electrodynamics lecture

63
Classical Electrodynamics Physics II

Upload: ananychandra

Post on 29-Dec-2015

155 views

Category:

Documents


4 download

DESCRIPTION

A lecture on electrodynamics. This lecture is part of a course of Physics during the 2nd Semester at The LNMIIT, Jaipur.

TRANSCRIPT

Page 1: Electrodynamics Lecture

Classical Electrodynamics

Physics II

Page 2: Electrodynamics Lecture

Reference Books

1. Introduction to Electrodynamics by David. J. Griffiths

2. Classical Electrodynamics by John David Jackson

3. Electricity and Magnetism by Edward M. Purcell

Page 3: Electrodynamics Lecture

%

45

10

45

Final exam

quizzes

Mid term exam.

Page 4: Electrodynamics Lecture
Page 5: Electrodynamics Lecture

� Electrostatics

�Special techniques

�Concepts of Dipole

�Electric Field in Materials

� Magnetostatics

�Magnetic Field in Materials

�Electrodynamics

�Maxwell’s Equation

� Review of Mathematical Tools 4 lectures

1 lectures

1 lectures

1 lectures

1 lectures

2 lectures

2 lectures

3 lectures

2 lectures

Page 6: Electrodynamics Lecture

(x,y,z)

(x′,y ′,z ′)

Page 7: Electrodynamics Lecture

θcosABAr)r

=•

Page 8: Electrodynamics Lecture
Page 9: Electrodynamics Lecture
Page 10: Electrodynamics Lecture

Vector Field / Vector Function

Vector Calculus

jxiyF ˆsinˆsin +=r

Page 11: Electrodynamics Lecture

A vector field describing the velocity of a flow in a pipe

Page 12: Electrodynamics Lecture

Velocity vector field of a flow around a aircraft wing

Page 13: Electrodynamics Lecture

Circular flow in a tub

Page 14: Electrodynamics Lecture

kzyxFjzyxFizyxFzyxF ˆ),,(ˆ),,(ˆ),,(),,( 321 ++=r

kxjzxixyzzyxF ˆˆˆ),,( 42 +−=r

Page 15: Electrodynamics Lecture

dx

dfh

xfhxfh

)()(lim

0

−+→

Scalar field),,( zyxTT =

h

zyxfzyhxfzyxf

hx

),,(),,(lim),,(

0

−+=→

h

zyxfzhyxfzyxf

hy

),,(),,(lim),,(

0

−+=→

h

zyxfhzyxfzyxf

hz

),,(),,(lim),,(

0

−+=→

Page 16: Electrodynamics Lecture
Page 17: Electrodynamics Lecture
Page 18: Electrodynamics Lecture

Scalar Field

Vector Field

T(x,y)

Ty

Yx

XT

∂∂+

∂∂=∇ ˆˆ

Page 19: Electrodynamics Lecture

∇⋅≠⋅∇ VVrr

Page 20: Electrodynamics Lecture
Page 21: Electrodynamics Lecture

In many cases, the divergence of a vector function at point P may be predicted by considering a closed surface surrounding P and analyzing the flow over the boundary, keeping in mind that at P:

=⋅∇ Fr

outflow – inflow

Page 22: Electrodynamics Lecture
Page 23: Electrodynamics Lecture
Page 24: Electrodynamics Lecture
Page 25: Electrodynamics Lecture
Page 26: Electrodynamics Lecture
Page 27: Electrodynamics Lecture

Paddle wheel analysis

0ˆ)],([ 00 <⋅×∇ kyxFr

Page 28: Electrodynamics Lecture

jxiyyxF ˆˆ),( +−=r

2=×∇ Fr

Page 29: Electrodynamics Lecture

iyyxF ˆ),( =r

1−=×∇ Fr

Page 30: Electrodynamics Lecture

jxiyyxF ˆˆ),( +=r

jyixyxF ˆˆ),( +=r

0=×∇ Fr

Page 31: Electrodynamics Lecture
Page 32: Electrodynamics Lecture
Page 33: Electrodynamics Lecture

