electromagnetic probes: messengers from the hot and dense

60
Electromagnetic probes: Messengers from the hot and dense fireball Hendrik van Hees Goethe University Frankfurt November 5, 2014 Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 1 / 45

Upload: others

Post on 23-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Electromagnetic probes:Messengers from the hot and dense fireball

Hendrik van Hees

Goethe University Frankfurt

November 5, 2014

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 1 / 45

Outline

1 Electromagnetic probes and hadron resonancesEm. current correlation function and electromagnetic probesSources of dilepton emission in heavy-ion collisionsThermal (effective hadronic) QFT approachKinetic theory (transport) approach

2 Dileptons in pp, pn, pA, AA in pure transport (GiBUU with J. Weil)GiBUUDalitz decays of hadron resonancesBaryon-resonance model at SIS energiesDielectrons (SIS/HADES)

3 Dileptons at SPS and RHIC (with Ralf Rapp)

4 Conclusions

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 2 / 45

Em. current correlatorin-medium approaches

`+`− and γ rates

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 3 / 45

Em. current correlation function and electromagnetic Probes

photon and dilepton thermal emission rates given by sameelectromagnetic-current-correlation function (Jµ = ∑f Qf ψf γµ ψf )[MT85, Wel90, GK91]

Π<µν(q) =

∫d4xexp(iq · x)

⟨Jµ(0)Jν(x)

⟩T =−2fB(q ·u) ImΠ(ret)

µν (q)

q0dNγ

d4xd3~q=− α

2π2 gµν Im Π(ret)µν (q)

∣∣∣q0=|~q|

fB(q ·u)

dNe+e−

d4xd4q=−gµν α2

3q2π3 ImΠ(ret)µν (q)

∣∣∣q2=M2

e+e−fB(q ·u)

u: four-velocity of the fluid cell; p ·u = phb0 energy in “heat-bath frame”

to lowest order in α: e2Πµν ' Σ(γ)µν

vector-meson dominance model:

Σγµν =

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 4 / 45

Sources of dilepton emission in heavy-ion collisions

1 initial hard processes: Drell Yan2 “core”⇔ emission from thermal source

1qT

dN(thermal)

dMdqT=∫

d4x∫

dy∫

MdϕdN(thermal)

d4xd4q

3 “corona”⇔ emission from “primordial” mesons (jet-quenching)4 after thermal freeze-out⇔ emission from “freeze-out” mesons

[CF74]

N(fo) =∫ d3q

q0

∫qµ dσ

µ fB(uµ qµ/T)Γmeson→`+`−

Γmeson[HR08, HR06]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 5 / 45

Hadronic many-body theory

HMBT for vector mesons [Ko et al, Chanfray et al, Herrmann et al, Rapp et al, . . .]

ππ interactions and baryonic excitations

ρ ρ

π

π B , a , K ,...*1 1

π,...N, K,

ρ ρ

+corresponding vertex corrections⇔ gauge invarianceBaryon (resonances) important, even at RHIC with low net baryon densitynB−nB

reason: nB+nB relevant (CP inv. of strong interactions)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 6 / 45

Rapp-Wambach model

pion cloud: dressing with baryon resonance excitations [RW00]

direct ρ-N/∆ interactions⇒ [RW00]

direct ρ-heavy-meson interactions [GR99]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 7 / 45

Photoabsorption on nucleons and nuclei

important: fit of model parameters to dataparticle-data book: decay widths, branching rations,...photo-absorption on nucleons and nuclei [RW00]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 8 / 45

Meson contributions to ρ-selfenergy

0.0 0.2 0.4 0.6 0.8 1.0 1.2

M [GeV]

−30

−20

−10

0

10

20

30

Re

Σρ/m

ρ [

Me

V]

−70

−60

−50

−40

−30

−20

−10

0

Im Σ

ρ/m

ρ [

Me

V]

a1

π’h

1K1

ω

f1

sum

T=150MeV

q=0.3GeV

ω

suma

1

K1

[GR99, RW00]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 9 / 45

In-medium spectral functions and baryon effects

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-Im

Dρ (

GeV

-2)

