electronic supplementary information - rsc.org · 1: crude extract of kpadhs196y, lane 2:...

26
S1 Electronic Supplementary Information Carbonyl group-dependent high-throughput screening and enzymatic characterization of diaromatic ketone reductase Jieyu Zhou, Guochao Xu, Ruizhi Han, Jinjun Dong, Weiguo Zhang, Rongzhen Zhang, Ye Ni* The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China Corresponding author. Tel/Fax: +86-510-85329265; E-mail: [email protected] Figure S1 Absorbance spectra of CPMK (), crude extracts of E. coli BL21(DE3)/pET28a (), E. coli BL21(DE3)/pET28a-gdh (), E. coli BL21(DE3)/pET28a-kpadh () using DNPH method. .........................................................................................................................................................S2 Figure S2 Flow chart of random mutagenesis, screening and characterization of KpADH variants using DNPH method........................................................................................................................S3 Figure S3 Purification and kinetic analysis of KpADH..................................................................S4 Figure S4 Purification and kinetic analysis of KpADH M131F ..........................................................S5 Figure S5 Purification and kinetic analysis of KpADH S196Y . .........................................................S6 Figure S6 Purification and kinetic analysis of KpADH S237A . .........................................................S7 Figure S7 Homology structure of KpADH using crystal structure of yeast methylglyoxal/isovaleraldehyde reductase (PDB: 4PVC) as template. ..........................................S8 Figure S8–S23 Absorbance at 500 nm of 1a16a with different concentrations...................S9–S24 Table S1 Substrate specificities of KpADH and its variants M131F, S196A and S237A............S25 Table S2 Conversion of KpADH, M131F, S196A and S237A toward prochiral ketones............S26 Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Upload: others

Post on 09-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S1

Electronic Supplementary Information

Carbonyl group-dependent high-throughput screening and

enzymatic characterization of diaromatic ketone reductase

Jieyu Zhou, Guochao Xu, Ruizhi Han, Jinjun Dong, Weiguo Zhang, Rongzhen Zhang,

Ye Ni*

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology,

Jiangnan University, Wuxi 214122, Jiangsu, China

Corresponding author. Tel/Fax: +86-510-85329265; E-mail: [email protected]

Figure S1 Absorbance spectra of CPMK (), crude extracts of E. coli BL21(DE3)/pET28a (), E. coli BL21(DE3)/pET28a-gdh (), E. coli BL21(DE3)/pET28a-kpadh () using DNPH method..........................................................................................................................................................S2Figure S2 Flow chart of random mutagenesis, screening and characterization of KpADH variants using DNPH method........................................................................................................................S3Figure S3 Purification and kinetic analysis of KpADH..................................................................S4Figure S4 Purification and kinetic analysis of KpADHM131F..........................................................S5Figure S5 Purification and kinetic analysis of KpADHS196Y. .........................................................S6Figure S6 Purification and kinetic analysis of KpADHS237A. .........................................................S7Figure S7 Homology structure of KpADH using crystal structure of yeast methylglyoxal/isovaleraldehyde reductase (PDB: 4PVC) as template. ..........................................S8Figure S8–S23 Absorbance at 500 nm of 1a–16a with different concentrations...................S9–S24Table S1 Substrate specificities of KpADH and its variants M131F, S196A and S237A............S25Table S2 Conversion of KpADH, M131F, S196A and S237A toward prochiral ketones............S26

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.This journal is © The Royal Society of Chemistry 2016

Page 2: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S2

400 420 440 460 480 500 520 540 560 580 6000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Wavelength (nm)

Abs

orba

nce

at 5

50 n

m

Figure S1 Absorbance spectra of CPMK (), crude extracts of E. coli BL21(DE3)/pET28a (),), E. coli BL21(DE3)/pET28a-gdh ((),), E. coli BL21(DE3)/pET28a-kpadh ((),) using DNPH method.

Page 3: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S3

Figure S2 Flow chart of random mutagenesis, screening and characterization of KpADH variants using DNPH method.

Page 4: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

10

12

14(C)

[CPMK] (mM)

V (μ

mol

·min

–1·m

g–1)

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5(D)

1/[CPMK] (mM–1)

1/V

(min

·mg·

μmol

–1)

Figure S3 Purification and kinetic analysis of KpADH. (A) Purification of KpADH; lane 1: crude extract of KpADH, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents with 100 mM imidazole, lane 7: eluent with 300 mM imidazole, lane M: protein molecular marker. (B) SDS-PAGE of purified KpADH. (C) Effect of CPMK concentration on the initial velocity of KpADH. (D) Lineweaver-Burk plot of KpADH.

