electrochemicalcells ii supplementalworksheet...

12
Name:____________________ Revised CR 1/16/14 © LaBrake & Vanden Bout 2014 Electrochemical Cells II – Supplemental Worksheet KEY All the electrochemical cells on this worksheet are the same ones on the first Electrochemical Cells worksheet. To make the work on this worksheet easier, refer to the work you did on the previous Electrochemical Cells worksheet. Experimental Observations of Electrochemical Cells 1. Consider the voltaic cell that contains standard Co 2+ /Co and Au 3+ /Au electrodes. The following experimental observations were noted: (1) Metallic gold plates out on one electrode and the gold ion concentration decreases around that electrode, and (2) The mass of the cobalt electrode decreases and the cobalt (II) ion concentration increases around that electrode. a. Recall the diagram, overall balanced redox reaction, and the standard cell potential for this cell? <Co(s)|Co 2+ (aq)||Au 3+ (aq)|Au(s)> cell = E°cathode – E°anode = 1.50 V – (–0.28 V) = 1.78 V b. What is the standard reaction free energy for this cell? ΔG˚ = nFE˚ ΔG˚ = –6 mol e mol rxn 96485 C mol e 1.78 J C ( ) ΔG˚ = –1030.46 kJ mol rxn

Upload: others

Post on 18-Jan-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

Electrochemical  Cells  II  –  Supplemental  Worksheet          KEY    All  the  electrochemical  cells  on  this  worksheet  are  the  same  ones  on  the  first  Electrochemical  Cells  worksheet.  To  make  the  work  on  this  worksheet  easier,  refer  to  the  work  you  did  on  the  previous  Electrochemical  Cells  worksheet.      Experimental  Observations  of  Electrochemical  Cells    

1. Consider  the  voltaic  cell  that  contains  standard  Co2+/Co  and  Au3+/Au  electrodes.  The  following  experimental  observations  were  noted:  (1)  Metallic  gold  plates  out  on  one  electrode  and  the  gold  ion  concentration  decreases  around  that  electrode,  and  (2)  The  mass  of  the  cobalt  electrode  decreases  and  the  cobalt  (II)  ion  concentration  increases  around  that  electrode.    

a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  potential  for  this  cell?  

 <Co(s)|Co2+(aq)||Au3+(aq)|Au(s)>  E°cell  =  E°cathode  –  E°anode  =  1.50  V  –  (–0.28  V)  =  1.78  V    

b. What  is  the  standard  reaction  free  energy  for  this  cell?  

ΔG˚= –nFE˚

ΔG˚= – 6 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ 1.78 J

C( )ΔG˚= –1030.46 kJ

mol rxn

 

Page 2: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  25°C.    

ΔG˚= –RT lnKΔG˚= –1030.46 kJ

mol rxn = –1030460 Jmol rxn

lnK = – ΔG˚RT

= −–1030460 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= 415.7

K = e415.7

 

 This  is  a  very  large  K,  this  reflects  the  spontaneous  nature  of  this  reaction.    

d. Calculate  the  emf  at  25°C  of  this  cell  in  which  the  concentration  of  Co2+  ions  is  0.30  mol/L  and  that  of  the  Au3+  ions  is  0.0010  mol/L.    Here  we  use  the  Nernst  Equation.  Since  we  are  finding  the  emf  at  25°C  we  can  use  the  version  of  the  Nernst  Equation  that  includes  the  room  temperature  value  into  its  constant:  

Ecell = E˚− 0.05916n

logQ

Q =[Co2+]3

[Au3+]2=[0.30M]3

[0.0010M]2= 27000

Ecell =1.78V −0.059166mol e–

log(27000)

Ecell =1.74V

 

 e. Assume  you  use  this  cell  as  a  battery  to  power  one  of  your  electric  devices  

that  draws  1  mA  of  current.  If  you  ran  the  battery  at  a  constant  1  mA  for  3000  hours,  how  many  grams  of  Co  would  be  consumed?  To  figure  this  problem  out,  we  will  do  a  series  of  conversions:    current  and  time  !  charge  !  moles  of  e–  !  moles  of  Co  !  grams  of  Co    