M (GeV)

ρ(770)T=0

T=120 MeVT=150 MeVT=175 MeV

[GR99, RW00]

baryon effects importantlarge contribution to broadening of the peakresponsible for most of the strength at small M

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 10 / 45

In-medium spectral functions and baryon effects

0

5

10

15

20

0.2 0.4 0.6 0.8 1 1.2

-Im

(G

eV

-2)

M (GeV)

ω(782)T=0

T=120 MeVT=150 MeVT=175 MeV

[GR99, RW00]

baryon effects importantlarge contribution to broadening of the peakresponsible for most of the strength at small M

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 10 / 45

In-medium spectral functions and baryon effects

0

5

10

15

20

0.8 0.9 1 1.1 1.2

-Im

Dφ (

GeV

-2)

M (GeV)

φ(1020)

T=0T=120 MeVT=150 MeVT=175 MeV

[GR99, RW00]

baryon effects importantlarge contribution to broadening of the peakresponsible for most of the strength at small M

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 10 / 45

Intermediate masses: hadronic “4π contributions”

e.m. current-current correlator⇔ τ → 2nπ

0

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-Im

ΠV

,A/(

π M

2)

M2 (GeV

2)

V [τ→ 2n π ντ]

V [τ→ 2 π ντ]

ρ + cont.

2π (ρ)

4π (fit)

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-Im

ΠV

,A/(

π M

2)

M2 (GeV

2)

A [τ→ (2n+1) π ντ]

A [τ→ 3 π ντ]

a1 + cont.

3π (a1)

5π (fit)

“4π contributions”: π +ω,a1→ µ++µ−

leading-order virial expansion for “four-pion piece”additional strength through “chiral mixing”[HR08, HR06]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 11 / 45

Dileptons from thermal QGP

in QGP phase: qq annihilationHTL improved electromagnetic current correlator

q

q

γ∗ γ∗−iΠem,QGP =

or em. current correlator from the lattice [DFK+11] (extrapolated to finite q)“quark-hadron duality” around Tc

[Rap13]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 12 / 45

Dilepton rates: Hadron gas↔ QGP

in-medium hadron gas matches with QGPsimilar results also for γ rates“quark-hadron duality”?

[Rap13]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 13 / 45

Kinetic theory (transport) approach

cross sections in collision terms: same physics as in QFT approachesFermi’s golden rule: S-matrix amplitudes⇔ |M 2

ji | ⇔ self-energy diagramsother way around: cut self-energy diagrams⇔ S-matrix amplitudes

⇔N/∆

p/n ρ

N/∆

p/n ρ

p/n π

⇔⇔ . . .

[FHK+11]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 14 / 45

Dileptons in pp, pn, pA, AApure transport: GiBUU (with Janus Weil)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 15 / 45

The GiBUU Model

Boltzmann-Uehling-Uhlenbeck (BUU) framework for hadronic transportreaction types: pA, πA, γA, eA, νA, AAopen-source modular Fortran 95/2003 codeversion control via Subversionpublicly available realeases: https://gibuu.hepforge.orgReview on hadronic transport (GiBUU): [BGG+12]

all calculations for dileptons: J. Weil

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 16 / 45

Resonance Model

reactions dominated by resonance scattering: ab→ R→ cd

Breit-Wigner cross-section formula

σab→R→cd =2sR +1

(2sa +1)(2sb +1)4π

p2lab

sΓab→RΓR→cd

(s−m2R)

2 + sΓ2tot

applicable for low-energy nuclear reactions Ekin . 1.1 GeVexample: σπ−p→π−p [Teis (PhD thesis 1996), data: Baldini et al, Landolt-Bornstein 12 (1987)]

0.0 0.2 0.4 0.6 0.8 1.0 1.20

10

20

30

40

50

60

70

80

Daten

total

∆(1232)

N(1440)

N(1535)

plab (GeV/c)

