embedding paint cross-section samples in polyester resins

Upload: kriskee13

Post on 10-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    1/23

    EMBEDDING PAINT CROSS-SECTION SAMPLES

    IN POLYESTER RESINS: PROBLEMS AND

    SOLUTIONS

    MICHELE DERRICK, LUIZ SOUZA, TANYA KIESLICH, HENRY

    FLORSHEIM, & DUSAN STULIK

    ABSTRACTPolyester resins have been commonly used in art conservation for

    embedding paint cross sections prior to microscopic and analytical studies. These resins

    set rapidly without heat, are clear, polish readily, and microtome easily. While they work

    well for embedding most paint samples, they pose problems for some specific samples.The polyester embedding media have been found to dissolve wax, some organic

    colorants, and fresh natural resin layers in cross sections. The embedding resin also wicks

    into porous samples of low binder content. At times, infiltration can be desirable for itsconsolidating effects, but it can also interfere with the determination of the type of binder

    in the sample by producing blotchy, uneven staining results and by obstructing infraredanalysis. Alternate embedding materials and procedures are discussed in this paper. Onemethod to prevent the infiltration of embedding media is presented in which the samples

    are precoated with a thixotropic acrylic gel before embedding. Optimal microtoming

    techniques are also presented.

    1 INTRODUCTION

    Polyester resins were introduced in the 1940s. Because of their transparency and ease ofpreparation, they were soon used for the encapsulation of natural history objects(Purves

    and Martin 1950). Although it was later discovered that the long-term life of the polyester

    was not appropriate for museum objects (Meurgues 1982), polyester resins are stillcommonly used by schools, scientists, and hobbyists for embedding and casting many

    objects. Polyester resin is also routinely used as a medium for embedding multilayer paint

    cross sections from art objects (Plesters 1956; Wolbers and Landrey 1987; Tsang andCunningham 1991). In a recent detailed comparison of 14 types of embedding media,

    polyester resins were found to be the most satisfactory for embedding cross sections

    (Waentig 1993).

    The preparation of cross-section samples has become standard practice for the

    examination of painted surfaces in art conservation and forensic analysis. Large, sturdy

    cross sections can often be polished and microtomed without embedding, that is,surrounding the sample with another material. However, tiny or fragile cross-section

    samples need to be embedded in a supporting medium to hold them together and in thecorrect orientation for examination. The mounted cross section is a valuable source ofinformation for a painting's layered structure, pigments, and technique. Relating the

    structure to its materials can also provide indications of relining, overpainting, or other

    restoration procedures.

    In the analysis of mounted paint cross sections for their pigment components using light

    microscopy and scanning electron microscopy with energy dispersive x-ray spectrometry

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib19http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib19http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib19http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib17http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib17http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib18http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib28http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib23http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib23http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib25http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib17http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib18http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib28http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib23http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib23http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib25http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib19http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib19
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    2/23

    (SEM/EDS), no apparent problems have been cited with polyester embedding resins.

    However, the determination of the types of binder in a sample can require other

    techniques, such as staining (fluorescent and nonfluorescent) and infraredmicrospectroscopy. With these techniques, it has become apparent that polyester resin

    and other polymeric embedding media can interact with some specific types of samples

    during the embedding process. This interaction may produce interferences in the analysisof the organic portion (binder and coatings) of the sample, and caution must be used

    when any results are interpreted.

    Some samples may contain components that are soluble in the liquid prepolymer.Godla

    (1990) pointed out that polyester resin can dissolve some waxes in furniture finish

    samples, often making it difficult to examine wax finishes after embedding. (Bischoff

    1994) has observed that some organic dyes on inorganic carriers in modern (post-1850)pigments are solubilized by polyester resin. In addition, polyester resin was found to

    dissolve fresh (less than one-year-old) natural resin samples of dammar, mastic, and

    copal (Derrick et al. 1992). Aged or oxidized resin layers on furniture finish crosssections did not seem to exhibit the same solubility problem.

    Polyester resin has also been found to soak into or infiltrate porous, low-binder samples,as observed by (Baker et al. 1989)for embedded paper cross sections. In many cases, this

    impregnation is beneficial because it consolidates the sample, making it less fragile and

    easier to polish or microtome. However, embedding media infiltration also has unwanted

    characteristics. It may change the appearance of the sample and hinder infrared spectralanalysis of the sample components. Penetration of the resin into the sample also interferes

    with the use of stains (fluorescent and nonfluorescent) for binder identification in cross

    sections by coating the particles in the sample and thereby inhibiting interaction of thestain with the binder. Thus, it is important to recognize that infiltration can occur with

    some embedded samples and to be able to prevent infiltration whenever it is undesirable.

