AC35 motor (see

5.2). Therefore the motor controller ratings are the same as the motor ratings.

Motor controller type: Curtis 1238R-7601

Maximum continous power: 14.8kW

Maximum peak power: 62.4kW for 2 minutes

Maximum Input voltage: 96VDC

Output voltage: 67VAC

Maximum continuous output current: 155A

Maximum peak current: 650A

Control method: PWM

Cooling method: Air

Auxiliary supply voltage: N/A

Table 5.1 General motor controller data

5.1.2 Wiring, cables, current calculations, connectors

The Curtis 1238R-7601 is the limiting factor in how much current the motor receives. In such a

case, the continuous current rating for the motor controller is 155 Amps and the RADAFLEX® 1/0

AWG cable is able to take 350A @100% Duty Cycle and 670A @ 20% Duty Cycle.

Wire type: RADAFLEX® 1/0 AWG, 50mm²

Current rating: 350A @100% Duty Cycle (670A @ 20%

Duty Cycle)

Page 38: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 5 Motor Controller

__________________________________________________________________________

2013 Formula SAE Electric 30

Maximum operating voltage: 600V

Temperature rating: -30 °C to 90°C

5.1.3 Position in car

See Figure 6 in section 2.2.3.

.

Page 39: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 6 Motors

__________________________________________________________________________

2013 Formula SAE Electric 31

6 Motors

6.1 Motor

6.1.1 Description, type, operating parameters

We are using the High Performance Electric Vehicles (HPEVS) AC35 (formerly AC31) AC

induction motor. See table and graphs below for more information.

Motor Manufacturer and Type: High Performance Electric Vehicles (HPEVS)

AC35 (formerly AC31)

Motor principle Brushless AC Induction

Maximum continuous power: 14.8kW

Peak power: 62.4kW for 2 minutes

Input voltage: 96VAC

Nominal current: 155A

Peak current: 650A

Maximum torque: 162Nm

Nominal torque: 100Nm

Cooling method: Air

Table 6.1 General motor data

HPEVS does not provide graphs with nominal lines. Please see

http://hpevs.com/catalog-ac-35.htm for more information.

Page 40: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 6 Motors

__________________________________________________________________________

2013 Formula SAE Electric 32

Figure 19: Motor Torque/Horsepower vs. RPM

Figure 20: Motor Speed vs. Power

Page 41: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 6 Motors

__________________________________________________________________________

2013 Formula SAE Electric 33

6.1.2 Wiring, cables, current calculations, connectors

Figure 21: Motor Schematic

6.1.3 Position in car

See Figure 6 in section 2.2.3.

Page 42: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 7 Torque Encoder

__________________________________________________________________________

2013 Formula SAE Electric 34

7 Torque encoder

7.1 Description/additional circuitry

Describe the type of the torque encoder(s) used, provide tables with main operation parameters,

and describe additional circuitry used to check or manipulate the signal going to the motor

controller. Describe how the system reacts if an implausibility or error (e.g. short circuit or open

circuit or equivalent) is detected.

Torque encoder manufacturer and type: Bourns 3046 Linear Motion Potentiometer

Torque encoder principle: Potentiometer

Supply voltage: 5V

Maximum supply current: 20mA

Operating temperature: -55 °C to +125 °C

Used output: 0.5-4.5V

Table 7.1 Torque encoder data

7.2 Wiring

The raw encoder signal will be routed through the PCB which contains the Brake Plausibility

Device. This will check for implausibility of the torque encoders as well as with respect to the brake

signal. If there is implausibility, the throttle signal will then be cut from being sent to the motor

controller and the arguing will open the GLVS system which in turn opens the AIRs.

7.3 Position in car/mechanical fastening/mechanical connection

The potentiometer will be incorporated into the pedal assembly. Separate fixtures for each of the

components will be fabricated that will allow us to bolt the sensors to the pedal assembly. Similarly,

the PCB that acts as the Brake plausibility device will be housed in a small shock resistant box

which will be affixed to the Pedal assembly through mounting screws.

7.3.1 Wiring/cables/connectors/

All of the wiring associated with this device and the throttle inputs will be routed through the Brake

Plausibility Device Box. This will allow us to run only one braided cable from the front of the car to

the ECU box where all the processing will occur.

Molex Minifit Jr. connectors will be incorporated into the design of the board therefore all of the

sensor wire will be able to connect to the board and a single output connector can be used.