σ (

mb)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 17 / 45

GiBUU: Resonance Model

further cross sections

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 18 / 45

GiBUU: Extension to HADES energies

[WHM12, WM13]

keep same resonances (parameters from Manley analysis)

production channels in Teis: NN→ N∆, NN→ NN∗,N∆∗, NN→ ∆∆extension to NN→ ∆N∗,∆∆∗, NN→ NNπ , NN→ NNρ,NNω,NNπω,NNφ ,NN→ BYK (B = N,∆, Y = Λ,Σ)

[WHM12, WM13]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 19 / 45

GiBUU Extension to HADES energies

good description of total pp, pn (inelastic) cross section

dilepton sourcesDalitz decays: π0,η → γ`+`−; ω → π0`+`−, ∆→ N`+`−

ρ,ω,φ → `+`−: invariant mass `+`− spectra⇒spectral properties of vector mesonsfor details, see [WHM12]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 20 / 45

Exclusive pion production: p+p (3.5 GeV) (SIS/HADES)

exclusive p+p→ p+n+π+

left: Mpπ+ spectrum; right: Mnπ+ spectrummodel 1: GiBUU; model 2: UrQMDchance to refine resonance models further!

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 21 / 45

GiBUU: “ρ meson” in pp

production through hadron resonancesNN→ NR→ NNρ , NN→ N∆→ NNπρ

“ρ”-line shape “modified” already in elementary hadronic reactionsdue to production mechanism via resonances

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 22 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-6

10-5

10-4

10-3

10-2

10-1

100

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Γ∆ [

Ge

V]

m∆ [GeV]

πN ManleyπN MonizπN Bass

(ρN)PManley + ρN

[WEH+14]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-2

10-1

100

1 1.2 1.4 1.6 1.8 2 2.2 2.4

A∆ [

Ge

V-2

]

m∆ [GeV]

πN ManleyπN MonizπN Bass

Manley + ρN

[WEH+14]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

p + p at 1.25 GeV

dataGiBUU total

π0 → e+e-γ∆ QED∆ VMD

N* VMDBrems. OBE

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-4

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

d + p at 1.25 GeV

dataGiBUU total

π0 → e+e-γη → e+e-γ

∆ QED∆ VMD

N* VMDBrems. OBE

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-4

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

p + p at 2.2 GeV

dataGiBUU total

ω → e+e-

ω → π0e+e-

π0 → e+e-γη → e+e-γ

∆ QED∆ VMD

N* VMD∆* VMD

Brems. OBE

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: ∆ meson in VMD model

so far: ∆-Dalitz decay treated separately from other resonancesnow: treating ∆ as all other resonances via VMD modelmodel for em. transition form factor

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

p + p at 3.5 GeV

dataGiBUU total

ω → e+e-

φ → e+e-

ω → π0e+e-

π0 → e+e-γη → e+e-γ

∆ QED∆ VMD

N* VMD∆* VMD

Brems. OBE

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 23 / 45

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

with vacuum spectral functions:

10-1

100

101

102

103

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb/G

eV

]

dilepton mass mee [GeV]

p + Nb at 3.5 GeV

preliminary dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 24 / 45

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

with medium modified spectral functions:p + Nb at 3.5 GeV

10-1

100

0.55 0.6 0.65 0.7 0.75 0.8 0.85

/dm

ee [

µb

/Ge

V]

prelim. datavacCB

CB+shiftshift

0.55 0.6 0.65 0.7 0.75 0.8 0.85

dilepton mass mee [GeV]

ρ

0.55 0.6 0.65 0.7 0.75 0.8 0.85

ω

no definite hint for medium modifications in p Nb

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 25 / 45

GiBUU: p+Nb (3.5 GeV) (SIS/HADES)

medium effects built in transport modelbinding effects, Fermi smearing, Pauli blockingfinal-state interactionsproduction from secondary collisions

sensitivity on medium effects of vector-meson spectral functions?p + Nb at 3.5 GeV

10-1

100

0.55 0.6 0.65 0.7 0.75 0.8 0.85

/dm

ee [

µb

/Ge

V]

prelim. datavacCB

CB+shiftshift

0.55 0.6 0.65 0.7 0.75 0.8 0.85

dilepton mass mee [GeV]

