electronic supplementary informationeffect of donor to acceptor ratio on electrochemical and...

33
Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra Kurowska 1 , Pawel Zassowski 1 , Anastasia S. Kostyuchenko 2,3 , Tatyana Yu. Zheleznova 2 , Kseniya V. Andryukhova 4 , Alexander S. Fisyuk 2,4 , Adam Pron 5 , Wojciech Domagala 1, * 1 Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland 2 Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation 3 RUDN University, 6 Miklukho-Maklaya st, Moscow 117198, Russian Federation 4 Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation 5 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Upload: others

Post on 29-Jan-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of

oligoalkylthiophene 1,3,4-oxadiazole derivatives

Aleksandra Kurowska1, Pawel Zassowski

1, Anastasia S. Kostyuchenko

2,3, Tatyana Yu. Zheleznova

2,

Kseniya V. Andryukhova4, Alexander S. Fisyuk

2,4, Adam Pron

5, Wojciech Domagala

1,*

1 Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100

Gliwice, Poland 2 Laboratory of New Organic Materials, Omsk State Technical University, Mira ave. 11, Omsk 644050, Russian Federation

3 RUDN University, 6 Miklukho-Maklaya st, Moscow 117198, Russian Federation

4 Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira ave. 55A, Omsk 644077, Russian Federation

5 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland

Electronic Supplementary Information

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2017

Page 2: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S2 of 33

Synthetic procedures with instrumental and analytical product validation data

General Information

The IR spectra were recorded on an Infralum FT-801 spectrometer in KBr pellets for solids, or in thin

films for liquid compounds. The 1H and 13C NMR spectra were obtained in CDCl3 or DMSO with TMS as an

internal standard, using a Bruker DRX 400 spectrometer (400 and 100 MHz, respectively). The elemental

analyses were carried out on a Carlo Erba 1106 CHN analyzer. The melting points were determined on a

Kofler bench. The reaction course and purity of the products were checked by thin-layer chromatography

on Sorbfil UV-254 plates which were visualized with UV light. All chemicals were of analytical grade and

purchased from Sigma-Aldrich Chemical Co. Compound 7a,1,2 7b,2 6,3 4,4 terthiophene,5,6 1,4-di(2H-tetrazol-

5-yl)benzene,7 7c,8 3,9 were prepared according to known procedures.

Experimental and analytical data

Ethyl 3-decyl-5'-dodecanoyl-[2,2'-bithiophene]-5-carboxylate (8)

A mixture of lauric acid 1.74 g (8.7 mmol), 1.25 ml (17.4 mmol) thionyl

chloride and one drop of DMF as a catalyst was stirred for 2.5 h at 45-50 0C.

The excess of thionyl chloride was evaporated under reduced pressure. The

obtained undecanoyl chloride and ethyl 3-decyl-[2,2'-bithiophene]-5-carboxylate 7a (7.9 mmol) were

dissolved in 15 ml anhydrous chlorobenzene. The solution was cooled in an ice bath and SnCl4 (0.95 ml,

7.9 mmol) was then added with vigorous stirring. The reaction mixture was stirred for 1 h under cooling

and for additional 4.5 h at room temperature. Then 5 ml 2M HCl was added slowly. The organic layer was

washed with aqueous NaHCO3 and water then dried over Na2SO4. The solvent was removed on a vacuum

evaporator and the product purified by column chromatography (silica gel, hexane/EtOAc, 20/1).

Yield: 2.4 g (62%); yellow solid; Rf = 0.33 (silica gel, hexane/EtOAc, 20/1). M.p.=33-360С.

IR (KBr). ν сm-1: 1664 (С=О), 1712 (CO2Et).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.88 (6H, t., 3J=6.8 Hz, 2СH3); 1.26-1.37 (30H, m., 15СН2); 1.38 (3H, t.,

3J=7.1 Hz, ОСН2CH3); 1.61-1.69 (2H, m., ThCH2CH2C8H17); 1.72-1.79 (2H, m., 2-ThСОCH2CH2C9H19); 2.78 (2H,

t., 3J=7.1 Hz, Th-CH2C9H19); 2.88 (2H, t., 3J=7.4 Hz, Th-СОCH2C10H21); 4.36 (2H, q., 3J=7.2 Hz, OCH2CH3); 7.20

(1H, d., 3J=3.9 Hz, Th-3′-H); 7.63(1H, s., Th-4-H); 7.64 (1H, d., 3J=3.9 Hz, Th-4′-H).

13C NMR (100 MHz, δ, ppm): 14.07 (C9H18СН3, COC10H20CH3), 14.40 (COCH2СН3), 22.70, 24.89, 29.33, 29.35,

29.39, 29.43, 29.45, 29.49, 29.51, 29.56, 29.60, 29.64, 30.30, 31.91, 31.93, 39.26 (19СН2), 61.36 (CO-

СН2CH3), 127.31 (3′-Th), 131.88 (4-Th), 132.67 (5-Th), 135.94 (4′-Th), 136.54 (2-Th), 141.70 (2’-Th), 143.00

(3-Th), 144.44 (5′-Th), 161.94 (CO2C2H5), 193.31 (С=O).

Elemental analysis. Calculated for C33H52O3S2: С, 70.73%; Н, 9.39%. found: С 70.66%, Н 9.34%.

Page 3: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S3 of 33

3-Decyl-5'-dodecanoyl-[2,2'-bithiophene]-5-carboxylic acid (9)

A solution of ethyl 3-decyl-5'-dodecanoyl-[2,2'-bithiophene]-5-carboxylate 8

2.81 g (5.0 mmol) and potassium hydroxide 1.12 g, (20.0 mmol) in 6 mL ethanol

was refluxed for 4 h. Ethanol was removed under reduced pressure, 8 ml of water

was added to the residue and the mixture was acidified with dilute 2 N hydrochloric acid. The precipitate

was separated and recrystallized from methanol.

Yield: 2.2 g (82%); yellow solid. M.p.=175-1770С.

IR (KBr). ν сm-1: 1668 (С=О), 2500-3460 (O-Н).

1H NMR (400 MHz, CDCl3 δ, ppm): δ = 0.83-0.89 (6H, m., 2СH3); 1.18-1.33 (30H, m., 15СН2); 1.51 (2H, s.,

ThCH2CH2C8H17); 1.68-1.71 (2H, m., 2-ThСОCH2CH2C9H19); 2.59 (2H, s., Th-CH2C9H19); 2.78-2.81 (2H, m., Th-

СОCH2C10H21); 7.03 (1H, s., Th-3′-H); 7.46(1H, s., Th-4-H); 7.52 (1H, s., Th-4’-H).

13C NMR (100 MHz, δ, ppm): 14.13 (C9H18СН3, COC10H20CH3), 22.71, 24.73, 29.39, 29.45, 29.53, 29.59, 29.70,

30.16, 31.94, 39.12 (19СН2); 126.89 (3′-Th); 131.75 (4′-Th); 133.90 (5-Th); 135.93 (2-Th); 136.54 (4-Th);

141.64 (2’-Th); 143.10 (5′-Th), 143.96 (3-Th), 166.95 (CO2Н), 193.09 (С=O).

Elemental analysis. Calculated for C31H48O3S2: С, 69.81%; Н, 9.01 %. found: С, 69.88%; Н, 9.08 %.

1-(3'-Decyl-[2,2'-bithiophen]-5-yl)dodecan-1-one (10)

A mixture of acid 9 (2.10 g, 3.9 mmol), 5.6 mL quinoline and (0.12 g, 2.0 mmol) copper

was stirred for 1 h at 225 0C. 7 ml of 15% hydrochloric acid was added to the residue

and the mixture was stirred for 30 min at room temperature. Then product was

extracted with CH2Cl2 (10ml×3). The combined organic extract was washed with water (30 mL), dried

(Na2SO4) and concentrated. The product purified by column chromatography (hexane/EtOAc, 20/1) and

crystallized from ethanol.

