electronic properties of transition metal · pdf fileoz˜ gec»_is» metal oks...

Download ELECTRONIC PROPERTIES OF TRANSITION METAL · PDF fileOZ˜ GEC»_IS» METAL OKS ITLER_ _IN ELEKTRON _IK OZELL˜ _IKLER _I Mete, Ersen Doktora, Fizik B˜olum˜ u˜ Tez Y˜oneticisi:

If you can't read please download the document

Upload: duongliem

Post on 07-Feb-2018

238 views

Category:

Documents


15 download

TRANSCRIPT

  • ELECTRONIC PROPERTIES OF TRANSITION METAL OXIDES

    A THESIS SUBMITTED TOTHE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

    OFTHE MIDDLE EAST TECHNICAL UNIVERSITY

    BY

    ERSEN METE

    IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

    DOCTOR OF PHILOSOPHY

    IN

    THE DEPARTMENT OF PHYSICS

    December 2003

  • Approval of the Graduate School of Natural and Applied Sciences.

    Prof. Dr. Canan OzgenDirector

    I certify that this thesis satisfies all the requirements as a thesis for the degreeof Doctor of Philosophy.

    Prof. Dr. Sinan BilikmenHead of Department

    This is to certify that we have read this thesis and that in our opinion it isfully adequate, in scope and quality, as a thesis for the degree of Doctor ofPhilosophy.

    Prof. Dr. Sinasi EllialtogluSupervisor

    Examining Committee Members

    Prof. Dr. Sinasi Ellialtoglu

    Prof. Dr. Atilla Ercelebi

    Prof. Dr. Metin Durgut

    Assoc. Prof. Dr. Hatice Kokten

    Dr. Sadi Turgut

  • ABSTRACT

    ELECTRONIC PROPERTIES OF TRANSITION METAL OXIDES

    Mete, Ersen

    Ph. D., Department of Physics

    Supervisor: Prof. Dr. Sinasi Ellialtoglu

    December 2003, 80 pages

    Transition metal oxides constitute a large class of materials with variety of

    very interesting properties and important technological utility. A subset with

    perovskite structure has been the subject matter of the current theoretical

    investigation with an emphasis on their electronic and structural behavior. An

    analytical and a computational method are used to calculate physical entities

    like lattice parameters, bulk moduli, band structures, density of electronic

    states and charge density distributions for various topologies. Results are

    discussed and compared with the available experimental findings.

    Keywords: perovskite, tight binding, ab initio, pseudopotential

    iii

  • OZ

    GECIS METAL OKSITLERIN ELEKTRONIK OZELLIKLERI

    Mete, Ersen

    Doktora, Fizik Bolumu

    Tez Yoneticisi: Prof. Dr. Sinasi Ellialtoglu

    Aralk 2003, 80 sayfa

    Gecis metal oksitleri cesitli ve cok ilginc ozellikleri ile onemli teknolojik uygu-

    lamalar olan genis bir malzeme snfn olusturmaktadrlar. Perovskit yapsna

    sahip bir alt kumenin elektronik ve yapsal ozellikleri bu kuramsal arastrmann

    konusu olmaktadr. Degisik topolojiler icin orgu sabiti, hacim modulu, bant

    yaps, durum yogunlugu ve yerel yuk daglm gibi fiziksel nicelikler, biri anal-

    itik ve digeri numerik olmak uzere iki ayr yontemle hesaplanms ve deneysel

    verilerle karslastrlarak yorumlanmstr.

    Anahtar Kelimeler: perovskit, sk bag, ilk-prensipler, potansiyelimsi

    iv

  • To my wife, Pnar

    v

  • ACKNOWLEDGMENTS

    I would like to thank Prof. Dr. Sinasi Ellialtoglu for the discussions and his

    support. I would also like to thank to my family. They supported me like

    nobody else can do.

    This work was supported by TUBITAK, The Scientific and Technical Re-

    search Council of Turkey, Grants No. TBAG-2036 (101T058) and by the

    Institute of Natural and Applied Sciences of METU, Grants No. BAP-2001-

    07-02-00-97.

    vi

  • TABLE OF CONTENTS

    ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

    OZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

    DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

    ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vi

    TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vii

    LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

    LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

    LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

    CHAPTER

    I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

    II TIGHT-BINDING APPROXIMATION . . . . . . . . . . . . . . 4

    II.1 Energy Bands . . . . . . . . . . . . . . . . . . . . . . . 4

    II.2 Density of States . . . . . . . . . . . . . . . . . . . . . . 11

    III AB INITIO PSEUDOPOTENTIAL METHOD . . . . . . . . . 16

    III.1 Density Functional Theory . . . . . . . . . . . . . . . . 17

    III.1.1 Hohenberg-Kohn Theorems : Proof of Exis-tence and Variational Principle . . . . . . . . . 18

    III.1.2 Many Body System : The Kohn-Sham Equation 24

    III.1.3 Exchange and Correlation . . . . . . . . . . . . 26

    III.1.3.1 Local Density Approximation . . . 27

    III.2 Pseudopotential Approximation . . . . . . . . . . . . . . 29

    III.2.1 Norm-Conserving Pseudopotentials . . . . . . 30

    vii

  • III.2.2 A Pseudopotential Generation Example : Ti . 36

    III.3 Total Energy Computation . . . . . . . . . . . . . . . . 41

    III.3.1 Supercells and Plane Wave Representation . . 41

    III.3.2 The Conjugate-Gradients Minimization Tech-nique . . . . . . . . . . . . . . . . . . . . . . . 44