ρ

0.55 0.6 0.65 0.7 0.75 0.8 0.85

ω

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 26 / 45

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 27 / 45

GiBUU: Ar+KCl (1.76AGeV) (SIS/HADES)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 28 / 45

GiBUU (NEW!): Au+Au (1.23 AGeV) (SIS/HADES)

10-8

10-7

10-6

10-5

10-4

10-3

0 0.2 0.4 0.6 0.8 1

1/N

π0 d

N/d

mee

dilepton mass mee [GeV]

Au + Au @ 1.23 GeV

acceptance from [email protected]

0.1 GeV < plep < 1.1 GeV

θee > 9°

GiBUU totalRes VMD

ππω → e

+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ QED∆ VMD

pn Brems.pp Brems.πN Brems.

caveat: pp/np acceptance filter with single-e cut, pt < 100 MeVcorrect filter urgently needed!comparison to preliminary HADES data [Gal14]⇒ room for medium modifications(data points not shown here on request of the HADES collaboration)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 29 / 45

GiBUU (NEW!): π+p (566 MeV) (SIS/HADES)

10-2

10-1

100

101

102

103

104

0 0.1 0.2 0.3 0.4 0.5 0.6

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

π- + p, Ekin = 0.566 GeV

GiBUU totalπ0 → e+e-γη → e+e-γ

πN Brems.N* VMD

D13(1520)S11(1535)

∆ QED∆ VMD

∆* VMD

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 30 / 45

GiBUU (NEW!): π+p (566 MeV) (SIS/HADES)

10-1

100

101

102

103

0 0.1 0.2 0.3 0.4 0.5

dσ/d

p T [µ

b/G

eV]

0 0.1 0.2 0.3 0.4 0.5

transverse momentum pT [GeV]

10-1

100

101

102

103

0 0.1 0.2 0.3 0.4 0.5

dσ/d

p T [µ

b/G

eV]

10-2

10-1

100

101

102

-4 -2 0 2 4 6

dσ/d

y [µ

b]

m < 140 MeV

-4 -2 0 2 4 6

rapidity y

140 MeV < m < 280 MeV

-4 -2 0 2 4 6

10-2

10-1

100

101

102

dσ/d

y [µ

b]

280 MeV < m

GiBUU totalN* VMD∆* VMD

π0 → e+e-γη → e+e-γ

πN Brems.∆ QED∆ VMD

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 31 / 45

GiBUU (NEW!): π+C (566 MeV) (SIS/HADES)

10-2

10-1

100

101

102

103

104

0 0.1 0.2 0.3 0.4 0.5 0.6

dσ/d

mee

[µb/

GeV

]

dilepton mass mee [GeV]

π- + C, Ekin = 0.566 GeV

GiBUU totalπ0 → e+e-γη → e+e-γ

πN Brems.pn Brems.

N* VMDD13(1520)S11(1535)

∆ QED∆ VMD

∆* VMD

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 32 / 45

GiBUU (NEW!): π+C (566 MeV) at (SIS/HADES)

10-1

100

101

102

103

104

0.1 0.2 0.3 0.4 0.5 0.6

dσ/d

p T [µ

b/G

eV]

0.1 0.2 0.3 0.4 0.5 0.6

transverse momentum pT [GeV]

10-1

100

101

102

103

104

0.1 0.2 0.3 0.4 0.5 0.6

dσ/d

p T [µ

b/G

eV]

10-2

10-1

100

101

102

103

-4 -2 0 2 4 6

dσ/d

y [µ

b]

m < 140 MeV

-4 -2 0 2 4 6

rapidity y

140 MeV < m < 280 MeV

-4 -2 0 2 4 610-2

10-1

100

101

102

103

dσ/d

y [µ

b]

280 MeV < m

GiBUU totalπ0 → e+e-γη → e+e-γ

πN Brems.pn Brems.