Yield: 1.2 g (62%); yellow solid. M.p.=49-52 0С.

IR (KBr). ν сm-1: 1649 (С=О).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.88 (6H, t., 3J=6.8 Hz, 2СH3); 1.26-1.38 (30H, m., 15СН2); 1.59-1.68

(2H, m, ThCH2CH2C8H17); 1.72-1.79 (2H, m., 2-ThСОCH2CH2C9H19); 2.80 (2H, t., 3J=7.8 Hz, Th-CH2C9H19); 2.87

(2H, t., 3J=7.4 Hz, Th-СОCH2C10H21); 6.95 (1H, d., 3J=5.1 Hz, Th-4′-H); 7.12 (1H, d., 3J=4.0 Hz, Th-3-H); 7.23

(1H, d., 3J=5.1 Hz, Th-5′-H); 7.63 (1H, d., 3J=4.0 Hz, Th-4-H).

13C NMR (100 MHz, δ, ppm): 14.13 (2CH3); 22.70, 24.99, 29.34, 29.35, 29.40, 29.45, 29.46, 29.48, 29.51,

29.52, 29.59, 29.61, 29.63, 29.64, 30.50, 31.91, 31.92, 39.15 (19СН2); 125.13 (3-Th); 126.13 (5’-Th);

129.91(4’-Th); 130.48 (4-Th); 132.05 (2-Th); 141.39 (2’-Th); 143.06 (5-Th); 144.67(3’-Th); 193.42 (С=O).

Elemental analysis. Calculated for C30H48OS2: С, 73.84%; Н, 9.99%. found: С 73.71%, Н 9.90%.

Page 4: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S4 of 33

2-(Chloro(3'-decyl-[2,2'-bithiophen]-5-yl)methylene)dodecanal (11)

To DMF (8 ml) at 00C was added POCl3 (0.75 ml, 8.2 mmol) and the mixture was

stirred for 30 min at the same temperature. In the next step a solution of ketone

I9 (1.9 mmol) in DMF (2 ml) was added dropwise. The reaction mixture was

heated at 60 - 650C for 5 h. Then the solution was poured on a crushed ice (20 g) in water (70 ml) and

extracted with EtOAc (3 × 10 ml). The combined organic layers were washed with saturated solution of

NaOAc and dried with anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude

product was purified by column chromatography on silica gel.

Yield: 0.61 g (60%); yellow oil. Rf=0.58, 0.60 (hexane/EtOAc, 20/1)

IR (KBr). ν сm-1: 1671 (С=О). Z/E=19/81

1H NMR (400 MHz, CDCl3, δ, ppm): E-(11): 0.86-0.90 (6H, m., 2СH3); 1.25-1.68(32H, m., 16CH2); 2.55-2.59

(2H, m., =C-CH2-); 2.75-2.79 (2Н, m., -CH2C9H19); 6.96 (1H, d., 3J=5.1 Hz, Th-4’-Н); 7.04 (1H, d., 3J=3.7 Hz,

Th-3-Н); 7.12 (1H, d., 3J=3.7 Hz, Th-4-Н); 7.23 (1H, d., 3J=5.1 Hz, Th-5’-Н); 9.75 (1 H, s., CНO); Z-(11): 0.86-

0.90 (6H, m., 2СH3); 1.25-1.68 (32H, m., 16CH2); 2.63-2.66 (2H, m., =C-CH2-); 2.75-2.79 (2Н, m., -

C(O)CH2CH2C9H19); 6.97 (1H, d., 3J=5.1 Hz, Th-4’-Н); 7.14 (1H, d., 3J=3.8 Hz, Th-3-Н); 7.26 (1H, d., 3J=5.1 Hz,

Th-5’-Н); 7.57(1H, d., 3J=3.8 Hz, Th-4-Н); 10.36 (1 H, s., CНO).

13C NMR (100 MHz, δ, ppm): E-(11): 14.14 (СН3); 22.70, 27.84, 28.72, 29.35, 29.38, 29.42, 29.44, 29.46,

29.49, 29.55; 29.58; 29.62; 29.68; 29.72; 29.76; 29.84; 30.57; 31.91 (18СН2); 125.03 (3-Th); 125.33 (5’-Th);

129.32 (Cl-С=); 130.36 (4’-Th); 131.98 (=С-CHO); 132.93 (4-Th); 137.31(2’-Th); 141.03 (2-Th); 141.32 (3’-Th);

142.20 (5-Th); 189.73(СHO). Z-(11): 28.55, 28.30 (2СН2); 125.12 (3-Th); 125.75 (5’-Th); 130.47 (4’-Th);

135.05 (4-Th); 137.98 (2’-Th); 140.78(2-Th); 141.08 (3’-Th); 145.87 (5-Th); 192.02 (СHO).

Elemental analysis. Calculated for C31H47ClOS2: C, 69.56%; H 8.85%. found: C, 69.61%; H, 8.91%.

Ethyl 3,3''-didecyl-[2,2':5',2''-terthiophene]-5-carboxylate (7d)

To a mixture of sodium ethoxide (90 mg, 1.3 mmol), ethyl mercaptoacetate

(0.15 ml, 1.3 mmol) in 4 ml ethanol was added the solution of compound 11

(1.1 mmol) in 0.5 ml anhydrous THF. The reaction mixture was heated under

reflux for 4 h. The solvent was evaporated under reduced pressure; the resulting

solid residue was dissolved in 7 ml of water and 15 ml of EtOAc. The organic extract was washed with brine

(30 mL), dried (Na2SO4) and concentrated. The product was purified by column chromatography on silica

gel.

Yield: 0.49 g (74%); yellow oil. Rf=0.51 (hexane/EtOAc, 20/1)

IR (KBr). ν сm-1: 1710 (С=О).

Page 5: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S5 of 33

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.85-0.89 (6H, m, 2CH3), 1.25-1.33 (28H, m, 14CH2), 1.38 (3H, t, 3J=

6.4 Hz, ОСН2CH3), 1.58-1.70 (4H, m, 2ThCH2CH2C8H17), 2.75-2.80 (4H, m, 2ThCH2C9H19), 4.35 (2H, q, 3J=7.2

Hz, OCH2CH3), 6.94 (1H, d, 3J=5.4 Hz, Th-4’’-H), 7.07 (1H, d, 3J=3.9 Hz, Th-4′-H), 7.15 (1H, d., 3J=3.7 Hz, Th-

3′-H), 7.18 (1H, d, 3J=5.4 Hz, Th-5′′-H), 7.25 (1H, s., Th-4-H). Z/E=19/81

13C NMR (100 MHz, δ, ppm): 14.13 (2СН3), 14.39 (OCH2СН3), 22.70, 29.33, 29.36, 29.37, 29.41, 29.46, 29.50,

29.57, 29.60, 29.64, 30.46, 30.73, 31.92 (18СН2), 61.16 (OCH2CH3), 124.14 (5’’-Th), 126.19 (3’-Th), 127.06

(4’-Th), 129.99 (4’’-Th), 130.18 (4-Th), 130.54 (2-Th), 134.83 (5-Th), 136.00 (2’’-Th), 137.52 (2′-Th), 137.69

(5’-Th), 139.69 (3’’-Th), 140.11 (3-Th), 162.21 (C=O).

Elemental analysis. Calculated for C35H52O2S3: C, 69.95%; H 8.72%. found: C, 70.02%; H 8.71%.