Laplacian oparator

Page 34: Electrodynamics Lecture
Page 35: Electrodynamics Lecture

Vector Line Integration

http://upload.wikimedia.org/wikipedia/commons/d/d8/Line-Integral.gif

Page 36: Electrodynamics Lecture
Page 37: Electrodynamics Lecture

Vector surface Integral

Page 38: Electrodynamics Lecture
Page 39: Electrodynamics Lecture

Volume Integral

Page 40: Electrodynamics Lecture
Page 41: Electrodynamics Lecture

Difference of function’s value at b and a

The integral of a derivative over a region is equal to the value of the function at the boundary

0=∇×∇ Trr

0=×∇ Frr

F conservative field

Page 42: Electrodynamics Lecture
Page 43: Electrodynamics Lecture

=⋅∇ Vr

outflow – inflow +ve (source)-ve (sink)

The integral of a derivative over a region is equal to the value of the function at the boundary

Page 44: Electrodynamics Lecture
Page 45: Electrodynamics Lecture

The integral of a derivative over a region is equal to the value of the function at the boundary

Stokes’ theorem

rotational force field / non-conservative force field

Page 46: Electrodynamics Lecture
Page 47: Electrodynamics Lecture
Page 48: Electrodynamics Lecture

Cylindrical and spherical co-ordinate system

Page 49: Electrodynamics Lecture

φρ

φr

(ρ,φ,z)

z

Y

X

Page 50: Electrodynamics Lecture

zz

y

x

aa

aaa

aaa

=

+=

−=

φφφφ

φρ

φρ

cossin

sincos

zz

yx

yx

aa

aaa

aaa

=

+−=

+=

φφφφ

φ

ρ

cossin

sincos

−=

zz

y

x

a

a

a

a

a

a

ϕ

ρ

φφφφ

100

0cossin

0sincos

−=

z

y

x

z a

a

a

a

a

a

100

0cossin

0sincos

φφφφ

φ

ρ

zayaxaA zyx ˆˆˆ ++=r

zaaaA z ˆˆˆ ++= φρ φρ

r

Page 51: Electrodynamics Lecture

ρρρρφφφφρρρρρρρρφφφφ ˆˆ3 dzddIdIda z ==

zddzdIdIda ˆˆ2 ρρρρφφφφρρρρρρρρφφφφ ==

φφφφρρρρφφφφρρρρˆˆ

1 dzddIdIda z ==

The infinitesimal surface elements

Page 52: Electrodynamics Lecture

dρρ

ρdφdz

dρρ

ρdφdz

Volume element in cylindrical coordinate system

Page 53: Electrodynamics Lecture

dz

y

x

φ

φ

z

dz

y

x

φ

φ

z

φφφφρρρρφφφφρρρρˆˆ

1 dzddIdIda z ==

Page 54: Electrodynamics Lecture

ρdφy

x

φ

ρdφy

x

φ

zddzdIdIda ˆˆ2 ρρρρφφφφρρρρρρρρφφφφ ==

Page 55: Electrodynamics Lecture

dz

ρdφ

y

x

φ

φ

z

dz

ρdφ

y

x

φ

φ

z

ρρρρφφφφρρρρρρρρφφφφ ˆˆ3 dzddIdIda z ==

Page 56: Electrodynamics Lecture
Page 57: Electrodynamics Lecture
Page 58: Electrodynamics Lecture

(r,θ,φ)

r

θ

φ

Page 59: Electrodynamics Lecture

θθφφθφθφφθφθ

θ

φθ

φθ

sincos

cossincossinsin

sincoscoscossin

aaa

aaaa

aaaa

rz

ry

rx

−=

++=

−+=

−=

φ

θ

θθφφθφθφφθφθ

a

a

a

a

a

a r

z

y

x

0sincos

cossincossinsin

sincoscoscossin

−−=

z

y

xr

a

a

a

a

a

a

0cossin

sinsincoscoscos

cossinsincossin

φφθφθφθ

θφθφθ

φ

θ

zayaxaA zyx ˆˆˆ ++=r

φθ φθˆˆˆ aaraA r ++=

r

Page 60: Electrodynamics Lecture
Page 61: Electrodynamics Lecture

r

z

y

x

dr

rdθ

rsinθdφ

dφφ

θ

Page 62: Electrodynamics Lecture

The infinitesimal surface elements

φφφφθθθθφφφφθθθθˆˆ

3 rdrddIdIda r ==

Page 63: Electrodynamics Lecture