electron cloud mitigation via new materials and material

32
TWIICE 2014, Soleil 16-1-2014 R. Cimino Electron cloud mitigation via new materials and material coating. Roberto Cimino Laboratori Nazionali di Frascati –INFN & CERN TE- VSC

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Electron cloud mitigation via new materials and material coating.

Roberto Cimino

Laboratori Nazionali di Frascati –INFN

& CERN TE- VSC

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

The ”e-cloud” phenomenon (in pils) R

adia

l Dis

tanc

e

Time = 25 ns

+ +

+ + + +

+ + + + +

+

+ + + +

+ + p +

+ +

+ + + +

+ + + + + +

+ + + +

+ + p +

Vacuum chamber The accelerated particle beam produces SR and/or e- that, by hitting the accelerator’s walls generate photo-e- or secondary-e-. Such e- can interact with the beam (most efficiently for positive beams) and multiply, inducing additional heat load on the walls, gas desorption and may cause severe detrimental effects on machine performance.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

…. And has a tremendous impact to

simulations (see calculation for

LHC).

The Secondary e- Yield depends on the surface type and condition:

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

XPS SEY

0.0

0.10

0.20

0.30

0.40

0 600 1200

1,5/33/65/1010/20

Norm

ali

zed

Refl

ecti

vit

y

Photon energy (eV)

LHC-Cu flat

Q/2Q

SR Reflectivity and PY (@BESSY-II)

We measure and feed material parameters (R, PY, and SEY) into simulations.

Understand their profound nature to:

Optimize chemical (mechanical) process to reduce their detrimental influence on beam.

Search for new material / coatings with intrinsically “good” parameters.

Towards mitigation Strategies….

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Surface Scrubbing

(or conditioning)

Most of the existing and planned accelerator machines base the

reaching of their design parameters to the capability of obtaining

walls with a SEY ~1.3 or below!

Intrinsically low

SEY material

Geometrical modifications Electrodes in the lattice.

External solenoid field

Mitigation Strategies

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Surface Scrubbing (or conditioning)

Intrinsically low SEY material

Geometrical modifications

Electrodes in the lattice.

-Efficiency (time & final SEY)…

Stability and material choice…

Impedance. Space, Machining costs.

If possible… (Impedance, costs.)

External solenoid field. Not always possible…

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

External solenoids: one example. 7

450 GeV – 150 ns bunch spacing:

Merged vacuum @ LHC

8-10-2010

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Exotic Vacuum behavior @ LHC: 8

Beam 1

Beam 2

No pressure

Increase

Pressure

Increase

450 GeV – 150 ns bunch spacing: Merged vacuum 8-10-2010

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Easily solved: Installation of Solenoids

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Solenoids effect on pressure

Beam

Intensity

Solenoid ON

A4L1 Solenoid ON

A4R1

Remove multipacting

Still primary electrons

After 20 min

DP ≈7·10-10

After 20 min

DP ≈7·10-10

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Electrodes at DAFNE

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Electrodes at DAFNE

(a) Evolution of the averaged cloud density for different values of the

electrode voltage. (b) e− cloud density at the end of the bunch train.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

The Beam “scrubbing” effect is the ability of a surface to reduce its SEY after e- bombardment.

V. Baglin et al, LHC Project Report 472, CERN, 2001.

from LHC PR 472 (Aug.

2001):

“…Although the phenomenon of conditioning has been

obtained reproducibly on many

samples, the exact mechanism

leading to this effect is not

properly understood. This is of

course not a comfortable

situation as the LHC operation

at nominal intensities relies on

this effect…”

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

2.0

1.0

0.0

SE

Y (

arb

. u

nits)

4003002001000

Primary energy (eV)

1.0

0.0

1.0

0.0

1.0

0.0

max=2.2

max=1.35

max=1.1

max=1.05

co-laminated Cu for LHC beam screen

290 288 286 284 282

Binding energy (eV)

C1s

Inte

nsity (

arb

. u

nits)

HOPG

as received

LHC

fully scrubbed 500 eV

fully scrubbed 10 eV

sp2

sp3

sp3

sp2

sp3

C-H

C-O O-C=O

R. Cimino et al. PRL

109 064801 (2012)

sp2

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

2.2

1.8

1.4

1.0

m

ax

10-7

10-6

10-5

10-4

10-3

10-2

Dose (C/mm2)

normal incidence

0

10

20

50

200

500

Energy (EV)

after 10-2

C/mm2 @ 200 eV

co-laminated Cu for LHC beam screen

R. Cimino et al. PRL 109 064801 (2012)

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Theo Demma (LAL) simulation : R. Cimino et al. PRL 109 064801 (2012)

optimize the “scrubbing” process @ LHC

with beam parameters enhancing the

presence, in the cloud, of higher energy el.