Substituted 2,2’-bithiophene-, 2,2':5',2''-terthiophene- and 3-decyl-[2,2':5',2'':5'',2'''-quaterthiophene] 5-

carboxylic acids (12a-c);

Compound 12a, 12b were prepared according to the known procedure [1] (see Supporting Information).

3-Decyl-[2,2':5',2'':5'',2'''-quaterthiophene]-5-carboxylic acid (12c)

To ether 7c (1.5 mmol) in THF (10 mL) was added a solution of potassium

hydroxide (0.40 g, 7.1 mmol) in 5 ml ethanol. The reaction mixture was

stirred for night at room temperature. A solvent was removed under

reduced pressure, 20 ml of water was added to the residue and the mixture was acidified with dilute 2 N

hydrochloric acid. The precipitate was separated and crystallized.

Yield: 0.54 g (77%); M.p. = 145-147 0C (acetone); orange solid.

IR (KBr). ν сm-1: 1661 (С=О), 2450-2600 (O-H).

1H NMR (400 MHz, DMSO-d, δ, ppm 6): δ = 0.82 (t, 3J=6.8 Hz, 3H, CH3), 1.20-1.35 (m, 14H, 7CH2), 1.55-1.64

(m, 2H, ThCH2CH2C8H17), 2.75 (t, 3J=7.6 Hz, 2H, ThCH2C9H19), 7.09 (d.d, 3J=3.5 Hz, 3J=5.1 Hz, 1H, Th-4′′′-H),

7.24 (d., 3J=3.7 Hz, 2H, Th-3′-H, Th-4′-H), 7.28 (d., 3J=3.7 Hz, 1H, Th-3′′-H), 7.31-7.32 (m., 2H, Th-3′′-H, Th-4′′-

H), 7.49 (d.d, 3J=5.1 Hz, 4J=1.0 Hz, 1H, Th-5′′′-H), 7.58 (s., 1H, Th-4-H).

13C NMR (100 MHz, δ, ppm): 13.36 (СН3), 21.60, 28.21, 28.47, 28.52, 29.21, 30.86 (9СН2), 124.05 (4′′-Th),

124.46 (3′′-Th), 124.59 (4′-Th), 125.12 (3’’’-Th), 125.41 (5’’’-Th), 127.88 (4’’’-Th), 127.96 (3′-Th), 131.69 (2-

Th), 133.02 (2′′-Th), 134.02 (5′′-Th), 135.29 (4-Th), 135.56 (5′-Th), 135.66 (2′-Th), 135.88 (2’’’-Th), 135.80 (3-

Th), 139.89 (5-Th), 162.02 (C=O).

Elemental analysis. Calculated for C27H30O2S4. C, 62.99%; H, 5.87%. found: C, 63.10%; H, 5.95%.

Page 6: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S6 of 33

3,3''-didecyl-[2,2':5',2''-terthiophene]-5-carboxylic acid (12d)

A mixture of 7d (1.5 mmol) and potassium hydroxide (0.40 g, 7.1 mmol) in

ethanol (6 mL) was refluxed for 3 h. Ethanol was removed under reduced

pressure, 8 ml of water was added to the residue and the mixture was acidified

with dilute 2 N hydrochloric acid. The precipitate was separated and crystallized.

Yield: 0.58 g (68%); M.p. = 95-96 0C (ethanol); yellow solid.

IR (KBr). ν сm-1: 1663 (С=О), 2400-3446 (O-H).

1H NMR (400 MHz,CDCl3, δ, ppm): δ = 0.86-0.89 (6H, m, 2CH3), 1.25-1.39 (28H, m, 14CH2), 1.61-1.71(4H, m,

ThCH2CH2C8H17), 2.76-2.81 (4H, m, 2ThCH2C9H19), 6.94 (1H, d., 3J=5.1 Hz, Th-4′′-H), 7.08 (1H, d., 3J=3.9 Hz,

Th-4′-H), 7.18 (1H, d., 3J=3.9 Hz, Th-3′-H), 7.20 (1H, d., 3J=5.1 Hz, Th-5′′-H), 7.71 (1H, s., Th-4-H).

13C NMR (100 MHz, δ, ppm): 14.13 (СН3), 22.70, 29.36, 29.42, 29.46, 29.51, 29.58, 29.60, 29.64, 30.41,

30.73, 31.92 (18СН2), 124.23 (4′-Th), 126.23 (5’’-Th), 127.40 (3′-Th), 129.26 (2-Th), 129.90 (5-Th), 130.20

(4’’-Th), 134.54 (2’’-Th), 137.61 (4-Th), 139.65 (2’-Th), 137.93 (5’-Th), 140.24 (3’’-Th, 3-Th), 167.43 (C=O).

Elemental analysis. Calculated for C33H48O2S3: C, 69.18%; H, 8.44%. found: C, 69.26%; H, 8.55%.

Substituted 2,2’-bithiophene-, 2,2':5',2''-terthiophene- and 3-decyl-[2,2':5',2'':5'',2'''-quaterthiophene] 5-

carbohydrazides (13a, b, d);

Compound 13a, 13b were prepared according to the known procedure [2,9] (see Supporting Information).

General Procedure

A solution of hydrazine hydrate 97 % (0.78 ml) and 7d (1.6 mmol) in 1.5 ml of ethanol was heated under

reflux for 15 h. The resulting solution was cooled to room temperature, then 5 mL of water was added. The

precipitate was separated and crystallized from methanol.

3,3''-Didecyl-[2,2':5',2''-terthiophene]-5-carbohydrazide (13d)

Yield: 0.70 g (75%); M.p. = 84-86 0C (methanol); yellow solid. Rf=0.42

(CHCl3/EtOAc/EtOH, 6/3/1).

IR (KBr). ν сm-1: 1622 (С=О), 3065-3274 (NH).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.85-0.88 (6H, m, 2CH3), 1.25-1.39 (28H, m, 14CH2), 1.61-1.68 (4H,

m, ThCH2CH2C8H17), 2.77 (4H, t., 3J=7.3 Hz, 2ThCH2C9H19), 4.12 (2H, s., CONHNH2), 6.94 (1H, d., 3J=4.9 Hz, Th-

4′′-H), 7.06 (1H, d., 3J=3.4 Hz, Th-4′-H), 7.12 (1H, d., 3J=3.4 Hz, Th-3′-H), 7.19 (1H, d., 3J=4.9 Hz, Th-5′′-H), 7.40

(1H, s., Th-4-H), 7.44 (1H, s., CONHNH2).

Page 7: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S7 of 33

13C NMR (100 MHz, δ, ppm): 14.13 (2СН3), 22.69, 29.33, 29.36, 29.44, 29.46, 29.51, 29.58, 29.63, 30.51,

30.73, 31.91 (18СН2), 124.13 (3′-Th), 126.15 (5’’-Th), 127.08 (4′-Th), 129.93 (4’’-Th), 130.16 (4-Th), 131.62

(2-Th), 132.57 (2’’-Th), 134.54 (5’-Th), 135.67 (5-Th), 137.50 (3-Th), 140.01 (3’’-Th), 140.10 (2’-Th), 163.23

(C=O).

Elemental analysis. Calculated for C33H50N2OS3: C, 67.53%; H, 8.59%; N, 4.77%. found: C, 67.66%; H, 8.57%;

N, 4.82%.

Synthesis of N,N’-bis(3-decyl-2,2'-bithiophene-5-oyl), N,N’-bis(3-decyl-2,2':5',2''-terthiophene-5-oyl),

N,N’-bis (3,3’’-decyl- 2,2':5',2''-terthiophene 5-oyl )hydrazines (14a-d) and N,N’-Bis(3-decyl-

2,2':5',2'':5'',2'''-quaterthiophene -5-oyl)hydrazine (14c)

Compound 14a, b were prepared according to the known procedure [2,9] (see Supporting Information).

