electroactive polymers slm f

Upload: anurag-ashokan

Post on 06-Apr-2018

230 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/3/2019 Electroactive Polymers SLM F

    1/34

    ELECTROACTIVE POLYMERS:

    Insight, Applications and Challenges

    MIICS 2008

    V. Sencadas, J.Gomes, S. Lanceros-Mendez

    Physics Department University of Minho

  • 8/3/2019 Electroactive Polymers SLM F

    2/34

    Summary

    ElectroactivePolymers Overview

    PVDF Polymer Other SmartMaterials

    ProcessingTechniques

    CharacterizationTechniques

    Applications Partners

  • 8/3/2019 Electroactive Polymers SLM F

    3/34

    Multifunctional materials: the same material haveseveral functionalities e.g. sensor/actuator

    Smart materials: respond to an excitation force with asignificant (and reproductive) variation of a given physical property

    Smart structures: structures with increased functionality(e.g. failure detection and warning (even repairing); health monitoring;MEMS)

    Introduction

  • 8/3/2019 Electroactive Polymers SLM F

    4/34

    Electroactive Polymers:

    Overview Materials that respond, in reproducible and stable form, with a significant

    external variation in certain property when subjected to an external stimulus.

    Stimulus Answer

    Stimuli: Mechanical Electric

    Thermal

    Answer: Mechanical Electric

  • 8/3/2019 Electroactive Polymers SLM F

    5/34

    WhyPolymers

    Are lightweight,flexible and tough

    Can be obtained in the formof ultrathin films, fibers andeven liquid crystals

    Can be easily

    transformed intoto the desiredconfiguration

    Their physical properties can be

    controlled over a wide range byappropriate chemical modifications

    Some of them arebiocampatible.

    Some have piezo-, pyro- andferroelectric properties

    Electroactive Polymers:

    Overview

  • 8/3/2019 Electroactive Polymers SLM F

    6/34

    Piezoelectric and Pyroelectric Polymers

    3,2,1,,

    =

    =

    jiTEj

    iij

    Pd

    T

    Pp

    =

    Dynamic response

    electric field)3 (direction of the applied

    1 (direction of the mechanical force)2 (perpendicular to the mechanical force direction)

    Electroactive Polymers:

    Overview

  • 8/3/2019 Electroactive Polymers SLM F

    7/34

    NASA Space Centre, ICASE PIEZOElectric Materials, 2001

    Electroactive Polymers:

    Overview

  • 8/3/2019 Electroactive Polymers SLM F

    8/34

    Material

    (g.cm-3)

    r

    (1kHz)

    d31

    (pC.N-1)

    p(mC.m-2K-

    1)

    k(%)

    PVDF 1,76 8-13 20 40 6P(VDF-TrFE) 1,9 15 20 15 30 30 - 40 20

    Nylon 11 1,1 4 3 3 _ _ _

    PZT-5 7,75 700 171 60-500 34

    BaTiO3 5,7 1700 78 200 21

    Quartzo 2,86 4,5 2 _ _ _ 9

    Electroactive Polymers:

    Overview

  • 8/3/2019 Electroactive Polymers SLM F

    9/34

    Crystalline

    Region

    AmorphousRegion

    Spherulite Nucleus

    MaterialsPVDF Poly(vinylidene Fluoride)

    Phase -

    PVDFPhase - Phase - Phase -

  • 8/3/2019 Electroactive Polymers SLM F

    10/34

    Monomer

    -PVDF -PVDF

    PVDF Poly(vinylidene Fluoride)

  • 8/3/2019 Electroactive Polymers SLM F

    11/34

    Processing conditions enable the control of the materials properties:

    MorphologyFerroelectricBehaviourMechanical

    Properties

    CrystallinePhase

    Thermalproperties

    6.0 6.5 7.0 7.5 8.0

    PVDF Poly(vinylidene Fluoride)

    -10

    0

    10

    20

    140C

    142.5C145C

    147.5C

    Q/mW

    time / min

    .