    This paper will illustrate these problems and discuss alternate embedding materials andprocedures.

    2 EMBEDDING MATERIALS

    An ideal embedding resin should meet the requirements listed below when used for the

    analysis of organic components in paint cross sections obtained from works of art.

    Different criteria are used when samples are embedded for other techniques such aspetrography (Reedy 1994) or SEM analysis.

    The mounting medium and its solvent should not react with, soak into, or otherwiseinterfere with the analysis of the binder in the sample.

    The medium should cure at room temperature. The curing process should not beexothermic, since heat may adversely affect the organic materials or binders in the

    sample.

    For samples that are to be analyzed by infrared microspectroscopy, the resulting

    embedment and sample should be easy to section using a microtome. Transmitted

    infrared analysis requires a section of 110 m in thickness for an optimum

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib10http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib10http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib10http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib4http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib4http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib9http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib2http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib2http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib20http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib10http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib10http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib4http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib4http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib9http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib2http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib20
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    3/23

    spectrum.

    The medium should be transparent to ensure proper orientation of the sample formicroscopic examinations as well as for positioning the embedded specimen in

    the microtome jaws.

    The medium should not shrink upon curing, because shrinkage will apply stress to thesample and may cause problems during microtoming.

    The advantages and disadvantages for several types of polymeric materials tested for

    embedding paint cross sections are summarized in table 1.Figure 1 shows example

    blocks of each of the polymeric media listed in table 1. Many other types and brands of

    embedding media are available; some are discussed in the text. Of the four major types ofembedding resins tested, polyester was found to be the best for embedding and

    microtoming most types of art materials.

    TABLE 1 TYPES AND BRAND NAMES OF POLYMERIC MEDIA TESTED FOR

    EMBEDDING AND MICROTOMING OF PAINT CROSS SECTIONS

    Fig. 1. Example blocks of polyester, epoxy, acrylic, and wax embedding media for paint

    cross sections corresponding to table 1. Break-away molds and small, flexible siliconerubber molds are shown.

    One polyester embedding resin commonly used in art conservation is Bio-Plastic. Similar

    polyester resins are sold under the brand names of Caroplastic, Castolite, Castoglas, andVestopal W (see Suppliers). Polyester embedding resins contain a polyester prepolymer

    dissolved in styrene monomer to form a solution of appropriate viscosity(Horie 1987).

    When combined with a methyl ethyl ketone peroxide catalyst, a crystal clear, uniform,solid block is produced that is readily polished and easily microtomed. The resin cures

    overnight at room temperature or in a few hours at slightly elevated temperatures. It

    shrinks minimally during curing at room temperature and slightly more when cured withincreased temperatures. It is cheap, readily available, easily prepared, and only

    moderately toxic. These many positive features give polyester resin several advantages

    over the other embedding resins on the market (e.g., acrylics, and epoxies) and account

    for its popularity as an embedding medium for paint cross sections.

    While the polyester resins typically are used for paint cross sections in art conservation,

    forensic scientists generally use epoxies, acrylics, and cyanoacrylates. We found that theepoxies tend to be yellow in color as well as too hard and brittle to microtome sections at

    the thicknesses of 110 m required for infrared analyses. The acrylics were clear and

    colorless, but they were very exothermic and shrank significantly upon curing. One

    http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib13http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib13http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib13
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    4/23

    acrylic embedding material became so hot during curing that it melted the 1 in. plastic

    mold. Both the epoxies and acrylics had dissolution and infiltration problems similar to

    those of the polyesters and thus are not recommended over the polyesters.

    One method found in forensic science is the use of a drop of cyanoacrylate glue (e.g.,

    Super Glue or Krazy Glue) to mount a paint chip on the end of a small wooden dowel(Cartwright et al. 1977). While it was difficult to get the sample oriented correctly, this

    method worked well for microtoming the sample. However, we still experienced

    infiltration problems with some samples, and dissolution of components is still a potentialproblem when the sample contains acrylic paints, waxes, or fresh resin layers. Krazy

    Glue gel, a thickened cyanoacrylate specifically designed to remain on the surface of

    porous substrates, also soaked into the outer layer of all plaster samples we tested.