General Procedure for the synthesis of compounds 14d:

A carbohydrazide 13 d (0.9 mmol) was added to a solution of carboxylic acid 12 d (0.9 mmol) and DCC (N

N'-dicyclohexylcarbodiimide) (0.18 g, 0.9 mmol) in anhydrous THF (5 mL). The mixture was stirred at room

temperature for 3-6 h. To mixture was added 100 l acetic acid (10%). Then the precipitate of N,N'-

dicyclohexylurea was filtered off and washed with THF (15 mL). The solvent was then removed under

reduced pressure and the resulting crude product was purified by crystallization from methanol or ethyl

acetate.

N,N’-Bis(3,3’’-decyl-2,2':5',2''-terthiophene-5-oyl)hydrazine (14d)

Yield: 0.70 g (68%); M.p.=85-870С, yellow solid. Rf=0.7

(CHCl3).

IR (KBr). ν сm-1: 1627 (С=О), 3204-3300 (NH).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.76-0.80 (12H, m, 4CH3), 1.14-1.77 (56H, m, 28CH2), 1.50-1.59 (8H,

m, 4ThCH2CH2C8H17), 2.62-2.68 (8H, m., 4ThCH2C9H19), 6.84 (2H, d., 3J=5.3 Hz, 2Th-4′′-H), 6.92 (2H, d., 3J=3.8

Hz, 2Th-3’-H), 6.99 (2H, d., 3J=3.8 Hz, 2Th-4′-H), 7.08 (2H, d., 3J=5.3 Hz, 2Th-5′′-H), 7.52 (2H, s., 2Th-4-H),

9.66 (2H, s., 2NH).

13C NMR (100 MHz, δ, ppm): 14.10 (4СН3), 22.67, 29.34, 29.36, 29.45, 29.53, 29.58, 29.62, 29.64, 30.38,

30.68, 31.89, 31.91 (18СН2), 123.97 (5’’-Th), 126.00 (4′-Th), 127.09 (3′-Th), 130.04 (4’’-Th), 130.08 (4-Th),

131.69 (2-Th), 132.60 (2’’-Th), 134.55 (5’-Th), 137.10 (2’-Th), 137.49 (5-Th), 139.92 (3-Th), 140.14 (3’’-Th),

161.02 (C=O).

Page 8: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S8 of 33

Elemental analysis. Calculated for C66H96N2O2S6: C, 69.42%; H, 8.47%; N, 2.45%. found: C,69.51 %; H, 8.52%;

N, 2.43%.

N,N’-Bis(3-decyl-2,2':5',2'':5'',2'''-quaterthiophene -5-oyl)hydrazine (14c)

Oxalyl chloride (0.62 mL, 7.2 mmol) was

added to a suspension of 12c (0.59 g, 1.9

mmol) in 3 mL of dry dichloromethane under

cooling (ice bath). After the addition of one

drop of DMF to the resulting mixture, it was stirred for 30 min under cooling then at r.t. for additional 4 h.

The solvent and the excess of oxalyl chloride were removed under reduced pressure and the final product

(acid chloride) was used in subsequent reactions without further purification. Crude acid chloride was

dissolved in 5 mL of dichloromethane, cooled in an ice bath. Then, a mixture of 90 mg (0.90 mmol) of

hydrazine dihydrochloride and 0.72 mL (9 mmol) of dry pyridine were added. The reaction mixture was

stirred for 30 min under cooling and left overnight at rt. After removal of the solvent in vacuum the residue

was treated with 10 mL of ice water and stirred for 15 min. The precipitate was filtered out, washed with

water and dried and recrystallized from ethyl acetate.

Yield: 0.74 g (76%); M.p.= 131-135 0С (CHCl3), yellow solid. Rf=0.72 (CHCl3).

IR (KBr). ν сm-1: 1627 (С=О), 3200-3400 (NH).

1H NMR (400 MHz, DMSO-d6, δ, ppm): δ = 0.81-0.84 (6H, m, 2CH3), 1.17-1.40 (28H, m, 14CH2), 1.55-1.68

(4H, m, 2ThCH2CH2C8H17), 2.76 (4H, t, 3J=7.6 Hz, 2ThCH2C9H19), 7.09 (2H, d.d, 3J=3.7 Hz, 3J=5.0 Hz, 2Th-4′′′-H),

7.24 (4H, d., 3J=3.7 Hz, 2Th-3′-H, 2Th-4′-H), 7.27-7.33 (6H, m., 2Th-3′′′-H, 2Th-3′′-H, 2Th-4′′-H), 7.49 (2H, d.,

3J=5.0 Hz, 2Th-5′′′-H), 7.79 (2H, s., 2Th-4-H), 10.39 (2H., s., 2NH).

13C NMR (100 MHz, δ, ppm): 13.35 (СН3), 21.59, 28.19, 28.22, 28.26, 28.29, 28.49, 28.55, 29.23, 30.85

(9СН2), 124.01 (4′′-Th), 124.04 (3′′-Th), 124.47 (4′-Th), 124.58 (3’’’-Th), 125.06 (5’’’-Th), 125.38 (4’’’-Th),

127.72 (3′-Th), 127.94 (4-Th), 133.12 (2-Th), 134.13 (2′′-Th), 134.56 (5′′-Th), 135.82 (5′-Th), 136.63 (2′-Th),

136.79 (2’’’-Th), 139.76 (3-Th), 139.89 (5-Th), 161.99 (C=O).

Elemental analysis. Calculated for C54H60N2O2S8. C, 63.24%; H, 5.90%; N, 2.73%. found: C, 63.35%; H, 6.05%;

N, 2.80%.

Synthesis of target 1,3,4-oxadiazole compounds: 1, 2 and 5

General Procedure for the synthesis of compounds 1, 2:

A mixture of 14 c, or 14d (0.5 mmol), 3 mL phosphoryl chloride (41.2 mmol) was heated to 80-90 ºC and

stirred at this temperature under inert atmosphere for 3-5 h, then cooled to r.t. The excess of phosphoryl

Page 9: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S9 of 33

chloride was removed under reduced pressure and 30 mL of ice water were added. The product: 1 or 2 was

extracted with CHCl3 (3 × 20 mL). The extract was washed with saturated solution of sodium chloride (30

mL) and aqueous solution of NaHCO3 and dried with Na2SO4. Then the solvent was evaporated under

reduced pressure. The crude product was purified by column chromatography.

2,5-Bis(3,3''-didecyl-[2,2':5',2''-terthiophen]-5-yl)-1,3,4-oxadiazole (2)

Yield: 0.48 g (85%); M.p.= 52-540С (hexane/EtOAc, 20/1),

yellow solid. Rf=0.36 (hexane/EtOAc, 20/1).

IR (KBr). ν сm-1: 1580 (С=N).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.85-0.89 (12H, m, 4CH3), 1.26-1.46 (56H, m, 28CH2), 1.61-1.77 (8H,

m, 4ThCH2CH2C8H17), 2.77-2.86 (8H, m., 4ThCH2C9H19), 6.96 (2H, d., 3J=5.2 Hz, 2Th-4′′-H), 7.10 (2H, d., 3J=3.8

Hz, 2Th-3’-H), 7.19 (2H, d., 3J=3.8 Hz, 2Th-4′-H), 7.21 (2H, d., 3J=5.2 Hz, 2Th-5′′-H), 7.65 (2H, s., 2Th-4-H).

