electronic structure of heavier main group 14 multiple ... oulu...11 = +1,125.2 ppm δ 22 = +740.4...
Embed Size (px)
TRANSCRIPT
-
Electronic Structure of Heavier Main Group 14
Multiple Bonded Compounds
-
2
Heavier Gp 13 and 14 Multiple Bonded Species Have ‘Strained’ Geometries and Quasi Open-Shell Configurations.
-
3
Variation in the Most Probable Radii of the s and p Valence Orbitals of Group 14 Elements
J. P. Desclaux, At. Dat. Nucl. Data Tables 1973, 12, 31.���W. Kutzelnigg, Angew. Chem. Int. Ed. Engl. 1984, 23, 272.
3
-
Stable Singlet Diradicaloid, Non-Kekulé Main Group Molecules
1Chivers, Guide to Chalcogen-Nitrogen Chemistry, World Scientific, NJ, 2005; 2Masamune et al. Angew Chem Int Ed 1986, 25, 173; 3Sita et al. J Am Chem Soc 1992, 114, 7024; 4Niecke et al. Angew Chem Int Ed 1995, 34, 555; 5Bertrand et al. Science 2002, 295, 1880; 6Power et al. J Am Chem Soc 2004, 126, 6510, Lappert et al. Angew Chem Int Ed 2004, 43 4500.
-
5
The “Strained” Geometry in Main Group Molecules May Resemble Surface Atom Arrangements
• Bonding representation of the E(100)-2X1 reconstructed surface (a) circles = E(Si or Ge) atoms as illustrated by ordered arrays of E=E double bonds (b).
• J. M. Buriak, Chem. Rev., 2002, 102, 1271 5
-
6
Multiple Bonding in the E2 Surface Units
React directly with H2 and alkenes�
-
7
Synthesis of Ge, Si, Sn, Pb Alkyne Analogues: Synthesis
Ø 2000, Synthesis of the first stable heavier group 14 element analogues of an alkyne.
Ø 2002, Synthesis of stable Ge, Sn alkyne analogues.
Ø 2002, Wiberg synthesized the first Si quasi stable alkyne species, and characterized it spectroscopically in solution. Wiberg, N; Niedermayer, W.; Fischer, G.; Noth, H.; Suter, M., Eur. J. Inorg. Chem. 2002, 1066.
Ø 2004, The first stable structurally characterized silicon-silicon triple bond was prepared by Sekiguchi.
Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755
Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P.; J. Am. Chem. Soc., 2002, 124, 5930 Stender, M.; Phillips, A. D.; Wright, R. J. Power, P. P. Angew. Chem,. Int. Ed, 2002, 41, 1785
Pu, l.; Twamley, B.; Power, P. P.; J. Am. Chem. Soc., 2000, 122, 3524
-
Alkynes and their Heavier Group 14 Element Analogues�
a Sekiguchi, Kinjo, Ichinohe. Science. 2004, 305, 1755. b Stender, Phillips, Power. Angew. Chem. Int. Ed. 2002, 41, 1785. c Phillips, Wright, Olmstead, Power. J. Am. Chem. Soc. 2002, 124, 5930. d Pu, Twamley, Power. J. Am. Chem. Soc. 2000, 122, 3534.
2
3
-
NMR Spectroscopy �δ 29Si
91.5
89.9
δ11 = 364c
δ22 = 221 δ33 = -‐350
δ = 18.7
a. Wiberg, N.; Niedermayer, W.; Fischer, G.; Nöth, H.; Suter, M. Eur. J. Inorg. Chem. 2002, 1066. b. Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science. 2004, 305, 1755. c. Kravchenko, V.; Kinjo, R.; Sekiguchi, A.; Ichinohe, M.; West, R.; Balazs, S.; Schmidt, A.; Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 14472. d. Sasamori, T.; Hironaka, K.; Sugiyama, Y.; Takagi, N.; Nagase, S.; Hosoi, Y.; Furukawa, Y.; Tokitoh, N. J. Am. Chem. Soc. 2008, 130, 13856. 17
-
Solid State 119Sn NMR Spectra of AriPr4SnSnAriPr4 and AriPr6SnSnAriPr6
AriPr4SnSnAriPr4 AriPr6SnSnAriPr6
δ11 = +1,125.2 ppm δ22 = +740.4 ppm δ33 = -860.3 ppm
δiso = +335.1 ppm η = 0.32
δ11 = +726.1 ppm δ22 = +193.3 ppm
δ33 = -1028.0 ppm δiso = -36.2 ppm
η = 0.54 G.H.Spikes, J. R. Guiliani, M.P Augustine, I. Nowik, R.H. Herber, P.P. Power, Inorg. Chem. 2006, 45, 9132.
-
Mössbauer Spectra of ArPri6SnSnArPri6 and ArPri4SnSnArPri4 Indicate the Presence of Sn(II)�
I. S. Q. S. 2.960(3) 3.730(3)
2.658(2) 2.995(2)
I.S. Sn(IV) -‐0.5 →
1.80 I.S. Sn(II) 1.80 ➝ 4.50
. 2
G.H.Spikes, J. R. Guiliani, M.P Augustine, I. Nowik, R.H. Herber, P.P. Power, Inorg. Chem. 2006, 45, 9132.
-
Calculations Show Large Structural Changes Require Little Energy for M = Sn or Pb
Jung, Brynda, Power, Head-Gordon, J. Am. Chem. Soc., 2006, 128, 7185.
Δ Sn-Sn = ca. 0.4Å Δ Sn-Sn-C = ca. 25º
-
Single and Multiple Bonded Distannyne Structural Data
Distannyne Sn-Sn (Å) Sn-Sn-C (º) CSnSnC (º)
Ar'SnSnAr' a 2.6675(4) 125.24(7) 180 Cl-4-Ar'SnSnAr'-4-Cl b 2.672(2) 121.8(4) 180 But-4-Ar'SnSnAr'-4-But b 2.6461(3) 124.0(1) 180 MeO-4-Ar'SnSnAr'-4-OMe b 2.648(1) 124.2(2) 180 3,5-Pri2-Ar'SnSnAr'-3,5-Pri2 b 2.666(1) 127.96(2) 180 3,5-Pri2Ar*SnSnAr*-3,5-Pri2b 2.736(1) 127.62(2) 160-166
Me3Si-4-Ar'SnSnAr'-4-SiMe3 c 3.066(1) 99.3(1) 180 MeGe-4-Ar'SnSnAr'-4-GeMe3b 3.076(1) 97.9(1) 180
a A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc., 2002, 124, 5930. b Y. Peng, R. C. Fischer, W.A. Merrill, J. Fischer, L. Pu, B.D. Ellis, R.H Herber, J. C. Fettinger, P. P. Power, Chem. Sci., 2010, 1,461.c R. C. Fischer, L. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power, J. Am. Chem. Soc., 2006, 128, 11366.
Oulu-2