  • 8/3/2019 Electroactive Polymers SLM F

    12/34

    PVDF Poly(vinylidene Fluoride)

  • 8/3/2019 Electroactive Polymers SLM F

    13/34

    140C 150C

    Crystallization kinetics: Phase and microstructure formation

    0 20 40 60 80 100 120 140 160 1800

    10

    20

    30

    40

    50

    60

    70

    80

    Radius/m

    time / min

    -PVDF 150C-PVDF 155C-PVDF 160C-PVDF 165C-PVDF 160C-PVDF 165C

    160C 165C

    150 155 160 165

    -3

    -2

    -1

    -5.6

    -5.2

    -4.8

    -4.4

    Ln(G)/m.min-1

    Ln(G)/m.min-1

    T / C

    -PVDF

    -PVDF

  • 8/3/2019 Electroactive Polymers SLM F

    14/34

    0 100 200 300 400 500 600 700

    0

    3

    6

    9

    12

    15

    R = 5R = 4R = 3R = 2

    /

    MPa

    / %

    R = 1

    R = 1

    R = 3 R = 4

    R = 5

    0 5 10 15 20 25

    0

    2

    4

    6

    8

    10

    12

    -1.00E-009

    0.00E+000

    1.00E-009

    2.00E-009

    3.00E-009

    Tenso

    /MPa

    / %

    V/V

    Transio de fase?

    V

    AAKK

    A

    F += )/()(

    1 2 3 4 5

    0

    20

    40

    60

    80

    140C

    100C

    80C

    F()/%

    R

    90C

    Some Results: to phase transformation

  • 8/3/2019 Electroactive Polymers SLM F

    15/34

    400 500 600 700 800 900 1000

    0

    20

    40

    60

    80

    (442)

    (510)

    (600)

    Transmitncia/%

    Nmero de onda / cm-1

    (840)

    PCT/IB 2006052474

    Some Results: 100% phase material

    R l

  • 8/3/2019 Electroactive Polymers SLM F

    16/34

    -60 -30 0 30 60 90 120 150

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    E'/MP

    a

    Temperature / C

    -PVDF80C R=5 80C R=5 140C R=5 140C R=5

    Results

    -50 0 50 100 150

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    Tan

    Temperature / C

    -PVDF80C R=5 80C R=5 140C R=5 140C R=5

    Dynamical Mechanical Behavior

    All samples have similar mechanical behaviour

    E is higher for the unoriented samples (-PVDF) A relaxation process is detected at T -35 C. This process, has been labelled ora.It is assigned to the cooperative segmental motions within the main chains of theamorphous regions

    Above 50C (for the stretched samples), a new relaxation process appears associated

    to -relaxation. Absent in amorphous PVDF.

    R l

  • 8/3/2019 Electroactive Polymers SLM F

    17/34

    Results

    -100 -50 0 50 100 1500

    5

    10

    15

    20

    25

    30

    0.00

    0.25

    0.50

    0.75

    1.00

    '

    T / C

    -PVDFT80R5

    T140R5

    Tan

    0.0030 0.0033 0.0036 0.0039 0.0042 0.0045-5

    0

    5

    10

    15

    20

    ln()/Hz

    1/T / K-1

    80C

    90C

    100C

    140C

    R = 5

    0.0030 0.0033 0.0036 0.0039 0.0042 0.0045-5

    0

    5

    10

    15

    20

    ln()

    1/T / K-1

    R1

    R4

    R5

    T = 80C

    Dielectric Behavior

    Increase of the dielectric constant with increasing

    -phase content.

    Effect of stretching temperature in the relaxationbehavior is much lower than the effect of thestretching ratio.

    Phase content and orientation (mainly) play a veryimportant role on the relaxation parameters.

    R lt

  • 8/3/2019 Electroactive Polymers SLM F

    18/34

    80C 0 Ea TVF Tg mR s-1 eV K K

    1 1.84E-10 0.061 200.40 226.42 102.10

    4 9.2E-11 0.073 208.90 239.57 94.03

    5 2.77E-11 0.087 193.92 228.67 82.65

    R5 0 Ea TVF Tg mT (C) s-1 eV K K

    80 2.77E-11 0.087 193.92 228.67 82.65

    90 2.2E-11 0.085 195.92 229.84 85.75

    100 6.54E-11 0.071 201.64 230.99 95.92

    140 9.31E-11 0.070 199.47 229.11 99.29

    Results

    = )(exp0 VFBaTTk

    E

    2

    0 )/1)(10(ln

    /

    g

    gVTF

    TT

    kTE

    m =

    VFT

    Fragility parameter

    VFT Fitting Results

    R lt

  • 8/3/2019 Electroactive Polymers SLM F

    19/34

    Results

    -100 -50 0 50 100 150

    0.00

    0.15

    0.30

    0.45

    0.03

    0.06

    0.09

    0.12

    0.15

    T

    an

    Tan

    T / C

    -PVDFT80R5

    T140R5

    0.0030 0.0033 0.0036 0.0039 0.0042 0.0045

    -15

    -10

    -5

    0

    5

    10

    15

    20

    ln()