13C NMR (100 MHz, δ, ppm): 14.13 (2СН3), 22.70, 29.36, 29.48, 29.52, 29.56, 29.59, 29.62, 29.64, 30.50,

30.74, 31.92 (18СН2), 121.81 (5’’-Th), 124.20 (4′-Th), 126.25 (3′-Th), 127.16 (2-Th), 129.93 (4’’-Th), 130.20

(5-Th), 132.52 (2’’-Th), 134.36 (4-Th), 135.85 (5’-Th), 137.66 (3-Th), 140.19 (3’’-Th), 140.42 (2’-Th), 160.00

(2,5-Oxadiazole).

Elemental analysis. Calculated for C66H94N2OS6 : C, 70.53%; H, 8.43%; N, 2.49%. found: C, 70.58%; H,

8.56%; N, 2.51%.

2,5-Bis(3-decyl-[2,2':5',2'':5'',2'''-quaterthiophen]-5-yl)-1,3,4-oxadiazole (1)

Yield: 0.05 g (10%); M.p.= 117-119 0С (benzene),

orang solid. Rf= 0.53 (benzene),

IR (KBr). ν сm-1: 1580 (C=N).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0.87 (6H, t, 3J=6.7 Hz, 2CH3), 1.24-1.46 (28H, m, 14CH2), 1.67-1.75

(4H, m, 2ThCH2CH2C8H17), 2.81 (4H, t, 3J=7.8 Hz, 2ThCH2C9H19), 7.01 (2H, d.d, 3J=3.7 Hz, 3J=5.1 Hz, 2Th-4′′′-H),

7.07 (2H, d., 3J=3.7 Hz, 2Th-4′′-H), 7.09 (2H, d., 3J=3.7 Hz, 2Th-3′′-H), 7.12 (4H, s., 2Th-3′-H, 2Th-4′-H), 7.17

(2H, d., 3J=3.7 Hz, 2Th-3′′′-H), 7.22 (2H, d., 3J=5.1 Hz, 4J=0.6 Hz, 2Th-5′′′-H), 7.60 (2H, s., 2Th-4-H).

13C NMR (100 MHz, δ, ppm): 14.09 (СН3), 22.70, 29.37, 29.47, 29.50, 29.56, 29.63, 29.66, 30.40, 31.96

(9СН2), 122.05 (2-Th), 123.96 (4′′-Th), 124.07 (3′′-Th), 124.47 (4′-Th), 124.65 (4’’’-Th), 124.72 (3’’’-Th),

124.74 (5’’’-Th), 127.95 (3′-Th), 132.48 (4-Th), 133.76 (2′′-Th), 135.74 (5′-Th), 135.48 (5′′-Th), 137.00 (2′-Th),

137.04 (2’’’-Th), 138.30 (3-Th), 140.65 (5-Th), 159.99 (2,5-Oxadiazole).

Elemental analysis. Calculated for C54H58N2OS8. C, 64.37%; H, 5.80%; N, 2.78%. found: C, 64.47%; H, 5.94%;

N, 2.87%.

Page 10: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S10 of 33

Synthesis of 1,4-bis(5-(3-decyl-[2,2'-bithiophen]-5-yl)-1,3,4-oxadiazol-2-yl)benzene (5)

To a mixture of 0.56 mmol DCC, 0.56 mmol of carboxylic

acid 12a in dry tetrahydrofuran was added 1,4-di(2H-

tetrazol-5-yl)benzene (0.28 mmol). The reaction mixture

was stirred for 60 min at rt. then under reflux for 15 h (TLC control: CHCl3). The urea precipitated was

filtered off and washed with THF. The solvent was removed under reduced pressure, using a rotary

evaporator. The crude product was purified by column chromatography (eluent - benzene / ethyl acetate,

20/1).

Yield: 0.096 g (46%); yellow solid; Rf = 0.5 (CHCl3); Mp. = 150-1520C. IR (KBr). ν сm-1: 1569 (C=N).

1H NMR (400 MHz, CDCl3, δ, ppm): δ = 0,87 (6Н, t., 3J=6.5 Hz, 2СH3), 1.20-1.42 (28H, m., 14CH2), 1.65-1.72

(4H, m., 2-ThCH2СН2C8H17), 2.79 (4H, t., 3J=7.8 Hz, 2ThCH2C9H19), 7.10 (2H, d.d., 3J=3.5 Hz, 3J=5.0 Hz, 2Th-4′-

H), 7.22 (2H, d.d., 3J=3.5 Hz, 4J=1.0 Hz. 2Th-3′-H), 7.38 (2H, d.d.,3J=5.0 Hz, 4J=1.0 Hz, 2Th-5′-H), 7.66 (2Н, s.,

Th-4-H), 8.23 (4Н,s., C6H4).

13C NMR (100 MHz, δ, ppm):14.09 (CH3); 22.65, 29.23, 29.30, 29.39, 29.47, 29.55, 29.57, 30.40, 31.87(CH2);

121.68 (2-Th); 126.26 (3′-Th); 127.06 (5′-Th); 126.71 (4′-Th); 127.06, 127.38, 127.69 (1,2,3,4,5,6-Ph);

132.67 (4-Th); 134.59 (5-Th); 136.38 (3-Th); 140.52 (2’-Th); 161.03(2,2’-oxadiazole); 162.96(2,2’-

oxadiazole).

Page 11: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S11 of 33

NMR Spectra

Ethyl 3-decyl-5'-dodecanoyl-[2,2'-bithiophene]-5-carboxylate (8)

1H NMR (400 MHz, CDCl3)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Inte

nsity

6.1132.944.182.062.090.982.00

Chloroform-d

TMS

0.0

0

0.8

60.8

80.9

0

1.2

61.3

81.4

01.6

51.6

7

1.7

41.7

61.7

71.7

92.7

62.7

82.8

02.8

62.8

82.9

0

4.3

34.3

54.3

64.3

8

7.2

07.2

17.2

6

7.6

37.6

47.6

5

S

S

O

O

O

7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Inte

nsity

0.982.00

Chloroform-d

7.2

07.2

1

7.2

6

7.6

37.6

47.6

5

13C NMR (100 MHz, δ, ppm) (8)

200 180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

-0.5

0

0.5

1.0

Inte

nsity

Chloroform-d

TMS

193.3

1

161.9

4

144.4

4143.0

0141.7

0136.5

4

135.9

4

132.2

3

131.8

8

127.3

1

77.3

677.0

476.7

3

61.3

6

39.2

631.9

329.6

029.4

329.3

3

22.7

0

14.3

614.1

1

0.0

0

S

S

O

O

O

Page 12: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S12 of 33

3-Decyl-5'-dodecanoyl-[2,2'-bithiophene]-5-carboxylic acid (9)

1H NMR (400 MHz, CDCl3)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Inte

nsity

6.1429.982.211.931.021.07

Chloroform-d

TMS

7.5

27.4

67.2

6

7.0

3

2.8

12.8

02.7

82.5

9

1.7

1 1.7

01.6

81.5

11.3

3 1.3

11.2

91.2

6

0.8

90.8

70.8

50.8

3

S

SO

O

OH

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

1.021.071.00

Chloroform-d

7.5

2

7.4

6

7.2

6

7.0

3

13C NMR (100 MHz, δ, ppm) (9)

200 180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

Inte

nsity

Chloroform-dTMS

193.0

9

166.9

5

143.9

6143.1

0 141.6

4136.5

4135.9

3131.7

5

126.8

9

77.3

477.0

376.7

1

39.1

2

31.9

429.7

029.4

529.3

9

24.7

3

22.7

114.1

3

0.0

0

S

SO

O

OH

Page 13: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S13 of 33

1-(3'-Decyl-[2,2'-bithiophen]-5-yl)dodecan-1-one (10)

