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Elliptic stochastic partial differential equations:An orthonormal vector basis approach
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 1Swansea University, UK
 Uncertainty Quantification Workshop, Edinburgh, 26 May, 2010
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Introduction Stochastic elliptic PDEs
 Stochastic elliptic PDE
 We consider the stochastic elliptic partial differential equation(PDE)
 −∇ [a(r, ω)∇u(r, ω)] = p(r); r in D (1)
 with the associated boundary condition
 u(r, ω) = 0; r on ∂D (2)
 Here a : Rd × Ω→ R is a random field, which can be viewed as aset of random variables indexed by r ∈ Rd .We assume the random field a(r, ω) to be stationary and squareintegrable. Based on the physical problem the random field a(r, ω)can be used to model different physical quantities.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 3 / 33
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Introduction Stochastic elliptic PDEs
 Discretized Stochastic PDE
 The random process a(r, ω) can be expressed in a generalizedfourier type of series known as the Karhunen-Loeve expansion
 a(r, ω) = a0(r) +∞∑
 i=1
 √νiξi(ω)ϕi(r) (3)
 Here a0(r) is the mean function, ξi(ω) are uncorrelated standardGaussian random variables, νi and ϕi(r) are eigenvalues andeigenfunctions satisfying the integral equation∫D
 Ca(r1, r2)ϕj(r1)dr1 = νjϕj(r2), ∀ j = 1,2, · · · .Truncating the series (3) upto the M-th term, substituting a(r, ω) inthe governing PDE (1) and applying the boundary conditions, thediscretized equation can be written as[
 A0 +M∑
 i=1
 ξi(ω)Ai
 ]u(ω) = f (4)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 4 / 33
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Introduction Stochastic elliptic PDEs
 Polynomial Chaos expansion
 After the finite truncation, concisely, the polynomial chaosexpansion can be written as
 u(ω) =P∑
 k=1
 Hk (ξ(ω))uk (5)
 where Hk (ξ(ω)) are the polynomial chaoses.The value of the number of terms P depends on the number ofbasic random variables M and the order of the PC expansion r as
 P =r∑
 j=0
 (M + j − 1)!
 j!(M − 1)!(6)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 5 / 33
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Introduction Stochastic elliptic PDEs
 Some basics of linear algebra
 Definition
 (Linearly independent vectors) A set of vectors φ1,φ2, . . . ,φn islinearly independent if the expression
 ∑nk=1 αkφk = 0 if and only if
 αk = 0 for all k = 1,2, . . . ,n.
 Remark
 (The spanning property) Suppose φ1,φ2, . . . ,φn is a complete basisin the Hilbert space H. Then for every nonzero u ∈ H, it is possible tochoose α1, α2, . . . , αn 6= 0 uniquely such thatu = α1φ1 + α2φ2 + . . . αnφn.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 6 / 33
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Introduction Stochastic elliptic PDEs
 Polynomial Chaos expansion
 We can ‘split’ the Polynomial Chaos type of expansions as
 u(ω) =n∑
 k=1
 Hk (ξ(ω))uk +P∑
 k=n+1
 Hk (ξ(ω))uk (7)
 According to the spanning property of a complete basis in Rn it isalways possible to project u(ω) in a finite dimensional vector basisfor any ω ∈ Ω. Therefore, in a vector polynomial chaos expansion(7), all uk for k > n must be linearly dependent.This is the motivation behind seeking a finite dimensionalexpansion.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 7 / 33
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space
 Projection in a finite dimensional vector-space
 Theorem
 There exist a finite set of functions Γk : (Rm × Ω)→ (R× Ω) and anorthonormal basis φk ∈ Rn for k = 1,2, . . . ,n such that the series
 u(ω) =n∑
 k=1
 Γk (ξ(ω))φk (8)
 converges to the exact solution of the discretized stochastic finiteelement equation (4) with probability 1.