Page 5: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

10

12(C)

[CPMK] (mM)

V (μ

mol

·min

–1·m

g–1)

0 2 4 6 8 100

0.2

0.4

0.6

0.8(D)

1/[CPMK] (mM–1)

1/V

(min

·mg·

μmol

–1)

Figure S4 Purification and kinetic analysis of KpADHM131F. (A) Purification of KpADHM131F; lane 1: crude extract of KpADHM131F, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents with 100 mM imidazole, lane 7: eluent with 300 mM imidazole, lane M: protein molecular marker. (B) SDS-PAGE of purified KpADHM131F. (C) Effect of CPMK concentration on the initial velocity of KpADHM131F. (D) Lineweaver-Burk plot of KpADHM131F.

Page 6: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

2

4

6

8

10

12

14(C)

[CMPK] (mM)

V (μ

mol

·min

–1·m

g–1)

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7(D)

1/[CPMK] (mM–1)

1/V

(min

·mg·

μmol

–1)

Figure S5 Purification and kinetic analysis of KpADHS196Y. (A) Purification of KpADHS196Y; lane 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents with 100 mM imidazole, lane 7: eluent with 300 mM imidazole, lane M: protein molecular marker. (B) SDS-PAGE of purified KpADHS196Y. (C) Effect of CPMK concentration on the initial velocity of KpADHS196Y. (D) Lineweaver-Burk plot of KpADHS196Y.

Page 7: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25(C)

[CPMK] (mM)

V (μ

mol

·min

–1·m

g–1)

0 0.5 1 1.5 2 2.5 3 3.5 40

0.02

0.04

0.06

0.08

0.1(D)

1/[CPMK] (mM–1)

1/V

(min

·mg·

μmol

–1)

Figure S6 Purification and kinetic analysis of KpADHS237A. (A) Purification of KpADHS237A; lane 1: crude extract of KpADHS237A, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents with 100 mM imidazole, lane 7: eluent with 300 mM imidazole, lane M: protein molecular marker. (B) SDS-PAGE of purified KpADHS237A. (C) Effect of CPMK concentration on the initial velocity of KpADHS237A. (D) Lineweaver-Burk plot of KpADHS237A.

Page 8: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S8

Figure S7 Homology structure of KpADH using crystal structure of yeast methylglyoxal/isovaleraldehyde reductase (PDB: 4PVC) as template. (A) Overall structure of KpADH. (B) Large and small substrate binding pockets. NADPH was depicted in green, CPMK was shown in cyan.

Page 9: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S9

Figure S8 Absorbance at 500 nm of CPMK with different concentrations.

Page 10: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S10

O2a

0.00 0.02 0.04 0.06 0.08 0.10 0.120.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4OD500

Concentration of Acetophenone (mM)

y = 19.09x + 0.125R2 = 0.995

0 0.1 0.2 0.3 0.4 0.50

0.4

0.8

1.2

1.6

Concentration of 2a [mM]

OD

500

Figure S9 Standard curve of 2a using DNPH method

Page 11: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S11

O3a

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

1.0

1.2OD500

Concentration of Benzophenone (mM)

y = 1.275x + 0.095R2 = 0.996

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.4

0.8

1.2

Concentration of 3a [mM]

OD

500

Figure S10 Standard curve of 3a using DNPH method.

Page 12: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S12

O4a

Cl

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.4

0.8

1.2

1.6

Concentration of 4a [mM]

OD

500

Figure S11 Standard curve of 4a using DNPH method.

Page 13: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S13

O5a

Cl

Cl

0 0.05 0.1 0.15 0.2 0.250

0.1

0.2

0.3

0.4

0.5

Concentration of 5a [mM]

OD

500

Figure S12 Standard curve of 5a using DNPH method.

Page 14: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S14

6aO

Cl

Cl

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re2](#,##0.0)

Concentration of 6a [mM]

OD

500

Figure S13 Standard curve of 6a using DNPH method.

Page 15: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S15

7aO

Cl Cl

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Concentration of 7a [mM]

OD

500

Figure S14 Standard curve of 7a using DNPH method.

Page 16: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S16

8aO

0 0.05 0.1 0.15 0.2 0.250

1

2

3

4

Concentration of 8a [mM]

OD

500

Figure S15 Standard curve of 8a using DNPH method.

Page 17: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S17

9aO

Cl

0 0.4 0.8 1.2 1.60

0.4

0.8

1.2

1.6

Concentration of 9a [mM]

OD

500

Figure S16 Standard curve of 9a using DNPH method.

Page 18: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S18

10aO

H2N

0 0.05 0.1 0.15 0.2 0.250

0.4

0.8

1.2

1.6

Concentration of 10a [mM]

OD

500

Figure S17 Standard curve of 10a using DNPH method.

Page 19: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S19

11aO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.4

0.8

1.2

1.6

2

Concentration of 11a [mM]

OD

500

Figure S18 Standard curve of 11a using DNPH method.

Page 20: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S20

12aO

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

Concentration of 12a [mM]

OD

500

Figure S19 Standard curve of 12a using DNPH method.