1H NMR (400 MHz, CDCl3)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

6.1730.132.052.041.040.991.00

0.8

60

.88

0.8

9

1.2

61

.30

1.3

11

.36

1.3

81

.59

1.6

41

.75

1.7

7

1.7

9

2.7

82.8

02

.85

2.8

72

.896

.95

6.9

67

.12

7.1

37

.23

7.2

47

.26

7.6

37

.64

7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

1.041.010.991.00

6.9

56

.96

7.1

27

.13

7.2

37

.24

7.2

6

7.6

37

.64

S

S

O

13C NMR (100 MHz, δ, ppm) (10)

200 180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Inte

nsity

Chloroform-d

TMS

0.0

0

14.1

3

22.7

0

24.9

929.3

429.4

629.6

331.9

139.1

5

76.7

177.0

377.3

4

125.1

3126.1

3130.4

8132.0

5

141.3

9143.0

6144.6

7

193.4

2

S

S

O

Page 14: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S14 of 33

2-(Chloro(3'-decyl-[2,2'-bithiophen]-5-yl)methylene)dodecanal (11)

1H NMR (400 MHz, CDCl3)

11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

8.7836.932.612.071.360.241.000.22

Chloroform-d

TMS

0.0

0

0.8

60

.86

0.8

80

.89

1.2

51

.27

1.3

31

.35

1.3

6

1.4

81

.502

.55

2.5

72

.59

2.7

52

.77

2.7

96.9

56

.97

7.0

47.0

57

.12

7.1

37

.23

7.2

47

.26

7.5

77

.58

9.7

5

10

.36

7.5 7.0

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

1.361.051.041.180.24

Chloroform-d

6.9

56

.97

6.9

87

.04

7.0

57

.12

7.1

37

.157

.23

7.2

47

.26

7.5

77

.58

S

SCl

OH

13C NMR (100 MHz, δ, ppm) (11)

200 180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Inte

nsity

Chloroform-dTMS

0.0

0

14.1

4

22.7

027.8

429.3

529.5

831.9

1

76.7

177.0

377.3

4

125.0

3125.3

3129.3

2130.3

6132.9

3135.0

5141.0

3141.3

2142.2

0145.8

7

189.7

3192.0

2

S

SCl

OH

Page 15: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S15 of 33

Ethyl 3,3''-didecyl-[2,2':5',2''-terthiophene]-5-carboxylate (7d)

1H NMR (400 MHz, CDCl3)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

6.1732.164.073.922.001.001.001.03

Chloroform-d

TMS

0.8

50

.87

0.8

9

1.2

51

.38

1.4

01

.61

1.6

41

.66

1.6

81

.70

2.7

52.7

72

.80

4.3

24

.34

4.3

64

.38

6.9

46

.95

7.0

77

.08

7.1

57

.16

7.1

8

7.2

5

7.6

2

7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

1.000.981.051.001.03

6.9

46

.95

7.0

77.0

8

7.1

57

.16

7.1

87

.20

7.2

5

7.6

2

SS

S

O

O

13C NMR (100 MHz, δ, ppm) (7d)

180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Inte

nsity

Chloroform-d

TMS

0.0

0

14.1

314.3

9

22.7

0

29.3

629.5

029.6

031.9

2

61.1

6

76.7

177.0

377.3

5

124.1

4126.1

9127.0

6130.1

8130.5

4136.0

0

139.9

6

162.2

1

SS

S

O

O

Page 16: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S16 of 33

3-Decyl-[2,2':5',2'':5'',2'''-quaterthiophene]-5-carboxylic acid (12c)

1H NMR (400 MHz, DMSO-d6)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Inte

nsity

2.9914.061.981.981.000.98

DMSO-d6

0.8

20

.84

1.2

11

.24

1.2

81

.30

1.3

1

1.5

6

1.6

01

.62

1.6

42

.48

2.4

92

.49

2.7

52

.77

3.1

2

7.0

87

.09

7.0

97

.10

7.2

47

.25

7.3

17

.32

7.4

97

.58

7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00

Chemical Shift (ppm)

0

0.25

0.50

0.75

Inte

nsity

1.001.952.950.981.00

7.0

87

.09

7.0

97

.10

7.2

47.2

5

7.2

87

.297

.31

7.3

2

7.4

97

.49

7.5

07

.50

7.5

8

S

S

S

SO

O H

13C NMR (100 MHz, δ, ppm) (12c)

160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

-0.2

-0.1

0

0.1

0.2

Inte

nsity

DMSO-d6

162.0

2

139.8

9136.8

0

135.6

6

135.2

9

134.0

8133.0

2131.6

9

127.9

6125.1

2124.5

9

124.0

5

40.1

339.9

239.7

039.5

039.2

9

38.8

7

30.8

6

28.4

728.2

121.6

0

13.3

6

S

S

S

SO

O H

Page 17: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S17 of 33

3,3''-didecyl-[2,2':5',2''-terthiophene]-5-carboxylic acid (12d)

1H NMR (400 MHz,CDCl3)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

5.9928.174.133.981.000.98

Chloroform-d

TMS

0.0

0

0.8

60

.87

0.8

9

1.2

51

.29

1.3

11

.611.6

51

.67

1.6

91

.712

.76

2.7

72

.78

2.7

92

.80

2.8

16.9

46

.96

7.0

87

.09

7.1

87

.19

7.1

97

.217.7

1

7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

1.001.002.020.98

Chloroform-d

6.9

46

.96

7.0

87

.09

7.1

87

.19

7.1

97

.21

7.2

6

7.7

1

S

S

S

O

OH

13C NMR (100 MHz, δ, ppm) (12d)

180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

-0.5

0

0.5

Inte

nsity

Chloroform-d

TMS

0.0

0

14.1

3

22.7

029.3

629.5

129.6

431.9

2

76.7

177.0

277.3

4

124.2

3126.2

3127.4

0

129.2

6129.9

0

130.2

0

134.5

4

137.6

1

137.9

3

140.2

4

167.4

3

S

S

S

O

OH

Page 18: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S18 of 33

3,3''-Didecyl-[2,2':5',2''-terthiophene]-5-carbohydrazide (13d)

1H NMR (400 MHz, CDCl3)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

Inte

nsity

6.1328.354.424.041.991.000.981.97

Chloroform-d

TMS

0.0

0

0.8

50

.87

0.8

8

1.2

5

1.3

71

.63

1.6

51

.662.7

52

.77

2.7

9

4.1

2

6.9

46

.95

7.0

77

.12

7.1

37

.18

7.2

0

7.2

6

7.4

07

.44

7.5 7.0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

Inte

nsity

1.000.960.980.981.97

Chloroform-d

6.9

46

.95

7.0

67

.07

7.1

27

.13

7.1

87

.20

7.2

67.4

07

.44

S

S

SO

N N

H

H

H

13C NMR (100 MHz, δ, ppm) (13d)

180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Inte

nsity

Chloroform-d

TMS

163.2

3

140.1

0137.5

0

131.6

2130.1

6129.9

3126.1

5124.1

3

77.3

577.0

376.7

1

31.9

129.6

329.3

629.3

3

22.6

9

14.1

3

0.0

0

SS

S

O

NN

H

H

H

Page 19: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S19 of 33

N,N’-Bis(3,3’’-decyl-2,2':5',2''-terthiophene-5-oyl)hydrazine (14d)

1H NMR (400 MHz, CDCl3)

11 10 9 8 7 6 5 4 3 2 1 0 -1

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Inte

nsity

12.4356.158.488.142.170.892.011.85

Chloroform-d

TMS

0.7

60

.77

0.7

90

.80

1.1

41

.17

1.2

31

.26

1.2

71

.50

1.5

1

1.5

51

.57

1.5

9

2.6

22

.64

2.6

62

.68

6.8

46.8

56.9

36

.99

7.0

87

.18

7.2

4

7.5

2

9.6

6

7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Inte

nsity

2.172.072.002.030.892.01

6.8

46

.85

6.9

26.9

3

6.9

97

.007

.08

7.0

97.1

8

7.2

4

7.5

2

S

S S N

O

N

O

S S

SH H

13C NMR (100 MHz, δ, ppm) (14d)