    Gelatin is another material that has been used successfully in the forensic field for

    embedding paint cross sections(Wilkinson et al. 1988). The procedure used by

    Wilkinson involved freezing the sample in a gelatin block for cryogenic microtoming.Afterward, the thin section was warmed and the gelatin was washed away, leaving just

    the thin section of sample. This method should be effective for samples that are notsusceptible to water, such as wax cross sections. However, we did not test this method inour lab because gelatin could potentially interfere with the positive identification of glue

    binder, albumin varnish, or other protein-aceous media. In addition, glue or gum binders

    in the samples may be susceptible to damage or alteration by the water solvent in the

    gelatin.

    The biomedical field uses several types of embedding media (e.g., glycol methacrylate,

    methyl cellulose, acrylamide, and epoxy) for cytology studies by electron microscopy.These studies often require ultrathin microtomy for producing thin sections of less than 1

    m thick. A low-viscosity embedding solution, usually water-miscible, is used to allow

    easy penetration of the resin into the sample. For the biomedical field and for many otherpurposes, penetration is desirable since it will stabilize the sample and help maintain the

    specimen's shape. However, since we were trying to eliminate infiltration of the resin, we

    did not test any of these low-viscosity media.

    One embedding option is the use of low melting-point waxes such as Paraplast. This

    wax-polymer mixture melts at approximately 60C and solidifies rapidly. The wax does

    not pose any infiltration or dissolution problem to the samples, but it is unlikely thatsurface wax layers would be detectable. While wax embedments are too soft to be

    polished, they can be microtomed easily. Wax is opaque, so it is critical to know the

    positioning of the sample before microtoming. It is also important to work quickly whenpouring a mold with the hot wax because delays can result in a block that contains many

    bubbles. One method that shows potential has been developed by (Wolbers 1993). A wax

    is mixed with an inorganic salt, such as potassium bromide, thus increasing the hardnessof the wax and making the mixture more transparent.

    Similar to waxes are hot-melt adhesives, which are primarily polyethylene-based

    polymers. These adhesives range in transparency from semiclear to opaque. They arehard and rubbery at room temperature. Hot-melt adhesives are not recommended for

    general embedding purposes because they solidify rapidly (less than 60 seconds), making

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib6http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib6http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib27http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib27http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib29http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib6http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib27http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib29
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    5/23

    it difficult to orient and manipulate the sample. These adhesives did not infiltrate the

    samples, but they were slightly too soft for easy microtoming and had to be cooled in

    order to obtain thin sections. Optimally, this process requires a cryogenic microtome,since cooling samples prior to microtoming in a freezer or with a cryogenic spray can

    result in water condensation on the sample.

    Several silicone rubbers have been tried for embedding samples. To date, we have not

    found any that are hard enough to be microtomed or polished. However, we are still

    looking for other silicone materials that may work.

    Since the use of nonpolymeric mounting media would eliminate the dissolution and

    infiltration problems associated with the poly-meric media, we tested several inert

    materials, such as salts (BaF2, AgCl, KBr), cork, indium, and gallium. The inorganicsalts barium fluoride, silver chloride, and potassium bromide were powdered and then

    placed in a pellet die with the sample. The salt was pressed into a transparent pellet with

    no apparent distortion to the sample. At this point, it was difficult to proceed further. Wewere not able to micro-tome any of the pressed pellets without the salt crumbling into a

    powder. And while the salts themselves could be easily polished, they did not polish atthe same rate as the sample and tended to disintegrate.

    Problems also occurred with cork embedments. A small slit was made in a piece of cork

    with a razor blade, the sample was inserted, then the sample area was sealed with

    cyanoacrylate adhesive (such as Krazy Glue). The cork itself was difficult to microtomebecause it was so soft. It tended to move and compress with each microtome slice.

    However, the area of cork and sample coated with cyanoacrylate exhibited some

    additional stiffness that allowed it to be microtomed into sections approximately 10 mthick. We were not able to polish the sample, and it was necessary to use a fairly large

    sample (1 2 mm) in order to position it correctly. The same dissolution problems

    mentioned above for cyanoacrylate would still apply.

    Malleable metals, gallium and indium were tried for embedding. In this test, two small

    pieces of metal were placed above and below the sample. Then some pressure wasapplied to compress the metal around the sample. The metals held the samples well for

    microtoming, but it was difficult to orient the samples properly because of the opacity of

    the metals. Since the metals are also expensive and toxic, this method was discarded.