N* VMDD13(1520)S11(1535)

∆ QED∆ VMD

∆* VMD

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 33 / 45

Dileptons at SPS and RHICthermal fireball model (with Ralf Rapp)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 34 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

all qT

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

0<qt<0.2 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

0.2 GeV<qt<0.4 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

0.4 GeV<qt<0.6 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

0.6 GeV<qt<0.8 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

0.8 GeV<qt<1.0 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

1.0 GeV<qt<1.2 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

2.0 GeV<qt<2.2 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

M spectra (in pT slices)

NA60 experiment: dimuon measurement (In-In collisions at top SPS energy)

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

2.2 GeV<qt<2.4 GeV

Tc=Tch=175 MeV, at=0.1 c2/fm

+ω-t extotal

ω-t exωφ

DY4π mix

FO ρprim ρ

QGPin-med ρ

NA60

[HR06, HR08]

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 35 / 45

Importance of baryon effects

baryonic interactions important!in-medium broadeninglow-mass tail!

10-9

10-8

10-7

10-6

0.2 0.4 0.6 0.8 1 1.2 1.4

(1/N

ch)

d2N

µµ/(

dM

) (2

0 M

eV)-1

M (GeV)

all qT

Tc=Tch=175 MeV, at=0.1 c2/fm

full modelno baryons

NA60

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 36 / 45

Update: Using lattice equation of stateuse equation of state from lattice calculations (cross over!)use QGP rates adapted to recent lattice resultsIMR slope: true (average) temperature of source (no blue shift as in qT spectra!):T ' 205-230 MeV (above Tc ' 160 MeV!)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Tc=170 MeV, Tch=160 MeV, EoS-L

all qT

Dim

uo

n Y

ield

dN

µµ/d

µ [

(20

MeV

)-1]

Dimuon Invariant Mass Mµµ

(GeV/c2)

total4π mix

QGPNA60

compatible with coarse-grained UrQMD calculation (see Stephan Endres’s talk!)Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 37 / 45

RHIC beam-energy scan (STAR)

dielectron spectra Au+Au collisions (√

sNN = 200 GeV) at RHIC/STARsame model as before successful over wide range of beam energies [Rap13]

NB: together with CG UrQMD also at SIS energies! (see S. Endres’s talk)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 38 / 45

RHIC beam-energy scan (STAR)

dielectron spectra Au+Au collisions at RHICsame model as before successful over wide range of beam energies [Rap13]

NB: together with CG UrQMD also at SIS energies! (see S. Endres’s talk)

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 39 / 45

RHIC beam-energy scan (STAR)

fireball model⇒ lifetime, dilepton excess, temperature as fct. of√

sNN

indications of phase transition???

0

5

10

15

20

25

0 50 100 150 2000

5

10

15

20

25

Nℓ+

ℓ−/

Nch·1

06

τ fb(

fm/

c)

√sNN (GeV)

0.3GeV < M < 0.7GeVHGvacHGmedQGPHGvac+QGPHGmed+QGPτfb

150

180

210

240

0 50 100 150 200

T(G

eV)

√sNN GeV

Fit range: 1.5GeV < M < 2.5GeV

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 40 / 45

ConclusionsGeneral ideas

em. probes⇔ in-medium em. current-correlation functioneffective QFT models for hadronic interactions and `+`− (and γ!) productionHTL improved or lattice QGP `+`− (and γ) ratesdual rates around Tc (compatible with χ symmetry restoration)medium modifications of ρ , ω , φ

importance of hadron-resonance interactionsbaryon resonances prevalent for medium effectsreliable input on resonance physics in elementary reactions crucial!need to fix masses, couplings, form factors (including em. transition FFs)

Application to dileptons in HICsthermal fireball, (ideal) hydrodynamics, (coarse-grained) transport, hybrid...equation of state⇔ compatibility with QFT/transport models!?!use of thermal-QFT spectral VM functionssuccessful description at HADES, SPS, and RHIC (STAR)consistent description of M and mT spectra!not too sensitive to details of medium evolutionbeam-energy scan at RHIC and FAIR⇒ signature of phase transition?sensitivity to equation of state?signature of cross-over vs. 1st order (or even critical endpoint)?effective slope of M spectra in higher IMR (1.5 GeV < M < MJ/ψ ) provides 〈T〉