160 140 120 100 80 60 40 20

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

Inte

nsity

Chloroform-d14.1

0

22.6

7

29.3

429.4

529.5

830.6

831.8

9

76.6

877.0

077.3

1

123.9

7126.0

0127.0

9130.0

4131.6

9134.5

5137.4

9139.9

2140.1

4

161.0

2

S

S S N

O

N

O

S S

SH H

Page 20: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S20 of 33

N,N’-Bis(3-decyl-2,2':5',2'':5'',2'''-quaterthiophene -5-oyl)hydrazine (14c)

1H NMR (400 MHz, DMSO-d6)

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Inte

nsity

6.3328.114.504.544.472.052.271.861.80

DMSO-d6

0.8

10

.82

0.8

41.1

71

.23

1.2

91

.31

1.3

41

.35

1.6

1

1.6

51

.67

2.4

92

.75

2.7

72

.79

3.1

7

7.0

87

.09

7.2

47

.25

7.3

27

.49

7.5

07

.79

10

.38

S S

S S N N S S

S S

O O

H H

13C NMR (100 MHz, δ, ppm) (14c)

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

Chemical Shift (ppm)

-0.05

0

0.05

0.10

Inte

nsity

DMSO-d6

16

1.9

9

13

9.8

9

13

6.7

91

36

.63

13

5.8

21

35

.56

13

4.1

31

33

.12

12

7.9

41

27

.72

12

5.0

61

24

.58

12

4.0

1

40

.13

39

.92

39

.71

39

.50

39

.08

30

.85

28

.49

28

.29

28

.22

21

.59

13

.35

S S

S S N N S S

S S

O O

H H

Page 21: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S21 of 33

2,5-Bis(3,3''-didecyl-[2,2':5',2''-terthiophen]-5-yl)-1,3,4-oxadiazole (2)

1H NMR (400 MHz, CDCl3)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Inte

nsity

12.1256.168.098.112.104.001.94

Chloroform-d

TMS

0.0

0

0.8

50

.87

0.8

9

1.2

61

.36

1.4

1

1.6

91

.72

1.7

51

.772.7

72

.80

2.8

22

.82

2.8

42

.87

6.9

56

.97

7.1

07

.11

7.1

97

.20

7.2

67

.66

7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

Chemical Shift (ppm)

0

0.05

0.10

Inte

nsity

2.102.044.001.94

Chloroform-d

6.9

56

.97

7.1

07

.11

7.1

97

.20

7.2

27

.267.6

6

S

S

SN

O

NS

S

S

13C NMR (100 MHz, δ, ppm) (2)

160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Inte

nsity

Chloroform-d

TMS

0.0

0

14.1

3

22.7

029.3

629.6

431.9

2

76.6

077.0

277.4

4

121.8

1124.2

0126.2

5127.1

6

130.2

0134.3

6137.6

6140.1

9140.4

2

160.0

0

S

S

SN

O

NS

S

S

Page 22: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S22 of 33

2,5-Bis(3-decyl-[2,2':5',2'':5'',2'''-quaterthiophen]-5-yl)-1,3,4-oxadiazole (1)

1H NMR (400 MHz, CDCl3)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

6.4728.354.033.942.002.00

Chloroform-d

TMS

0.0

0

0.8

60

.87

0.8

9

1.2

71

.32

1.4

51.6

91

.71

1.7

31

.752

.79

2.8

12

.83

7.0

17

.02

7.0

37

.07

7.0

97

.12

7.1

77

.21

7.6

0

7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

Inte

nsity

2.004.063.941.981.982.00

Chloroform-d

7.0

07

.01

7.0

27

.03

7.0

77

.08

7.0

97

.10

7.1

27

.17

7.1

87

.18

7.2

17

.21

7.2

37

.23

7.2

5

7.6

0

S

S

S

S

O

N NS

S

S

S

13C NMR (100 MHz, δ, ppm) (1)

160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Inte

nsity

Chloroform-d

TMS

0.0

0

14.0

9

22.7

0

29.3

729.6

631.9

6

76.7

177.0

377.3

5

122.0

5

123.9

6124.0

7124.4

7124.7

2

127.9

5132.4

8

133.7

6135.4

8135.7

4137.0

4138.3

0140.6

5

159.9

9

S

S

S

S

O

N NS

S

S

S

Page 23: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S23 of 33

1,4-bis(5-(3-decyl-[2,2'-bithiophen]-5-yl)-1,3,4-oxadiazol-2-yl)benzene (5)

1H NMR (400 MHz, CDCl3)

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Inte

nsity

6.1328.314.204.102.071.992.024.14

0.0

7

0.8

50

.87

0.8

9

1.2

61

.29

1.3

11

.33

1.6

51

.69

1.7

11

.72

2.7

72

.79

2.8

0

7.0

87.1

07

.117

.22

7.3

87

.39

7.6

6

8.2

3

8.0 7.5 7.0

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

Inte

nsity

2.072.021.992.024.14

7.0

97

.10

7.1

17

.22

7.2

27

.23

7.2

37

.38

7.3

87

.39

7.3

9

7.6

6

8.2

3S

S O

NN

O

NN

S

S

13C NMR (100 MHz, δ, ppm) (5)

180 160 140 120 100 80 60 40 20

Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

Inte

nsity

Chloroform-d

14.0

9

22.6

5

29.3

029.5

731.8

7

76.6

977.0

077.3

2

121.6

8126.2

6127.0

6127.3

8127.6

9132.6

7134.5

9136.3

8140.5

2

161.0

3162.9

6

S

S O

NN

O

NN

S

S

Page 24: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S24 of 33

Auxiliary electrochemical, spectroelectrochemical, and quantum computational

data

Fig.S1. Cyclic voltammograms of the monomers registered in 0.1 M Bu4NPF6 in dichloromethane for the

anodic potential range and in tetrahydrofuran for cathodic potential range, set to a common

current scale for each compound. Scan rate: 100 mV/s.

Page 25: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S25 of 33

Fig.S2. Cyclic voltammogram of polymerization process registered in 0.1 M Bu4NPF6 in dichloromethane for

the anodic potential range. Scan rate: 100 mV/s.

Page 26: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S26 of 33

Fig.S3. Cyclic voltammogram of investigated monomers registered in 0.1 M Bu4NPF6 in tetrahydrofuran in

extended cathodic potential range. Scan rate: 100 mV/s.

Page 27: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S27 of 33

Fig.S4. Changes in UV-Vis and EPR spectra upon electrochemical generation of radical anions, registered in

0.1 M Bu4NPF6 in tetrahydrofuran with the monomer concentration equal to 1mmol/dm3 for (2)

and (3) and 0.25 mmol/dm3 for (1).

Page 28: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S28 of 33

Fig.S5. Cyclic voltammograms of electrodeposited polymers registered in 0.1 M Bu4NPF6 in

dichloromethane for the anodic potential range and in tetrahydrofuran for cathodic potential

range, set to a common current scale for each polymer. Scan rate: 100 mV/s

Page 29: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S29 of 33

O

N NS

S

S

S

S

S

S

S

H19C9

C9H19

O

N NS

S

S

S

S

S

C9H19H19C9

C9H19H19C9

O

N NS

S

S

S

S

S

H19C9

C9H19

n

O

N NS

S

H19C9

S

S

C9H19

O

N NS

S

H19C9

S

S

C9H19

O

NN

O

N NS

S

H19C9

S

S

C9H19

O

N N

n

n

n

n

n

poly(1)

poly(2)

poly(3)

poly(4)

poly(5)

poly(6)

Scheme S1. Structures of the repeating unit of electrochemically generated polymers of compounds 1 to 6.