    Because an alternate embedding material was not found that had as many advantages as

    the polyesters, we focused our efforts on understanding the interaction of the polyester

    resin with the sample in hopes of finding conditions, samples, and methods for which thepolyester works well.

    3 EMBEDDING PAINT CROSS SECTIONS WITH POLYESTER

    RESIN

    3.1 PROCEDURE

    To embed a typical paint sample in polyester media (brands noted in table 1), six drops of

    catalyst (methyl ethyl ketone ether) are mixed thoroughly with 10 ml of liquid polyester/

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    6/23

    styrene resin. The transparent resin is initially light blue in color. It turns yellow when the

    catalyst is well mixed and quickly becomes colorless as the reaction proceeds (Ward's

    Natural Science 1990). Excess catalyst will speed up the curing process but will alsomake the final mount more brittle and difficult to microtome. A mold is initially half-

    filled with the well-mixed embedding medium and cured at room temperature for 36

    hours. A representative portion of the sample containing all the layers is transferred to thehardened base layer in the mold with forceps or a probe and positioned in the desired

    orientation. A label is placed on the opposite end of the mold; then both the label and the

    sample are covered slowly with freshly prepared polyester embedding medium. Theembedment is cured and nontacky within 24 hours. When microtoming the sample for

    infrared microanalysis, the best results are obtained by allowing the embedment to set

    3648 hours before slicing. The medium continues to cure slowly over time (Demmler

    1980). After one month, the microtoming becomes noticeably more difficult, and thesamples tend to crumble. The bottom and top halves of the block should be prepared

    within a few days of each other to prevent a hardness differential between halves that

    interferes with microtoming.

    Initially, plastic peel-away molds (1 in. cube, fig. 1)were used for embedding. However,

    because the presence of excess medium stresses the sample during microtoming, most ofthe plastic around the sample has to be trimmed away to reduce the contact area with the

    microtome blade. A razor blade or diamond saw is used to trim away all but a supporting

    cone of plastic with at most 1 mm of embedding media surrounding the sample at the

    cutting surface. Since trimming can be very time consuming, a switch was made to Pelcosilicone rubber embedding molds (7153 mm,(fig. 1). These molds produce small

    embedments with trapezoidal tips that do not require much trimming. These small

    embedments, while good for microtoming, are difficult to hold in a level position forpolishing samples.

    3.2 INFILTRATION

    The penetration of the liquid embedding resin into the interior of a paint sample can

    occur when there are voids or open spaces in the sample. Typical porous samples arestones, pigments, papers, and textiles. Paints are porous when the amount of binder is low

    enough that it does not fill the void spaces around the pigment particles(Hansen et al.

    1993). The embedding resin can then seep into the sample, fill these spaces, and, in this

    process, coat the particles. Infiltration can occur with matte or porous paints often foundin wall paintings, polychrome sculptures, ethnographic objects, and glue gessos. Sample

    impregnation consolidates the sample, producing a smooth block that is readily polished

    and easily microtomed into intact thin sections. However, for analysis of the binder or

    organic components in the sample, infiltration may be undesirable, and, in some cases,steps should be taken to prevent the infiltration from occurring.

    If several samples of a porous material are to be embedded for analytical studies of the

    media, it is prudent to test only one sample initially to see if infiltration occurs and, more

    important, whether it obstructs analysis of the sample. Depending on the type of analysisis to be done, it is possible that infiltration of the media will not cause a problem, but the

    analyst must recognize that the resin may be in the sample and take that into account in

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib26http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib26http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib26http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib7http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib7http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib11http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib11http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib11http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib26http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib26http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib7http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib7http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib11http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib11
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    7/23

    any interpretation. Infrared spectroscopy is more sensitive to the presence of the

    infiltrated resin than visual or microscopic examination and thus, when IR is used, it may

    be important to prevent the resin from infiltrating.

    Visual examination of a paint cross section can often detect infiltration of the embedding

    resin due to the discoloration or darkening of the sample. This infiltration is particularlynoticeable for white paints and grounds. Samples that visually appear very white and

    opaque before embedding can take on a darker, transparent appearance after resin

    penetration. Due to the presence of embedding resin inside and outside the sample, thereis less contrast at the sample edges, and the edges may seem poorly defined. For example,

    two small portions of a sample from a polychrome sculpture were embedded separately,

    one in a thickened acrylic medium and one in polyester(figs. 2,3). The

    photomicrographs show that the sample in the polyester medium experienced penetrationof the resin, while the sample embedded in the acrylic did not. The acrylic embedded

    sample has very well-defined edges, and the opaque white ground remained white after

    embedding. The polyester embedded sample exhibits a more transparent, darker groundlayer.