    1/T / K-1

    R1

    R4

    R5

    T = 80C

    Dielectrical vsDynamical Mechanical

    -100 -50 0 50 100 1500

    5

    10

    15

    20

    25

    30

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    '

    T / C

    -PVDFT80R5

    T140R5

    E/MPa

    The -relaxation is identified by an increase of E

    anda corresponding decrease of , i.e. anincrease in the mechanical stiffness and adecrease in the dipole mobility

    The -relaxation is mainly observed in themechanical experiments, especially in themeasurements performed parallel to the drawdirection.

    R lt

  • 8/3/2019 Electroactive Polymers SLM F

    20/34

    0.0030 0.0032 0.0034 0.0036 0.0038 0.0040 0.0042 0.0044-15

    -10

    -5

    0

    5

    10

    15

    20

    ln()

    1/T / K-1

    Dielectric

    Mechanical - Paralel

    Mechanical - Perpendicular

    0.0034 0.0036 0.0038 0.0040 0.0042 0.0044

    -8

    -4

    0

    4

    8

    12

    16

    ln()

    1/T / K-1

    Dielectric

    Mechanical - Paralel

    Mechanical - Perpendicular

    0.0032 0.0034 0.0036 0.0038 0.0040 0.0042 0.0044-12

    -8

    -4

    0

    4

    8

    12

    16

    ln()

    1/T / K-1

    Dielectric

    Mechanical - ParalelMechanical - Perpendicular

    0.0032 0.0034 0.0036 0.0038 0.0040 0.0042 0.0044-8

    -4

    0

    4

    8

    12

    16

    20

    ln()

    1/T /K-1

    Dielectric

    Mechanical - Paralel

    Mechanical - Perpendicular

    90C

    140C

    Dielectrical vs Dynamical MechanicalResults

    80C

    100C

  • 8/3/2019 Electroactive Polymers SLM F

    21/34

    -1,2x108-6,0x10

    7 0,0 6,0x107

    1,2x108

    -8,0x10-2

    -6,0x10-2

    -4,0x10-2

    -2,0x10-2

    0,02,0x10

    -2

    4,0x10-2

    6,0x10-2

    8,0x10-2

    E=100MV/m; =10HzE=130MV/m; =10Hz

    E (V/m)

    P (C/m2)

    Field

    (kV/mm)

    (Hz) 33 d33(m/V)

    1 67 12 23e

    -12

    -1,2x108-6,0x10

    7 0,0 6,0x107

    1,2x108-1,8x10

    -2

    -1,5x10-2

    -1,2x10-2

    -9,0x10-3

    -6,0x10-3

    -3,0x10-3

    0,0E=100MV/m; =10HzE=130MV/m; =10Hz

    E (V/m)

    S

    -8,0x10-2

    -4,0x10-2 0,0 4,0x10

    -28,0x10

    -2-1,8x10-2

    -1,5x10-2

    -1,2x10-2

    -9,0x10-3

    -6,0x10-3

    -3,0x10-3

    0,0

    E=100MV/m; =10HzE=130MV/m; =10Hz

    s

    P(C/m2)

    Optimization and origin of the electroactive

    properties

    O

  • 8/3/2019 Electroactive Polymers SLM F

    22/34

    Non-poled

    Optimization and origin of the electroactiveproperties

    300nm

    300nm

    -5.00E-05

    -4.50E-05

    -4.00E-05

    -3.50E-05

    -3.00E-05

    -2.50E-05

    -2.00E-05

    -1.50E-05

    -1.00E-05

    -5.00E-06

    0.00E+00

    -80 -60 -40 -20 0 20 40 60 80

  • 8/3/2019 Electroactive Polymers SLM F

    23/34

    Smart Materials

    Other Smart Materials being developed:

    Conductive Polymers (PANI, Ppy, PEDOT:PSS)

    Polymer-matrix (PVDF) composites

    PVDF Ag nanoparticle composites

    PVDF-PZT composites

    PVDF- Carbon nanotubes/ Carbon nanofibre composites

    Polymer-matrix (PVDF) Magnetoelectric composites

    Piezoresistive Materials

  • 8/3/2019 Electroactive Polymers SLM F

    24/34

    Processing Techniques

    Sheet Extrusion(Thin Film)