Page 30: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S30 of 33

Table S1. Description of the most important optical transitions simulated with B3LYP/6-31G(d)/PCM(THF)

method.

Comp. No. of

transition Wavelength

[nm] Oscillator strength

Composition

(1) 1 565 3.0470 HOMO -> LUMO (93%)

HOMO-1 -> LUMO+1 (5%)

(2) 1 512 2.2891 HOMO -> LUMO (96%)

HOMO-1 -> LUMO+1 (3%)

(3) 1 518 2.3327 HOMO -> LUMO (97%)

HOMO-1 -> LUMO+1 (3%)

(4) 1 448 1.6243 HOMO -> LUMO (99%)

(5) 1 455 2.1027 HOMO -> LUMO (95%)

HOMO-1 -> LUMO+1 (4%)

(6) 1 462 1.7547 HOMO -> LUMO (97%)

HOMO-1 -> LUMO+1 (2%)

Table S2. Description of the most important optical transitions simulated with CAM- B3LYP/6-

31G(d)/PCM(THF) method.

Compound No. of

transition Wavelength

[nm] Oscillator strength

Composition

(1) 1 411 3.5630 HOMO -> LUMO (76%)

HOMO-1 -> LUMO+1 (25%)

(2) 1 375 2.4326 HOMO -> LUMO (74%)

HOMO-1 -> LUMO+1 (15%)

(3) 1 391 2.6540 HOMO -> LUMO (73%)

HOMO-1 -> LUMO+1 (19%)

(4) 1 342 1.7000 HOMO -> LUMO (85%)

HOMO-1 -> LUMO+1 (11%)

(5) 1 353 2.7205 HOMO -> LUMO (63%)

HOMO-1 -> LUMO+1 (24%)

(6) 1 360 2.1728 HOMO -> LUMO (71%)

HOMO-1 -> LUMO+1 (21%)

Page 31: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S31 of 33

Table S3. Selected dihedral angles of the molecules investigated at the ground and first excited state.

Geometries were obtained with B3LYP/6-31G(d)/PCM(THF) method.

Compound Dihedral angle no.

Dihedral angle in

ground state

Dihedral angle in S1

excited state

1 13.710 0.000

2 12.301 0.009

3 20.495 0.000

4 0.793 0.000

5 0.791 0.000

6 20.493 0.000

7 12.304 0.009

8 13.701 0.001

1 25.958 0.010

2 24.560 0.007

3 0.760 0.003

4 0.759 0.003

5 24.556 0.007

6 25.928 0.011

1 15.682 0.002

2 22.009 0.000

3 0.675 0.000

4 0.678 0.000

5 22.010 0.000

6 15.720 0.002

1 26.591 0.019

2 0.693 0.001

3 0.682 0.001

4 26.654 0.020

1 30.465 0.030

2 0.857 0.000

3 0.020 0.000

4 0.002 0.000

5 0.725 0.001

6 26.618 0.017

1 25.637 0.003

2 1.284 0.000

3 0.157 0.000

4 1.384 0.002

5 29.254 0.004

Page 32: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S32 of 33

Table S4. Description of the most important optical transitions for radical anions of the molecules

investigated, simulated with CAM- B3LYP/6-31G(d)/PCM(THF) method.

Species No. of

transition Wavelength

[nm] Oscillator strength

Composition

(1)∙-

1 4462 1.3320 SOMO(A) -> LUMO(A)

3 823 0.1141 HOMO-1(B) -> LUMO(B)

HOMO(B) -> SOMO(B)

5 659 1.2796 SOMO(A) -> LUMO+2(A)

(2)∙-

1 4988 1.0555 SOMO(A) -> LUMO(A)

3 667 0.2917 HOMO(B) -> SOMO(B)

5 559 0.9600 SOMO(A) -> LUMO+2(A)

(3)∙-

1 13094 1.1120 SOMO(A) -> LUMO(A)

3 702 0.2839 HOMO(B) -> SOMO(B)

5 575 1.0195 SOMO(A) -> LUMO+2(A)

(4)∙-

1 2766 0.7892 SOMO(A) -> LUMO(A)

3 573 0.4920 HOMO(B) -> SOMO(B)

5 458 0.5545 SOMO(A) -> LUMO+2(A)

(5)∙-

1 1655 0.9814 SOMO(A) -> LUMO(A)

3 642 0.3462 HOMO-1(B) -> LUMO(B)

HOMO(B) -> SOMO(B)

7 433 1.2010 HOMO(B) -> SOMO(B)

(6)∙-

1 2638 0.8077 SOMO(A) -> LUMO(A)

3 602 0.3157 HOMO-1(B) -> LUMO(B)

HOMO(B) -> SOMO(B)

5 438 0.6508 SOMO(A) -> LUMO+2(A)

Table S5. Comparison of electron structure parameters of compounds 1 to 6 and their electro-generated

polymers.

Structure Monomer Polymer

Δ(IPP-IPM) Δ(EAP-EAM) Δ(EgP-EgM) IP EA Eg

el [eV] IP EA Egel [eV]

(1) 5,53 3,15 2,38 4,98 2,99 1,99 -0,55 -0,16 -0,39

(2) 5,66 3,03 2,63 5,28 2,91 2,37 -0,38 -0,12 -0,26

(3) 5,73 3,07 2,66 5,17 2,95 2,22 -0,56 -0,12 -0,44

(4) 5,93 2,85 3,08 5,33 2,89 2,44 -0,6 +0,04 -0,64

(5) 6,06 3,14 2,92 5,57 3,13 2,44 -0,49 -0,01 -0,48

(6) 6,09 3,19 2,9 5,73 3,29 2,44 -0,36 +0,1 -0,46

Page 33: Electronic Supplementary InformationEffect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives Aleksandra

page S33 of 33

References

1 A. S. Kostyuchenko, A. M. Averkov and A. S. Fisyuk, Org. Lett., 2014, 16, 1833–1835.

2 K. Kotwica, E. Kurach, G. Louarn, A. S. Kostyuchenko, A. S. Fisyuk, M. Zagorska and A. Pron,

Electrochim. Acta, 2013, 111, 491–498.

3 A. S. Kostyuchenko, G. Wiosna-Salyga, A. Kurowska, M. Zagorska, B. Luszczynska, R. Grykien, I.

Glowacki, A. S. Fisyuk, W. Domagala and A. Pron, J. Mater. Sci., 2016, 51, 2274–2282.

4 A. S. Kostyuchenko, V. L.Yurpalov, A. Kurowska, W. Domagala, A. Pron and A. S. Fisyuk, Beilstein J.

Org. Chem., 2014, 10, 1596–1602.

5 R. B. Phillips, S. A. Herbert and A. J. Robichaud, Synth. Commun., 1986, 16, 411–417.

6 H. Wynberg and J. Metselaar, Synth. Commun., 1984, 14, 1–9.

7 A. V. Kluchnikova, O. A., Udashkin, Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya

Tekhnologiya, 2005, vol. 48.

8 A. S. Kostyuchenko, E. A. Drozdova and A. S. Fisyuk, Chem. Heterocycl. Compd., 2017, 53, 92–96.

9 A. S. Kostyuchenko, T. Y. Zheleznova, A. J. Stasyuk, A. Kurowska, W. Domagala, A. Pron and A. S.

Fisyuk, Beilstein J. Org. Chem., 2017, 13, 313–322.