 Outline of the proof: The first step is to generate a completeorthonormal basis. We use the eigenvectors φk ∈ Rn of the matrix A0such that
 A0φk = λ0kφk ; k = 1,2, . . .n (9)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 8 / 33
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space
 Projection in a finite dimensional vector-space
 Suppose the solution of Eq. (4) is given by
 u(ω) =
 [A0 +
 M∑i=1
 ξi(ω)Ai
 ]−1
 f (10)
 Using the eigenvector matrix and the orthonormality of Φ one has
 u(ω) =
 [Φ−TΛ0Φ
 −1 +M∑
 i=1
 ξi(ω)Φ−T AiΦ−1
 ]−1
 f = ΦΨ (ξ(ω))ΦT f
 (11)where
 Ψ (ξ(ω)) =
 [Λ0 +
 M∑i=1
 ξi(ω)Ai
 ]−1
 (12)
 and the M-dimensional random vector
 ξ(ω) = ξ1(ω), ξ2(ω), . . . , ξM(ω)T (13)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 9 / 33
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space
 Projection in a finite dimensional vector-space
 Now we separate the diagonal and off-diagonal terms of the Aimatrices as
 Ai = Λi + ∆i , i = 1,2, . . . ,M (14)
 Here the diagonal matrix
 Λi = diag[A]
 = diag[λi1 , λi2 , . . . , λin
 ]∈ Rn×n (15)
 and ∆i = Ai − Λi is an off-diagonal only matrix.
 Ψ (ξ(ω)) =
 Λ0 +M∑
 i=1
 ξi(ω)Λi︸ ︷︷ ︸Λ(ξ(ω))
 +M∑
 i=1
 ξi(ω)∆i︸ ︷︷ ︸∆(ξ(ω))
 −1
 (16)
 where Λ (ξ(ω)) ∈ Rn×n is a diagonal matrix and ∆ (ξ(ω)) is anoff-diagonal only matrix.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 10 / 33
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space
 Projection in a finite dimensional vector-space
 We rewrite Eq. (16) as
 Ψ (ξ(ω)) =[Λ (ξ(ω))
 [In + Λ−1 (ξ(ω))∆ (ξ(ω))
 ]]−1(17)
 The above expression can be represented using a Neumann type ofmatrix series as
 Ψ (ξ(ω)) =∞∑
 s=0
 (−1)s[Λ−1 (ξ(ω))∆ (ξ(ω))
 ]sΛ−1 (ξ(ω)) (18)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 11 / 33
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Spectral decomposition in a vector space Projection in a finite dimensional vector-space
 Polynomial Chaos expansion
 Taking an arbitrary r -th element of u(ω), Eq. (11) can be rearranged tohave
 ur (ω) =n∑
 k=1
 Φrk
 n∑j=1
 Ψkj (ξ(ω))(φT
 j f) (19)
 Defining
 Γk (ξ(ω)) =n∑
 j=1
 Ψkj (ξ(ω))(φT
 j f)
 (20)
 and collecting all the elements in Eq. (19) for r = 1,2, . . . ,n one has
 u(ω) =n∑
 k=1
 Γk (ξ(ω))φk (21)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 12 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 Spectral functions
 DefinitionThe functions Γk (ξ(ω)) , k = 1,2, . . .n are called the spectral functionsas they are expressed in terms of the spectral properties of thecoefficient matrices of the governing discretized equation.
 The main difficulty in applying this result is that each of thespectral functions Γk (ξ(ω)) contain infinite number of terms andthey are highly nonlinear functions of the random variables ξi(ω).For computational purposes, it is necessary to truncate the seriesafter certain number of terms.Different order of spectral functions can be obtained by usingtruncation in the expression of Γk (ξ(ω))
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 13 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 First-order spectral functions
 Definition
 The first-order spectral functions Γ(1)k (ξ(ω)), k = 1,2, . . . ,n are
 obtained by retaining one term in the series (18).