    III.3.3 ABINIT Code . . . . . . . . . . . . . . . . . . 45

    III.3.3.1 Ground State Calculations . . . . . 46

    III.3.3.2 Structural Calculations . . . . . . . 47

    III.3.3.3 Memory and Speed . . . . . . . . . 47

    III.3.3.4 Parallelism . . . . . . . . . . . . . . 48

    IV ELECTRONIC AND STRUCTURAL PROPERTIES OF 4d-PEROVSKITES . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    IV.1 Insulating Case . . . . . . . . . . . . . . . . . . . . . . . 50

    IV.1.1 Introduction . . . . . . . . . . . . . . . . . . . 50

    IV.1.2 Calculation Method . . . . . . . . . . . . . . . 53

    IV.1.3 Results and Discussion . . . . . . . . . . . . . 54

    IV.2 Metallic Case . . . . . . . . . . . . . . . . . . . . . . . . 60

    IV.2.1 Introduction . . . . . . . . . . . . . . . . . . . 60

    IV.2.2 Parameters for Computational Method . . . . 61

    IV.2.3 Results and Discussion . . . . . . . . . . . . . 62

    V TIGHT BINDING PARAMETRIZATION USING AB-INITIORESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    viii

  • LIST OF TABLES

    III.1 Input parameters of Titanium for the package fhi98PP. . . . . . 37

    IV.1 Calculated and experimental values for lattice parameter andbulk modulus of SrTiO3 and SrZrO3 . . . . . . . . . . . . . . . 55

    IV.2 Calculated and experimental values for lattice parameter andbulk modulus of SrMO3 . . . . . . . . . . . . . . . . . . . . . . 62

    V.1 Tight-binding parameters (in eV) fitted to ab initio results. . . 67

    ix

  • LIST OF FIGURES

    II.1 ABO3 cubic perovskite lattice structure. . . . . . . . . . . . . . 5II.2 Cubic perovskite single unit cell. . . . . . . . . . . . . . . . . . . 5II.3 ABO3 energy levels. . . . . . . . . . . . . . . . . . . . . . . . . . 6II.4 nn interactions for t2g-symmetry orbitals. . . . . . . . . . . . . . 7II.5 nn interactions for eg-symmetry (dx2y2) orbitals. . . . . . . . . 7II.6 nn interactions for eg-symmetry (d3r2z2) orbitals. . . . . . . . . 8II.7 1st Brillouin Zone for cubic unit cell and special k-points. (a,

    b, c are the reciprocal primitive vectors.) . . . . . . . . . . . . 9II.8 Bulk energy bands along symmetry lines in the 1st Brillouin Zone. 10II.9 Typical DOS structure for a perovskite. . . . . . . . . . . . . . . 15

    III.1 Pseudopotential and pseudowavefunction vs all-electron coun-terparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    III.2 (a) True radial wavefunctions and (b) pseudo versus all-electronwavefunctions for Titanium. . . . . . . . . . . . . . . . . . . . . 38

    III.3 (a) Screened and (b) ionic pseudopotentials for Ti. . . . . . . . . 39III.4 Logarithmic derivatives of radial wavefunctions for Titanium. . . 40

    IV.1 Ab initio band structure for SrTiO3 . . . . . . . . . . . . . . . . 55IV.2 Ab initio band structure for SrZrO3 . . . . . . . . . . . . . . . . 56IV.3 Charge density contour plots for bands for (a) SrTiO3 and

    (b) SrZrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59IV.4 Ab initio band structures for SrMoO3 . . . . . . . . . . . . . . . 63IV.5 Ab initio partial density of states for SrMoO3 . . . . . . . . . . 64IV.6 Ab initio band structures and DOS for SrRuO3 . . . . . . . . . 65IV.7 Ab initio band structures and DOS for SrRhO3 . . . . . . . . . 66

    V.1 Comparisons of band structures and DOS functions of TB (thinlines) and ab initio (thick lines) results for SrTiO3. . . . . . . . 68

    V.2 Comparisons of band structures and DOS functions of TB (thinlines) and ab initio (thick lines) results for SrZrO3. . . . . . . . 69

    x

  • LIST OF SYMBOLS

    BZ Brillouin Zone

    CPU Central Processing Unit

    DFT Density Functional Theory

    DOS Density of States

    DRAM Dynamic Random AccessMemory

    FFT Fast Fourier Transform

    GS Ground State

    KB Kleinmann-Bylander

    LCAO Linear Combination of AtomicOrbitals

    LDA Local Density Approxima-tion

    LDOS Local Density of States

    MPI The Message Passing Inter-face

    nn Nearest Neighbor

    OpenMP A GNU project for Shared-Memory Systems

    PP Pseudo Potential

    PS Pseudo

    PW92 Perdew Wang 92

    SCR Screened

    SMP Synthetic Multi-Processing

    SOV Surface Oxygen Vacancy

    TB Tight Binding

    TMO Transition Metal Oxide

    XC Exchange Correlation

    xi

  • CHAPTER I

    INTRODUCTION

    The main difference of transition metals (TM)