1mA = 0.001Cs

C used = current × time =0.001C1s

⎝ ⎜

⎠ ⎟ ×

3600s1hr

⎝ ⎜

⎠ ⎟ × 3000hr( )

C used =10800C

mass Co = (10800C) ×1mol e–

96485C

⎝ ⎜

⎠ ⎟ ×

1mol Co2mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

59g Co1mol Co

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mass Co = 3.30gCo

 

So  3.30  grams  of  cobalt  would  be  consumed.  

Page 3: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

2. Consider  the  electrolysis  of  molten  calcium  chloride  with  inert  electrodes.  The  following  experimental  observations  were  noted:  (1)  Bubbles  of  pale  green  chlorine  gas  are  produced  at  one  electrode,  and  (2)  Silvery  white  molten  metallic  calcium  is  produced  at  the  other  electrode.    

a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  potential  for  this  cell?  

 <Pt(s)|Cl-­‐(aq)|Cl2(g)||Ca2+(aq)|Ca(s)|Pt(s)>  E°cell  =  E°cathode  –  E°anode  =  –2.76  V  –  (1.36  V)  =  –4.12  V    

b. What  is  the  standard  reaction  free  energy  for  this  cell?  

ΔG˚= –nFE˚

ΔG˚= – 2 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ –4.12 J

C( )ΔG˚= 795 kJ

mol rxn

 

 c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  

25°C.  

Page 4: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

ΔG˚= –RT lnKΔG˚= 795 kJ

mol rxn = 795000 Jmol rxn

lnK = – ΔG˚RT

= −795000 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= –320.7

K = e–320.7

 

 This  is  a  very  small  K,  this  reflects  the  non-­‐spontaneous  nature  of  this  reaction.  

 

d. How  many  hours  are  required  to  plate  12.00  g  of  metallic  calcium  from  1.00  M  CaCl2  (aq)  by  using  a  current  of  3.00  A?  To  figure  this  problem  out,  we  will  do  a  series  of  conversions:  grams  of  Ca  !  moles  of  Ca  !  moles  of  e–  !  charge  !  charge  and  current  !  time    

time = 12.00gCa( ) ×1mol Ca40.1g Ca

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

2mol e–

1mol Ca

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

96485C1mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

1s3C⎛

⎝ ⎜

⎠ ⎟ ×

1hr3600s⎛

⎝ ⎜

⎠ ⎟

time = 5.347hr  

It  would  require  5.3  hours  to  plate  12.00  g  of  metallic  calcium  from  1.00  M  CaCl2  (aq)  by  using  a  current  of  3.00  A.    

e. Determine  the  volume  (in  liters,  at  STP)  of  chlorine  gas  that  can  be  produced  in  this  cell  by  using  a  current  of  7.30  mA  for  2.11  hours.    To  figure  this  problem  out,  we  will  do  a  series  of  conversions:  current  and  time  !  charge  !  moles  of  e-­‐  !  moles  of  Co  !  liters  of  Cl2  

current = 7.30mA = 0.0073 Cs

time = 2.11hr × 3600s1hr

⎝ ⎜

⎠ ⎟ = 7596s

C used = current × time =0.0073C1s

⎝ ⎜

⎠ ⎟ × (7596s)

C used = 55.45C

volume Cl2 = (55.45C) ×1mol e–

96485C

⎝ ⎜

⎠ ⎟ ×

1mol Cl22mol e–

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

22.4L Cl21mol Cl2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

volume Cl2 = 6.44 ×10−3L

 

In  this  situation  6.44x10-­‐3L  or  6.44  mL  Cl2  would  be  produced.    

Page 5: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

Short  Hand  Notation  of  Electrochemical  Cells  3. Consider  the  following  cell  <Ni(s)|Ni2+(aq)||Ag+(aq)|Ag(s)>  

a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  potential  for  this  cell?  