Page 21: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S21

13aO

O

0 0.05 0.1 0.15 0.2 0.250

0.4

0.8

1.2

1.6

2

Concentration of 13a [mM]

OD

500

Figure S20 Standard curve of 13a using DNPH method.

Page 22: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S22

14aO

O

#,##0.00;[Re30](#,##0....#,##0.00;[Re30](#,##0....#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re2](#,##0.0)

#,##0.0;[Re2](#,##0.0)

#,##0.0;[Re3](#,##0.0)

Concentration of 14a [mM]

OD

500

Figure S21 Standard curve of 14a using DNPH method.

Page 23: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S23

15aO

O

0 0.2 0.4 0.6 0.8 1 1.2#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re30](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re31](#,##0.0...

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re1](#,##0.0)

#,##0.0;[Re2](#,##0.0)

Concentration of 15a [mM]

OD

500

Figure S22 Standard curve of 15a using DNPH method.

Page 24: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S24

16aO

O

0 0.02 0.04 0.06 0.08 0.1 0.120

0.2

0.4

0.6

0.8

1

1.2

1.4

Concentration of 16a [mM]

OD

500

Figure S23 Standard curve of 16a using DNPH method.

Page 25: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S25

Table S1 Substrate specificities of KpADH and its variants M131F, S196A and S237A.

SubstrateKpADH

[U/g wet cell]M131F

[U/g wet cell]S196Y

[U/g wet cell]S237A

[U/g wet cell]S1 118 ± 6 181 ± 9 161 ± 8 215 ± 6S2 131 ± 8 197 ± 5 155 ± 7 198 ± 5S3 107 ± 6 172 ± 6 118 ± 3 158 ± 8S4 128 ± 5 199 ± 8 159 ± 5 223 ± 6S5 129 ± 5 194 ± 7 152 ± 4 179 ± 9S6 111 ± 8 168 ± 8 137 ± 5 176 ± 6S7 101 ± 5 155 ± 5 115 ± 6 83 ± 4S8 137 ± 5 169 ± 5 144 ± 5 178 ± 6S9 95 ± 5 198 ± 8 156 ± 5 199 ± 8S10 23 ± 3 64 ± 3 4 ± 1 16 ± 3S11 136 ± 6 182 ± 5 72 ± 4 175 ± 5S12 72 ± 4 169 ± 6 84 ± 3 189 ± 6S13 159 ± 8 164 ± 6 133 ± 7 173 ± 6S14 163 ± 6 191 ± 5 178 ± 6 188 ± 4S15 86 ± 4 111 ± 5 70 ± 3 75 ± 4S16 125 ± 6 181 ± 4 100 ± 5 156 ± 3

Page 26: Electronic Supplementary Information - rsc.org · 1: crude extract of KpADHS196Y, lane 2: flow-through of nickel column, lane 3: eluent with 50 mM imidazole, lanes 4–7: eluents

S26

Table S2 Conversion of KpADH, M131F, S196A and S237A toward prochiral ketones.

SubstrateKpADH

[%]M131F

[%]S196Y

[%]S237A

[%]S1 47.2 ± 2.4 72.3 ±3.6 64.6 ± 3.2 86.2 ± 2.3S2 52.4 ± 3.0 78.7 ±2.0 61.9 ± 2.7 79.2 ± 2.0S3 43.0 ± 2.4 68.7 ± 2.4 47.3 ± 1.4 63.2 ± 3.2S4 51.3 ± 2.2 79.6 ± 3.2 63.6 ± 2.0 89.3 ± 2.5S5 51.6 ± 2.0 77.4 ± 3.0 60.9 ± 1.7 71.8 ± 3.6S6 44.5 ± 3.0 67.1 ± 3.0 54.7 ± 2.0 70.3 ± 2.5S7 40.5 ± 2.1 62.0 ± 2.1 46.2 ± 2.6 33.2 ± 1.7S8 54.7 ± 1.8 67.7 ± 1.5 57.6 ± 2.5 71.1 ± 1.6S9 38.0 ± 1.2 79.1 ± 1.4 62.5 ± 3.6 79.6 ± 1.4S10 9.3 ± 1.4 25.4 ± 2.3 1.8 ± 0.3 6.6 ± 1.4S11 54.4 ± 2.6 72.7 ± 2.2 28.8 ± 2.3 70.2 ± 3.0S12 29.0 ± 2.0 67.6 ± 2.0 33.5 ± 2.0 75.7 ± 2.1S13 63.6 ± 2.2 65.4 ± 2.3 53.4 ± 1.7 69.2 ± 2.5S14 65.4 ± 2.9 76.5 ± 1.8 71.3 ± 1.6 75.2 ± 1.5S15 34.4 ± 2.5 44.4 ± 1.2 27.9 ± 1.4 3.4 ± 0.4S16 50.0 ± 1.3 72.5 ± 2.6 40.0 ± 2.0 62.5 ± 2.3