    TricomponentExtrusion

    Electrospinning /Meltspinning

    Spin Coating Inkjet Printing PVD

  • 8/3/2019 Electroactive Polymers SLM F

    25/34

    Characterization Techniques

    Microscopy

    SPM -AFM SEM OpticalMicroscopy

  • 8/3/2019 Electroactive Polymers SLM F

    26/34

    Characterization Techniques

    Electrical Analysis

    Mechanical and Thermal Analysis

    FerroelectricProperties

    Conductivity EFM, MFM,PFM

    DielectricSpectroscopy

    DSC-TGADMA Stress - Strain

  • 8/3/2019 Electroactive Polymers SLM F

    27/34

    Applications

    Key features of Piezoelectric Polymers:

    Low density

    Multi-Shape possibilities

    High flexibility

    Ideal for wearable sensor actuator applications

    Low cost (processing and materials) Tunability

  • 8/3/2019 Electroactive Polymers SLM F

    28/34

    Applications

    Vibration Monitoring

    Airplane Wings Buildings and Structures

    Bio Sensors

    Electroactive Scaffolds

    Implant healt monitoring systems

    Physiological condition monitoring (heart rate, temperature)

    Wearables

    Flexible and Transparent Touchpads in clothing

    Flexible microphones Flexible sensor-actuators in footwear

  • 8/3/2019 Electroactive Polymers SLM F

    29/34

    Applications

    Energy - Electronics

    Photovoltaic Solar Cells (EU funded project) Energy generating devices

    Upgraded Electronic devices

    Multimedia Flexible and Transparent Touchpads and Touchscreens

    Electrochromic effects

    Interactive Structures

    Others

    Applications involving an electric/mechanical stimuli

    resulting in an electric, mechanical, optic or thermalresponse

    Fl

  • 8/3/2019 Electroactive Polymers SLM F

    30/34

    Flux sensor

    Sensor based on the Doppler Effect.

    One ultrasound transducer emits ultrasounds, at a frequency of hundreds of

    kHz, through the flow. The particles suspended in the liquid reflect the

    ultrasounds to a second transducer that will receive them.

    Pipe

    Flow direction

    UltrasoundsUltrasoundtransducer

    Ultrasound

    transducer

    Suspendedparticles

    Pipe

    Flow direction

    UltrasoundsUltrasoundtransducer

    Ultrasound

    transducer

    Suspendedparticles

  • 8/3/2019 Electroactive Polymers SLM F

    31/34

    Challenges

    Optimization of the electroactive response

    Optimization of physical properties copolymers and blends;doping

    Multifunctional materials:

    Adding metallic nano-particles (Optical properties)Adding carbon nano-fibers and nanotubes (thermal andelectrical properties)

    Processing in the form of film or long/short fibers

    Processing porous or nonporous material

    Processing of ultrathin films (10 100 nm)

    1.4m

    Application Challenges

  • 8/3/2019 Electroactive Polymers SLM F

    32/34

    Application Challenges

    Generation and accumulation of energy (ex. shoe/textile)

    Multifunctional actuation (heating, force, )

    Flexible sensors (breath, heart, etc), implementation in cloths, etc

    Electro-active fibers

    Flexible tactile, temperature, form and shape sensors.

    Interactive, flexible displays

    Electro-chromic

    Stimulation or cell growth~ 0.22 0.036 pC/N

    800nm

  • 8/3/2019 Electroactive Polymers SLM F

    33/34

    Partners

    National:

    -Universidade do Minho

    -Universidade de Aveiro

    -Universidade do Porto

    - CeNTI, Centre for Nanotechnologyand Smart Materials

    International:

    -University of Halle (Germany)

    -University of Postdam (Germany)

    -Montana State University (USA)

    -Pennsilvania state Unversity (USA)-Universidade Politcnica de Valencia (Spain)

    -Universidad del pas Vasco (Spain)

    -Universidade Federal de So Carlos (Brazil)Industry:- Amtrol-Alfa;

    - Galp (projects); Shoes; Foams (projects);

    -MSI;

    -Solvay (material)

  • 8/3/2019 Electroactive Polymers SLM F

    34/34

    Acknowledgments

    Bilateral cooperation programs CRUP (Brasil, Spain, Germany)

    Portuguese Foundation for Science and Technology (FCT), several project fundings

    and PhD grants

    COST-12 Structuring Polymers

    SIUPI program for up-scaling of processes

    Plastinet alpha program from EU

    Internet webpage

    http://www.arauto.uminho.pt/pessoas/lanceros/ProjectoPiezo/index.html

    Special thanks to the Organizers