 E°cell  =  E°cathode  –  E°anode  =  0.80  V  –  (–0.23  V)  =  1.03  V    

b. What  is  the  standard  reaction  free  energy  for  this  cell?  

ΔG˚= –nFE˚

ΔG˚= – 2 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ 1.03 J

C( )ΔG˚= −198.76 kJ

mol rxn

 

 c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  

25°C.    

ΔG˚= –RT lnKΔG˚= −198.76 kJ

mol rxn = −198760 Jmol rxn

lnK = – ΔG˚RT

= −−198760 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= 80.18

K = e80.18 = 6.65 ×1034

 

This  is  a  very  large  K,  this  reflects  the  spontaneous  nature  of  this  reaction.    

Page 6: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

d. What  is  the  concentration  of  Ni2+  ions  if  the  emf  at  25°C  of  this  cell  is  +1.68  V  and  the  concentration  of  Ag+  ions  is  0.0280  mol/L?  Here  we  use  the  Nernst  Equation.  Since  we  are  finding  the  emf  at  25°C  we  can  use  the  version  of  the  Nernst  Equation  that  includes  the  room  temperature  value  into  its  constant:  

Ecell = E˚− 0.05916n

logQ

Q =[Ni2+][Ag+]2

=x

[0.0280M]2

1.68 =1.03V −0.059162mol e–

log x[0.0280M]2⎛

⎝ ⎜

⎠ ⎟

log x[0.0280M]2⎛

⎝ ⎜

⎠ ⎟ = −21.97

x[0.0280M]2

=1.06 ×10−22

x = [Ni2+] = 8.32 ×10−26M

 

 e. How  many  hours  would  it  take  for  this  galvanic  cell  to  plate  30.00  g  of  

metallic  silver  from  1.00  M  solutions  of  Ni2+(aq)  and  Ag+(aq)  assuming  it  produces  a  constant  current  of  2.25  A?  To  figure  this  problem  out,  we  will  do  a  series  of  conversions:  grams  of  Ag  !  moles  of  Ag  !  moles  of  e-­‐  !  charge  !  current  !  time    

2.25A = 2.25 Cs

time = 30.00g Ag( ) × 1mol Ag107.87g Ag

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

1mol e–

1mol Ag

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

96485C1mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

1s2.25C⎛

⎝ ⎜

⎠ ⎟ ×

1hr3600s⎛

⎝ ⎜

⎠ ⎟

time = 3.3hours  

It  would  require  3.3  hours  to  plate  30.00  g  of  metallic  silver  from  1.00  M  solutions  of  Ni2+(aq)  and  Ag+(aq)  assuming  it  produces  a  constant  current  of  2.25  A.  

 

Page 7: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

4. Consider  the  following  cell  <Pt(s)|  Ce3+(aq)|Ce4+(aq)||Cu2+(aq)  |Cu(s)>  a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  

potential  for  this  cell?  

 E°cell  =  E°cathode  –  E°anode  =  0.34  V  –  (1.70  V)  =  –1.36  V    

b. What  is  the  standard  reaction  free  energy  for  this  cell?  

ΔG˚= –nFE˚

ΔG˚= – 2 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ −1.36 J

C( )ΔG˚= 262.44 kJ

mol rxn

 

c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  25°C.    

ΔG˚= –RT lnKΔG˚= 262.44 kJ

mol rxn = 262440 Jmol rxn

lnK = – ΔG˚RT

= −262440 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= –105.87

K = e–105.87 ≈1.0 ×10−46

 

 This  is  a  very  small  K,  this  reflects  the  non-­‐spontaneous  nature  of  this  reaction.  