Give a more reliable estimate of the needed

scrubbing time.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

One research line is concentrated on

creating very thin (some layers)

“graphene” - like coatings on metal

substrates to be used in accelerator to

mimic what is actually happening during

scrubbing.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

500 400 300 200 100 0

Binding Energy (eV)

C1s

O1s

Cu3p

Cu3s

poly-Cu

C/poly-Cu

C film thickness 2-3 nm

1.2

0.8

0.4

0.0

4003002001000

Ep (eV)

Cu substrate

C film

max

=1.3

max

=1.17

a-C films

magnetron sputtering @ RT

p(Ar)= 10-2 mbar Dt = 2min

R. Larciprete, A. di Trolio and R. Cimino: in preparation

C films on polycristalline Cu

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

12 8 4 0

Binding energy (eV)

valence band hv=40.8 eV

RT

EF

288 286 284 282

Binding energy (eV)

C1shv=1253.6 eVFWHM (eV)

1.8

RT

1.0

0.6

0.2

4003002001000

Ep (eV)

1.17

2p-

R. Larciprete, A. di Trolio and R. Cimino: in preparation

C films on polycristalline Cu

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

12 8 4 0

Binding energy (eV)

valence band hv=40.8 eV

RT 460 °C 700 °C

EF

288 286 284 282

Binding energy (eV)

C1shv=1253.6 eVFWHM (eV)

1.8

0.9

1.4

1.3

RT 460 °C 700 °C

HOPG

1.0

0.6

0.2

4003002001000

Ep (eV)

1.17

1.10

0.95

2p-

2p-

the graphitization of the C films corresponds to a lower SEY

R. Larciprete, A. di Trolio and R. Cimino: in preparation

C films on polycristalline Cu

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

CERN Strategy (thanks to P. Costa Pinto)

SEY versus the energy of primary electrons

Coatings obtained by sputtering are similar. PECVD coatings have high SEY

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

CERN Strategy (thanks to P. Costa Pinto)

Max SEY (max) versus hydrogen in the plasma during the coating by sputtering

The influence of Hydrogen in sputtered coatings is confirmed by experiments

where H2 is deliberately injected during the coating process

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.E-11 1.E-10 1.E-09 1.E

H2

RGA current for m/z=2 [A]

m

ax

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Coat actual beampipes by DC Hollow Cathode Sputtering (DCHCS)

Pressure: 2.4 x10-1 mbar (Ar)

Power: 1.8 kW (3A @ 600 V)

0.5 mm in 20 hours

THE TECHNIQUE IS ALMOST MATURE FOR LARGE SCALE PRODUCTION

COATING TECHNIQUES @ CERN

(thanks to P. Costa Pinto)

Graphite targets

(cells)

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy (eV)

SE

Y o

f g

roo

ve

su

rfa

ce

0=1.8

0=1.0

Geometrical Mitigation:

max,< .8 … Impedence?

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Impedance enhancement factor (Code : Finite Element Method, PAC07 THPAS067, L Wang)

WH

dsH

Z

Z

acesmoothsurf

facegroovedsur

2

0

2

ò==h

The total impedance enhancement= * percentage of grooved surface

p=1.25mm (period)

d=2.5mm (depth)

t=0.125mm (thickness) 64.1=h

p=1.25mm

d=2.5mm

t=0.25mm

h =1.42

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Sponge materials: R. Cimino, A. Romano S. Petracca, I. Masullo etc: in Preparation

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Sponge materials: R. Cimino, A. Romano, S. Petracca, I. Masullo, M. Taborelli etc: in Preparation

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Sponge materials: R. Cimino, A. Romano,S. Petracca, I. Masullo, M. Taborelli etc: in Preparation

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Sponge materials: R. Cimino, A. Romano, S. Petracca, I. Masullo, M. Taborelli etc: in Preparation

Impedance, vacuum behaviour,

desorption properties

are still under study

but seems very promising.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Conclusion

E-cloud mitigation strategies are coming closer to mature solutions

There is still a lot to do and to learn

Synergic efforts, dedicated Surface, Material and Vacuum science laboratories are required to reach desired understanding and performances.

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Acknowledgements

D.R. Grosso, M.Commisso, DaFne-L and DaFne Accelerator group. INFN-LNF, Frascati (RM), Italy

V. Baglin, D. Letant-Delrieux and M. Taborelli CERN, Geneva, Switzerland

Rosanna Larciprete and A. Di Trolio, CNR-ISC, Roma, Italy

S. Petracca and I. Masullo A.L. Romano Universita’ del Sannio and INFN Napoli/Salerno

T. Demma, LAL

TWIICE – 2014, Soleil 16-1-2014 R. Cimino

Acknowledgements

D.R. Grosso, M.Commisso, DaFne-L and DaFne Accelerator group. INFN-LNF, Frascati (RM), Italy

V. Baglin, D. Letant-Delrieux and M. Taborelli CERN, Geneva, Switzerland

Rosanna Larciprete and A. Di Trolio, CNR-ISC, Roma, Italy

S. Petracca and I. Masullo A.L. Romano Universita’ del Sannio and INFN Napoli/Salerno

T. Demma, LAL