 Retaining one term in (18) we have
 Ψ(1) (ξ(ω)) = Λ−1 (ξ(ω)) or Ψ(1)kj (ξ(ω)) =
 δkj
 λ0k +∑M
 i=1 ξi(ω)λik(22)
 Using the definition of the spectral function in Eq. (20), the first-orderspectral functions can be explicitly obtained as
 Γ(1)k (ξ(ω)) =
 n∑j=1
 Ψ(1)kj (ξ(ω))
 (φT
 j f)
 =φT
 k fλ0k +
 ∑Mi=1 ξi(ω)λik
 (23)
 From this expression it is clear that Γ(1)k (ξ(ω)) are non-Gaussian
 random variables even if ξi(ω) are Gaussian random variables.Adhikari (SU) Reduced methods for SPDE 26 May 2010 14 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 Second-order spectral functions
 Definition
 The second-order spectral functions Γ(2)k (ξ(ω)), k = 1,2, . . . ,n are
 obtained by retaining two terms in the series (18).
 Retaining two terms in (18) we have
 Ψ(2) (ξ(ω)) = Λ−1 (ξ(ω))− Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω)) (24)
 Using the definition of the spectral function in Eq. (20), thesecond-order spectral functions can be obtained in closed-form as
 Γ(2)k (ξ(ω)) =
 φTk f
 λ0k +∑M
 i=1 ξi(ω)λik
 −
 n∑j=1
 (φT
 j f)∑M
 i=1 ξi(ω)∆ikj(λ0k +
 ∑Mi=1 ξi(ω)λik
 )(λ0j +
 ∑Mi=1 ξi(ω)λij
 ) (25)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 15 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 Relationship with PC
 Theorem
 There exist a finite set of functions Γk : (Rm × Ω)→ (R× Ω) and anorthonormal basis φk ∈ Rn for k = 1,2, . . . ,n such that a vectorpolynomial chaos expansion can be expressed by
 u(ω) =n∑
 k=1
 Γk (ξ(ω))φk (26)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 16 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 Relationship with PC
 Outline of the proof:
 u(ω) = ui0h0 +∞∑
 i1=1
 ui1h1(ξi1(ω))
 +∞∑
 i1=1
 i1∑i2=1
 ui1,i2h2(ξi1(ω), ξi2(ω)) +∞∑
 i1=1
 i1∑i2=1
 i2∑i3=1
 ui1i2i3h3(ξi1(ω), ξi2(ω), ξi3(ω))
 +∞∑
 i1=1
 i1∑i2=1
 i2∑i3=1
 i3∑i4=1
 ui1i2i3i4 h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,
 (27)
 where ui1,...,ip ∈ Rn are deterministic vectors to be determined. Usingthe spanning property of the orthonormal basis φk ∈ Rn in Remark 1,each of the ui1,...,ip can be uniquely expressed as
 ui1,...,ip = α(1)i1,...,ip
 φ1 + α(2)i1,...,ip
 φ2 + . . .+ α(n)i1,...,ip
 φn (28)Adhikari (SU) Reduced methods for SPDE 26 May 2010 17 / 33
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Spectral decomposition in a vector space Properties of the spectral functions
 Relationship with PC
 Substituting this in Eq. (27) and collecting all the coefficientsassociated with each orthonormal vector φk the theorem is provedwhere
 Γk (ξ(ω)) = α(k)i0
 h0 +∞∑
 i1=1
 α(k)i1
 h1(ξi1(ω))
 +∞∑
 i1=1
 i1∑i2=1
 α(k)i1,i2
 h2(ξi1(ω), ξi2(ω)) +∞∑
 i1=1
 i1∑i2=1
 i2∑i3=1
 α(k)i1i2i3
 h3(ξi1(ω), ξi2(ω), ξi3(ω))
 +∞∑
 i1=1
 i1∑i2=1
 i2∑i3=1
 i3∑i4=1
 α(k)i1i2i3i4
 h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,
 (29)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 18 / 33
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Error minimization in the Hilbert space The Galerkin approach
 The Galerkin approach
 There exist a set of finite functions Γk : (Rm × Ω)→ (R× Ω), constantsck ∈ R and orthonormal vectors φk ∈ Rn for k = 1,2, . . . ,n such thatthe series
 u(ω) =n∑
 k=1
 ck Γk (ξ(ω))φk (30)
 converges to the exact solution of the discretized stochastic finiteelement equation (4) in the mean-square sense provided the vectorc = c1, c2, . . . , cnT satisfies the n × n algebraic equations S c = bwith
 Sjk =M∑
 i=0
 Aijk Dijk ; ∀ j , k = 1,2, . . . ,n; Aijk = φTj Aiφk , (31)
 Dijk = E[ξi(ω)Γj(ξ(ω))Γk (ξ(ω))
 ]and bj = E
 [Γj(ξ(ω))
 ] (φT
 j f).