Page 8: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

d. What  is  the  concentration  of  Ce4+  ions  if  the  emf  at  25°C  of  this  cell  is  –1.20  V,  the  concentration  of  Cu2+  ions  is  0.60  mol/L  and  the  concentration  of  Ce3+  ions  is  0.30  mol/L?  Here  we  use  the  Nernst  Equation.  Since  we  are  finding  the  emf  at  25°C  we  can  use  the  version  of  the  Nernst  Equation  that  includes  the  room  temperature  value  into  its  constant:  

Ecell = E˚− 0.05916n

logQ

Q =[Ce4+]2

[Cu2+][Ce3+]2=

x 2

[0.60M][0.30M]2=

x 2

0.054

−1.20V = –1.36V −0.059162mol e–

log x 2

0.054⎛

⎝ ⎜

⎠ ⎟

log x 2

0.054⎛

⎝ ⎜

⎠ ⎟ = −5.409

x 2

0.054= 3.90 ×10−6

x = [Ce4+] = 4.59 ×10−4M

 

 e. Determine  the  mass  (in  grams)  of  metal  copper  that  can  be  produced  in  this  

cell  by  using  a  current  of  5.0  A  for  2.7  days.    To  figure  this  problem  out,  we  will  do  a  series  of  conversions:    current  and  time  !  charge  !  moles  of  e–  !  moles  of  Cu  !  grams  of  Cu    

5.0A = 5.0 Cs

C used = current × time =5.0C1s

⎝ ⎜

⎠ ⎟ ×

3600s1hr

⎝ ⎜

⎠ ⎟ ×

24hr1day⎛

⎝ ⎜

⎠ ⎟ × 2.7days( )

C used =1166400C

mass Cu = (1166400C) ×1mol e–

96485C

⎝ ⎜

⎠ ⎟ ×

1mol Cu2mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

63.55g Cu1mol Cu

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mass Cu = 384gCu

 

So  384  g  Cu  would  be  produced.      

Page 9: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 

Electrochemical  Cell  Diagrams    5. Consider  the  following  cell:  

 

   

a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  potential  for  this  cell?  

 <Cu(s)|Cu2+(aq)||Zn2+(aq)|Zn(s)>  E°cell  =  E°cathode  –  E°anode  =  –0.76  V  –  (0.34  V)  =  –1.10  V    

b. What  is  the  standard  reaction  free  energy  for  this  cell?  

Page 10: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

ΔG˚= –nFE˚

ΔG˚= – 2 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ −1.10 J

C( )ΔG˚= 212.27 kJ

mol rxn

 

c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  25°C.    

ΔG˚= –RT lnKΔG˚= 212.27 kJ

mol rxn = 212270 Jmol rxn

lnK = – ΔG˚RT

= −212270 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= –85.63

K = e–85.63 ≈ 6.5 ×10−38

 

 This  is  a  very  small  K,  this  reflects  the  non-­‐spontaneous  nature  of  this  reaction.    

d. What  is  the  potential  for  this  cell  if  the  Cu2+  concentration  is  5.8  x  10-­‐3M  and  the  Zn2+  concentration  is  1.3  x  10-­‐1  M  ?  Here  we  use  the  Nernst  Equation.  Since  we  are  finding  the  emf  at  25°C  we  can  use  the  version  of  the  Nernst  Equation  that  includes  the  room  temperature  value  into  its  constant:  

Ecell = E˚− 0.05916n

logQ

Q =[Cu2+][Zn2+]

=[5.8 ×10−3M][1.3 ×10−1M]

= 0.0446

Ecell = –1.10V −0.059162mol e–

log 0.0446( )

Ecell = −1.06V

 

 e. Determine  the  mass  (in  grams)  of  zinc  metal  that  can  be  produced  in  this  cell  

by  using  a  current  of  6.0  A  for  1.5  days.    To  figure  this  problem  out,  we  will  do  a  series  of  conversions:    current  and  time  !  charge  !  moles  of  e–  !  moles  of  Zn  !  grams  of  Zn    

Page 11: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

6.0A = 6.0 Cs

C used = current × time =6.0C1s

⎝ ⎜

⎠ ⎟ ×

3600s1hr

⎝ ⎜

⎠ ⎟ ×

24hr1day⎛

⎝ ⎜

⎠ ⎟ × 1.5days( )

