electro-optics - seoul national universityocw.snu.ac.kr/sites/default/files/note/eo_18.pdf · 2018....

16
Electro-Optics: Yoonchan Jeong School of Electrical Engineering, Seoul National University Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: [email protected] Electro-Optics (2)

Upload: others

Post on 18-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Electro-Optics:

    Yoonchan Jeong School of Electrical Engineering, Seoul National University

    Tel: +82 (0)2 880 1623, Fax: +82 (0)2 873 9953 Email: [email protected]

    Electro-Optics (2)

  • Quadratic Electro-Optic Effect Permutation symmetries:

    2

    )21()12(6),31()13(5),32()23(4),33(3),22(2),11(1

    =========→

    Index ellipsoid:

    ++++++→ yxxzzyzyx

    x

    EEsEEsEEsEsEsEsn

    x 1615142

    132

    122

    1122 2221

    jiklijkl ss =→

    ijlkijkl ss =→

    +++++++ yxxzzyzyx

    y

    EEsEEsEEsEsEsEsn

    y 2625242

    232

    222

    2122 2221

    +++++++ yxxzzyzyx

    z

    EEsEEsEEsEsEsEsn

    z 3635342

    332

    322

    3122 2221

    ( )yxxzzyzyx EEsEEsEEsEsEsEsyz 464544243242241 2222 ++++++( )yxxzzyzyx EEsEEsEEsEsEsEszx 565554253252251 2222 ++++++( )2 2 261 62 63 64 65 662 2 2 2 1x y z y z z x x yxy s E s E s E s E E s E E s E E+ + + + + + =

    =→

    666564532261

    565554532251

    464544432241

    363534332231

    262524232221

    161514131211

    ssssssssssssssssssssssssssssssssssss

    sij

    lkijklkijkijij EEsEr ++=→ )0()( ηη E

  • Electro-Optic Light Modulators Longitudinal electro-optic modulation:

    3

    Transverse electro-optic modulation:

    A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    → Large acceptance area with a thin EO crystal plate

    → Long interaction length at a given field strength

  • 4

    Electro-Optic Fabry-Perot Modulators Electro-optic amplitude modulator:

    Charles Fabry (1867-1945 )

    Alfred Perot (1863-1925)

    A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    Transmission as a function of applied voltage: A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    → Gires-Tournois eltalon “Phase modulation only”

  • Electro-Optic Beam Deflectors Double-prism KDP beam deflectors:

    A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, 1984.

    5

  • Electro-Optic Property of Liquid Crystal Liquid crystals:

    Liquid crystal phases: smectic, nematic, and cholesteric Nematic LC: uniaxial dipole moment → Dynamic director alignment along the applied electric field → Switching time: ~msec

    Twisted nematic LC in liquid crystal displays (LCDs):

    VLC = 0V (off) VLC = 5V (on)

    Applicable to fiber-optic devices?

    6

  • LC-Filled Hollow Optical Fiber (1) Director alignment of nematic LC:

    Highly dependent on the liquid crystals-capillary interface interaction Silica: longitudinal direction borosilicate capillaries: radial direction

    Voltage off: Voltage on:

    +

    Off

    V

    +

    On

    V

    7

  • LC-Filled Hollow Optical Fiber (2)

    Periodical modulation of director alignment

    +

    On

    V

    Director Alignment

    z

    Comb electrode:

    Electrically controllable director alignment:

    → Controllable long-period gratings

    8

  • Properties of MLC-6295: Smectic/Nematic turning point: −30 oC, clearing point +101 oC no: 1.4772, ne: 1.5472 @20 oC, 589 nm

    Director check:

    LC-Filled Hollow Optical Fiber (3) Fiber image: Far-field image:

    Director alignment check: Visibility detection under a microscope between crossed polarizers Uniform director alignment to the direction of the fiber axis

    9

  • −⋅

    −=

    θθθθ

    θθθθεθε

    cossin0sincos0

    001

    000000

    cossin0sincos0001

    )(2

    2

    2

    e

    o

    o

    oxyz

    nn

    n

    −⋅⋅

    −=

    1000cossin0sincos

    )(1000cossin0sincos

    ),( φφφφ

    θεφφφφ

    εφθε φ xyzozr

    )0,0(),(),( zrzrzr φφφ εφθεφθε −=∆

    x

    y

    z

    φ

    θ

    Mode couplings: Long-period regime: a fundamental core mode (HE11) ↔ cladding modes Cladding modes to be coupled:

    ),( φθε φzr∆←clmclm

    clm

    clm

    clm HEHEHETETM 32100 ,,,,

    Anisotropic Mode Couplings in the LC Core Permittivity tensor dependent on the director alignment:

    Permittivity perturbation:

    10

  • Broadband source

    Spectrum analyzer

    Coupling unit

    LC-filled hollow fiber

    V

    Experimental setup: Broadband source: EDFA ASE Comb electrode: Period of 483 µm, length of 15.5 mm Applied voltage: 0 ~ 250 V

    Experimental Arrangement

    11

  • 0 V

    250 V 200 V

    150 V

    Long-Period LC Fiber Grating (1) Spectral responses with respect to applied voltages:

    12

  • Experiments:

    1500 1520 1540 1560 1580 1600

    250200

    150100

    50

    20

    -2

    -4

    -6

    -8

    Wavelength [nm]Ap

    plied V

    oltage

    [V]

    (inverted)Transm

    ission [dB]

    Wavelength [nm]1500 1520 1540 1560 1580 1600

    250200

    150100

    50

    20

    -2

    -4

    -6

    -8

    Wavelength [nm]Ap

    plied V

    oltage

    [V]

    (inverted)Transm

    ission [dB]

    Wavelength [nm]

    1500 1520 1540 1560 1580 1600

    54

    32

    1

    20

    -2

    -4

    -6

    -8

    Wavelength [nm]

    Angle

    θ [de

    g]

    (inverted)Transm

    ission [dB]

    Wavelength [nm]1500 1520 1540 1560 1580 1600

    54

    32

    1

    20

    -2

    -4

    -6

    -8

    Wavelength [nm]

    Angle

    θ [de

    g]

    (inverted)Transm

    ission [dB]

    Wavelength [nm]

    Simulations:

    Simulations: Based on the coupled-mode theory in anisotropic media Resonant couplings to the 3rd and 4th TM cladding modes

    Long-Period LC Fiber Grating (2) Normalized spectral responses:

    13

  • ...),2,1(,)()( *** =′∆+∆⋅−=′×+×′⋅∇ pEEiHEHE NLLppp εεω

    ≠=

    =⋅=∆ ∑ ).(2),(1

    ,ˆ),(),,(43

    ),(22

    ),()3(

    )( sqsq

    eztEzr sqs

    sssqoqNL ααφχεε

    g

    effeffs

    nIn

    ∆≈

    ∆→ ,2

    λλ

    Tran

    smis

    sion

    Wavelength

    NonlinearShift

    SpectralBandwidth

    Tran

    smis

    sion

    Wavelength

    NonlinearShift

    SpectralBandwidth

    Nonlinear Response of Fiber Gratings (1) Coupled-mode theory with nonlinear perturbation:

    Nonlinear spectral shift:

    14

  • 1564.50 1564.75 1565.00 1565.25 1565.50-25

    -20

    -15

    -10

    -5

    0

    Wavelength [nm]

    Tran

    smiss

    ion

    [dB]

    λs (Case I)

    λs (Case II)

    Nonlinear Shift

    Wavelength [nm]

    Nd:YAG Laser

    Tunable LD

    LPFG I LPFG II

    Oscilloscope PD 1

    PD 2

    Collimator

    Prism λp λs

    PC

    PD 3

    3 dB Coupler λp

    λs

    Experimental setup: Signal wave: Tunable LD @1565.2 nm (Case I), @1564.8 nm (Case II) Pump wave: Q-switched Nd:YAG laser (1 kHz)

    Initial transmission spectra:

    Nonlinear Response of Fiber Gratings (2)

    15

  • 0.0 0.2 0.4 0.6 0.8 1.0

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    Pump Intensity [GW/cm2]

    Sign

    al T

    rans

    mitt

    ivity

    (Cas

    e I)

    0.00

    0.05

    0.10

    0.15

    0.20

    (Theoretical) Case I Case II

    Case I Case II

    Signal Transmittivity (Case II)

    Pump Intensity [GW/cm2]

    Pump:

    → ∆λs ~ 0.12 nm/(GW/cm2)

    Nonlinear Response of Fiber Gratings (3) Signal (Case I):

    Sign

    al O

    utp

    ut [a

    . u.]

    0 1 2 3 4 5

    0.55

    0.60

    0.65

    0.70

    0.75

    a2

    a1

    a1 0.30 GW/cm2

    a2 0.93 GW/cm2

    Time [µsec]

    Pum

    p In

    put

    [a. u

    .]

    0 1 2 3 4 5

    0.00

    0.25

    0.50

    0.75

    1.00

    Time [µsec]

    Sign

    al O

    utp

    ut [a

    . u.]

    0 1 2 3 4 5

    0.00

    0.05

    0.10

    0.15

    0.20b2

    b1

    b1 0.42 GW/cm2

    b2 0.98 GW/cm2

    Signal (Case II):

    Time [µsec]

    16

    Electro-Optics:Quadratic Electro-Optic EffectElectro-Optic Light ModulatorsSlide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16