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 41 / 45

Bibliography I

[BGG+12] O. Buss, et al., Transport-theoretical Description of Nuclear Reactions,Phys. Rept. 512 (2012) 1.http://dx.doi.org/10.1016/j.physrep.2011.12.001

[CF74] F. Cooper, G. Frye, Single-particle distribution in the hydrodynamic andstatistical thermodynamics models of multiparticle production, Phys.Rev. D 10 (1974) 186.http://dx.doi.org/10.1103/PhysRevD.10.186

[DFK+11] H.-T. Ding, et al., Thermal dilepton rate and electrical conductivity: Ananalysis of vector current correlation functions in quenched lattice QCD,Phys. Rev. D 83 (2011) 034504.

[FHK+11] B. Friman, et al. (eds.), The CBM Physics Book, vol. 814 of LectureNotes in Physics, Springer-Verlag, Berlin, Heidelberg (2011).http://www.gsi.de/forschung/fair_experiments/CBM/

PhysicsBook.html

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 42 / 45

Bibliography II

[Gal14] T. Galatyuk, HADES overview, Nucl. Phys. A (2014), published online;DOI:10.1016/j.nuclphysa.2014.10.044.http://dx.doi.org/10.1016/j.nuclphysa.2014.10.044

[GK91] C. Gale, J. I. Kapusta, Vector Dominance Model at Finite Temperature,Nucl. Phys. B 357 (1991) 65.http://dx.doi.org/10.1016/0550-3213(91)90459-B

[GR99] C. Gale, R. Rapp, Rho Properties in a hot Gas: Dynamics ofMeson-Resonances, Phys. Rev. C 60 (1999) 024903.http://publish.aps.org/abstract/PRC/v60/e024903

[HR06] H. van Hees, R. Rapp, Comprehensive interpretation of thermal dileptonsat the SPS, Phys. Rev. Lett. 97 (2006) 102301.http://link.aps.org/abstract/PRL/V97/E102301

[HR08] H. van Hees, R. Rapp, Dilepton Radiation at the CERN Super ProtonSynchrotron, Nucl. Phys. A 806 (2008) 339.http://dx.doi.org/10.1016/j.nuclphysa.2008.03.009

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 43 / 45

Bibliography III

[MT85] L. D. McLerran, T. Toimela, Photon and dilepton emission from thequark-gluon plasma: some general considerations, Phys. Rev. D 31(1985) 545.http://link.aps.org/abstract/PRD/V31/P545

[Rap13] R. Rapp, Dilepton Spectroscopy of QCD Matter at Collider Energies,Adv. High Energy Phys. 2013 (2013) 148253.http://dx.doi.org/10.1155/2013/148253

[RW00] R. Rapp, J. Wambach, Chiral symmetry restoration and dileptons inrelativistic heavy-ion collisions, Adv. Nucl. Phys. 25 (2000) 1.http://arxiv.org/abs/hep-ph/9909229

[WEH+14] J. Weil, S. Endres, H. van Hees, M. Bleicher, U. Mosel, DileptonProduction in Transport-based Approaches (2014).

[Wel90] H. A. Weldon, Reformulation of finite temperature dilepton production,Phys. Rev. D 42 (1990) 2384.http://link.aps.org/abstract/PRD/V42/P2384

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 44 / 45

Bibliography IV

[WHM12] J. Weil, H. van Hees, U. Mosel, Dilepton production in proton-inducedreactions at SIS energies with the GiBUU transport model, Eur. Phys. J.A 48 (2012) 111.http://dx.doi.org/10.1140/epja/i2012-12111-9,10.1140/

epja/i2012-12150-2

[WM13] J. Weil, U. Mosel, Dilepton production at SIS energies with the GiBUUtransport model, J. Phys. Conf. Ser. 426 (2013) 012035.http://dx.doi.org/10.1088/1742-6596/426/1/012035

Hendrik van Hees (GU Frankfurt) Electromagnetic probes November 5, 2014 45 / 45