C used = 777600C

mass Zn = (777600C) ×1mol e–

96485C

⎝ ⎜

⎠ ⎟ ×

1mol Zn2mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

65.38g Zn1mol Zn

⎝ ⎜ ⎜

⎠ ⎟ ⎟

mass Zn = 263.46gZn

 

So  263.5  g  Zn  would  be  produced  6. Consider  the  following  cell:  

 

   

a. Recall  the  diagram,  overall  balanced  redox  reaction,  and  the  standard  cell  potential  for  this  cell?  

 <Zn(s)|Zn2+(aq)||Cu2+(aq)|Cu(s)>  E°cell  =  E°cathode  –  E°anode  =  0.34  V  –  (–0.76  V)  =  1.10  V  

Page 12: ElectrochemicalCells II SupplementalWorksheet KEYch302.cm.utexas.edu/worksheets/echem-cells-wkst-KEY.pdf · Name:_____’! Revised’CR1/16/14’ ’ ©LaBrake’&’Vanden’Bout’2014’

    Name:____________________    

Revised  CR  1/16/14     ©  LaBrake  &  Vanden  Bout  2014  

 b. What  is  the  standard  reaction  free  energy  for  this  cell?  

ΔG˚= –nFE˚

ΔG˚= – 2 mol e –

mol rxn⎛ ⎝ ⎜ ⎞

⎠ ⎟ 96485 C

mol e –⎛ ⎝ ⎜ ⎞

⎠ ⎟ 1.10 J

C( )ΔG˚= −212.27 kJ

mol rxn

 

c. Calculate  the  equilibrium  constant  for  the  overall  redox  reaction  of  this  cell  at  25°C.    

ΔG˚= –RT lnKΔG˚= −212.27 kJ

mol rxn = −212270 Jmol rxn

lnK = – ΔG˚RT

= −−212270 J

mol rxn

(8.314 Jmol rxn⋅K )(298.15K)

= 85.63

K = e85.63 ≈1.5 ×1037

 

 

This  is  a  very  large  K,  this  reflects  the  spontaneous  nature  of  this  reaction.  d. Calculate  the  emf  at  25°C  of  this  cell  in  which  the  concentration  of  Cu2+  ions  is  

0.1250  mol/L  and  that  of  the  Zn2+  ions  is  0.0020  mol/L.    Here  we  use  the  Nernst  Equation.  Since  we  are  finding  the  emf  at  25°C  we  can  use  the  version  of  the  Nernst  Equation  that  includes  the  room  temperature  value  into  its  constant:  

Ecell = E˚− 0.05916n

logQ

Q =[Zn2+][Cu2+]

=[0.0020M][0.1250M]

= 0.016

Ecell = –1.10V −0.059162mol e–

log 0.016( )

Ecell = −1.15V

 

 e. How  many  hours  would  it  take  for  this  galvanic  cell  to  plate  15.00  g  of  

metallic  copper  from  1.00  M  solutions  of  Cu2+(aq)  and  Zn2+(aq)  assuming  it  produces  a  constant  current  of  5.0  A?  To  figure  this  problem  out,  we  will  do  a  series  of  conversions:  grams  of  Cu  !  moles  of  Cu  !  moles  of  e-­‐  !  charge  !  current  !  time    

5.0A = 5.0 Cs

time = 15.00g Cu( ) × 1mol Cu63.55g Cu

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

2mol e–

1mol Cu

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

96485C1mol e–⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ ×

1s5.0C⎛

⎝ ⎜

⎠ ⎟ ×

1hr3600s⎛

⎝ ⎜

⎠ ⎟

time = 2.53hours

 

It  would  require  2.53  hours  to  plate  15.00  g  of  metallic  copper  from  1.00  M  solutions  of  Cu2+(aq)  and  Zn2+(aq)  assuming  it  produces  a  constant  current  of  5.0  A.