 (32)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 19 / 33
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Error minimization in the Hilbert space The Galerkin approach
 The Galerkin approach
 The error vector can be obtained as
 ε(ω) =
 (M∑
 i=0
 Aiξi(ω)
 )(n∑
 k=1
 ck Γk (ξ(ω))φk
 )− f ∈ Rn (33)
 The solution is viewed as a projection where
 Γk (ξ(ω))φk
 ∈ Rn
 are the basis functions and ck are the unknown constants to bedetermined.We wish to obtain the coefficients ck such that the error normχ2 = 〈ε(ω), ε(ω)〉 is minimum. This can be achieved using theGalerkin approach so that the error is made orthogonal to thebasis functions, that is, mathematically
 ε(ω)⊥(
 Γj(ξ(ω))φj
 )or
 ⟨Γj(ξ(ω))φj , ε(ω)
 ⟩= 0 ∀ j = 1,2, . . . ,n
 (34)
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 20 / 33
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Error minimization in the Hilbert space Computational method
 Summary of the computational method
 1 Solve the eigenvalue problem associated with the mean matrix A0to generate the orthonormal basis vectors: A0Φ = Λ0Φ
 2 Select a number of samples, say Nsamp. Generate the samples ofbasic random variables ξi(ω), i = 1,2, . . . ,M.
 3 Calculate the spectral basis functions (for example, first-order):
 Γk (ξ(ω)) =φT
 k fλ0k
 +∑M
 i=1 ξi (ω)λik
 4 Obtain the coefficient vector: c = S−1b ∈ Rn, where b = f Γ,S = Λ0 D0 +
 ∑Mi=1 Ai Di and
 Di = E[Γ(ω)ξi(ω)ΓT (ω)
 ], ∀ i = 0,1,2, . . . ,M
 5 Obtain the samples of the response from the spectral series:u(ω) =
 ∑nk=1 ck Γk (ξ(ω))φk
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 21 / 33
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Error minimization in the Hilbert space Computational method
 Computational complexity
 The spectral functions Γk (ξ(ω)) are highly non-Gaussian in natureand do not in general enjoy any orthogonality properties like theHermite polynomials or any other orthogonal polynomials withrespect to the underlying probability measure.The coefficient matrix S and the vector b should be obtainednumerically using the Monte Carlo simulation or other numericalintegration technique.The simulated spectral functions can also be ‘recycled’ to obtainthe statistics and probability density function (pdf) of the solution.The main computational cost of the proposed method depends on(a) the solution of the matrix eigenvalue problem, (b) thegeneration of the coefficient matrices Di , and (c) the calculation ofthe coefficient vector by solving linear matrix equation.For large M and n, asymptotically the computational costbecomes Cs = O(Mn2) + O(n3).
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 22 / 33
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Numerical illustration ZnO nanowires
 Collection of ZnO
 Uncertainties in ZnO NWs in the close up view. The uncertainparameter include geometric parameters such as the length and thecross sectional area along the length, boundary condition and materialproperties.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 23 / 33
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Numerical illustration ZnO nanowires
 ZnO nanowires
 (a) The SEM image of a collection of ZnO NWshowing hexagonal cross sectional area.