Page 43: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 7 Torque Encoder

__________________________________________________________________________

2013 Formula SAE Electric 35

7.3.2 Position in car

See Figure 8 in section 2.4.5.

Page 44: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215

8 Additional LV-parts interfering with the tractive system

__________________________________________________________________________

2013 Formula SAE Electric 36

8 Additional LV-parts interfering with the tractive system

8.1 LV part 1

ELCON TDC-10812EGC

8.1.1 Description

The DC to DC converter is used to step down 96VDC to 12VDC to power the Tractive System

Active Light (TSAL). This is still a prototype and will probably not be used in the final stage of our

car.

8.1.2 Wiring, cables,

This is still a prototype and will probably not be used in the final stage of our car.

8.1.3 Position in car

This converter will be contained in the ECU box of the car, shown in Figure 6.

Page 45: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 9 Overall Grounding Concept

__________________________________________________________________________

2013 Formula SAE Electric 37

9 Overall Grounding Concept

9.1 Description of the Grounding Concept

We are using LIQUID-TUFF™ UL Type A Orange, Type LFNC-A Liquid-tight Flexible Non-Metallic

Conduit to achieve isolation between the high voltage wiring to the chassis. The 1/0 wires will be

ran through the conduit to prevent high voltage grounding to the chassis. The GLV wires are going

to be isolated from the chassis by heat shrinking the GLV wiring harness. These methods paired

with the IMD will ensure the wires will not short to the chassis. Refer to datasheet 9.1.1.

The chassis of our car as well as the shear panels are constructed from AISI Chromoly 4130N Steel. The GLVS is grounded to the chassis through ring type connectors screwed into grounding weld-nuts around various points in the car. The chassis will be powder coated but the coating will be removed in areas where the grounding nuts will be attached.

9.2 Grounding Measurements

The grounding measurements will be achieved by applying a Multimeter set to measure resistance between the component that should be grounded and its associated grounding nut. This resistance will be measured then the components resistance will be measured again in reference to a common ground that is placed at the front of the car near the front impact structure.

Page 46: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 10 Firewall

__________________________________________________________________________

2013 Formula SAE Electric 38

10 Firewall(s)

10.1 Firewall 1

10.1.1 Description/materials

The firewall will be placed in close proximity with the seat and the battery pack. It will completely

separate the battery and tractive system components from the driver. The first section will be made

into a modular shape that will slide over the battery pack. The second section will conform to the

back of the seat and connect be attached to the headrest mount.

The firewall will be made from ITW Formex. This is a moldable and easy to use material that is fire

retardant and electrically insulating. The Formex firewall will directly contact the lower members of

the side impact structure to achieve grounding.

10.1.2 Position in car

Figure 22: Firewall section 1Isometric View

Page 47: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 10 Firewall

__________________________________________________________________________

2013 Formula SAE Electric 39

Figure 23: Firewall Section 1 Secondary View

Figure 24: Firewall Section 2 isometric view

Page 48: Electrical System Form FSAE-E2013 University of California, San … · 2018. 9. 10. · Electrical System Form FSAE-E2013 University of California, San Diego Triton Racing Car: E215

University of California, San Diego - Car: E215 11 Appendix

__________________________________________________________________________

2013 Formula SAE Electric 40

11 Appendix

2.2.1.1 A-Isometer iso-F1 IR155-3203

2.3.1.1 Sensata Inertia Switch

2.6.2.1 Krimptite™ Quick Disconnect Terminal

2.8.1.1 Banana Jacks 4mm

2.11.1.1 EV EZ Safe Disconnect

2.12.1.1 Piezo Buzzer

3.1.2.1 Turnigy 5000mAh Lipoly Battery

3.1.5.1 Kilovac EV-200AAANA

3.1.6.1 Ferraz 500A Fuse

3.1.7.1 Elithion Lithiumate Lite

3.1.9.1 Belden 18 AWG Wire

3.1.10.1 HWC4 Charger

5.1.1.1 Curtis 1238R-7601 Motor Controller

5.1.2.1 RADAFLEX 2/0 AWG Cable

7.1.1 Bourns 3046 Linear Motion Potentiometer

8.1.1.1 ELCON TDC-10812EGC

9.1.1 LIQUID-TUFF™ Flexible Non-Metallic Conduit

10.1.1.1 Electrical Insulating Material Formex™