 (b) The continuum idealization of acantilevered ZnO NW under an AFMtip
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 24 / 33
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Numerical illustration ZnO nanowires
 Problem details
 We study the deflection of ZnO NW under the AFM tip consideringstochastically varying bending modulus. The variability of thedeflection is particularly important as the harvested energy fromthe bending depends on it.We assume that the bending modulus of the ZnO NW is ahomogeneous stationary Gaussian random field of the form
 EI(x , ω) = EI0(1 + a(x , ω)) (35)
 where x is the coordinate along the length of ZnO NW, EI0 is theestimate of the mean bending modulus, a(x , ω) is a zero meanstationary Gaussian random field.The autocorrelation function of this random field is assumed to be
 Ca(x1, x2) = σ2ae−(|x1−x2|)/µa (36)
 where µa is the correlation length and σa is the standard deviation.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 25 / 33
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Numerical illustration ZnO nanowires
 Problem details
 We consider a long nanowire where the continuum model hasbeen validated.We use the baseline parameters for the ZnO NW from Gao andWang (Nano Letters 7 (8) (2007), 2499–2505) as the lengthL = 600nm, diameter d = 50nm and the lateral point force at thetip fT = 80nN.Using these data, the baseline deflection can be obtained asδ0 = 145nm. We normalize our results with this baseline value forconvenience.The correlation length considered in the numerical studies:µa = L/10.The number of terms M in the KL expansion becomes 67 (95%capture).The nanowire is divided into 50 beam elements of equal length.The number of degrees of freedom of the model n = 100(standard beam element).
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 26 / 33

Page 27
                        

Numerical illustration ZnO nanowires
 Moments
 (c) Mean of the normalized deflection. (d) Standard deviation of the normalizeddeflection.
 Figure: The number of random variable used: M = 67. The number ofdegrees of freedom: n = 100.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 27 / 33
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Numerical illustration ZnO nanowires
 Error in moments
 Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20Mean 1st order
 Galerkin0.1761 0.7206 1.6829 3.1794
 2nd orderGalerkin
 0.0007 0.0113 0.0642 0.6738
 Standard 1st orderGalerkin
 3.9543 5.9581 9.0305 14.6568
 deviation 2nd orderGalerkin
 0.3222 1.8425 4.6781 8.9037
 Percentage error in the mean and standard deviation of the deflectionof the ZnO NW under the AFM tip when correlation length is µa = L/3.For n = 100 and M = 67, if the second-order PC was used, one wouldneed to solve a linear system of equation of size 234,500. The resultsshown here are obtained by solving a linear system of equation of size100 using the proposed Galerkin approach.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 28 / 33
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Numerical illustration ZnO nanowires
 Pdf
 (a) Probability density function for σa =0.1.
 (b) Probability density function for σa =0.2.
 The probability density function of the normalized deflection δ/δ0 of theZnO NW under the AFM tip (δ0 = 145nm).
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 29 / 33
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Conclusions
 Conclusions
 The only informaion used in the classical PC is the pdf of therandom variables.Here, additionally, the following information, coming from thediscreised PDE, are used:
 A0 is symmetric and positive definite (used to generate theorthonormal basis)‖Ai‖ ≥ ‖Ai+1‖ , i = 0,1,2,3 . . . (used to generate the coefficientfunctions)
 This is a ‘bespoke’ approach
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 30 / 33
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Conclusions
 Conclusions
 (c) Basic building blocks. (d) Possible ‘solution’.
 An analogy of PC based solution.Adhikari (SU) Reduced methods for SPDE 26 May 2010 31 / 33
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Conclusions
 Conclusions
 Basic building blocks for the proposed method
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 32 / 33
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Conclusions
 Conclusions
 1 We consider discretised stochastic elliptic partial differentialequations.
 2 The solution is projected into a finite dimensional completeorthonormal vector basis and the associated coefficient functionsare obtained.
 3 The coefficient functions, called as the spectral functions, areexpressed in terms of the spectral properties of the systemmatrices.
 4 If n is the size of the discretized matrices and M is the number ofrandom variables, then the computational complexity grows inO(Mn2) + O(n3) for large M and n in the worse case.
 5 We consider a problem with 67 random variables and n = 100degrees of freedom. A second-order PC would require thesolution of equations of dimension 234,500. In comparison, theproposed Galerkin approach requires the solution of algebraicequations of dimension n only.
 Adhikari (SU) Reduced methods for SPDE 26 May 2010 33 / 33
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