    Fig. 2. Photomicrograph of embedded paint cross section that is not infiltrated with

    embedding medium. The edges are well defined, the sample appears opaque, and except

    for pigment variation, the colors are uniform. 75.

    Fig. 3. Photomicrograph of embedded paint cross section from the same sample shown infigure 2. However, in this example the paint is infiltrated with embedding medium. 75

    Infiltration of the embedding resin into the sample is readily and conclusively

    recognizable when infrared microspectroscopy is used to analyze the sample. An infraredspectrum of a cross section will contain absorption bands for each component in the

    analysis area. Thus, if a paint sample is infiltrated, the spectrum will show absorption

    bands that correspond to the polyester, the binder, and the pigment. Since the polyesterresin absorbs strongly in the infrared region, and since the binder is likely to be in a low

    concentration, it may be difficult or impossible to identify the binder due to the large

    http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    8/23

    absorption bands overlapping and hiding the smaller ones. Spectral subtraction may or

    may not be successful in removing the absorption bands due to the resin. Figure 4 shows

    an infrared spectrum of an area of an infiltrated paint cross section along with a referencespectrum of a polyester resin (Caroplastic). Infrared spectroscopy confirms infiltration of

    the resin by the presence of the polyester absorption bands in the spectrum for the

    sample.

    Fig. 4. Infrared spectrum of paint cross section sample (top) and Caroplastic brand

    polyester resin (bottom). The spectrum for the paint sample contains absorption bands

    corresponding to the embedding resin (marked with ). This spectrum shows that the

    embedding resin has soaked into the paint sample.

    Resin-infiltrated samples do not uniformly retain fluorescent or nonfluorescent stains

    even though the binder is uniformly distributed throughout a layer. This characteristic is

    due to the coating of the paint particles by embedding resin, which inhibits the stain fromreaching the sample and results in a blotchy appearance.Figures 5 and 6 illustrate that the

    infiltration problem occurs with low binder content samples. In a test sample prepared

    with a 40 wt% glue/gypsum concentration, no indications for penetration of the polyesterembedding resin were found. The paint cross section stained uniformly and brightly with

    fluorescein isothiocyanate (FITC) under fluorescent light (fig. 6). A corresponding

    sample prepared with 5 wt% glue/gypsum was clearly infiltrated with the polyester resin.Figure 5 shows its uneven staining pattern with FITC.

    Fig. 5. Photomicrograph of embedded paint cross section containing 5 wt% glue in

    gypsum after staining with FITC. This low binder content results in a porous sample that

    rapidly wicks in embedding resin. The resin coats the sample particles and causes unevenfluorescent staining of the protein binder with FITC. 37

    Fig. 6. Photomicrograph of embedded paint cross section containing 40 wt% glue in

    gypsum after staining with FITC. The high binder content results in a nonporous sample

    that is not infiltrated by the embedding resin. The FITC stains the protein in the sample

    http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    9/23

    uniformly and fluoresces a bright yellow color. 37

    Based on infrared analysis of a sequence of mixtures, it was found that samples with

    concentrations of 20 wt% or less of glue in gypsum experience infiltration to varyingdegrees. This finding verified that penetration occurs in low binder content samples. The

    specific binder-to-pigment ratio at which infiltration occurs depends on the type of binder

    and pigment present in the sample.

    3.3 CURE TIME

    After the polyester prepolymer is mixed with the catalyst, it has a fluidity similar to corn

    syrup. The resin flows readily around the sample, and any bubbles migrate to the surface.However, since this fluidity may also enhance the penetration of the resin into thesample, a test was done to permit the mixed resin to cure partially before pouring the

    second half of the mold. After 41 minutes cure time, the polyester was so thick that it did

    not form a uniform layer over the sample. However, infrared analysis of a paint sample

    coated with the polyester after 39 minutes of curing showed that the paint sample wasinfiltrated with the embedding material (fig. 7). Thus, it is not practical to use cure time

    to prevent the infiltration of the resin.

    Fig. 7. Infrared spectra of Caroplastic polyester resin (bottom) and paint cross section

    (top) for which the top embedding layer of Caroplastic was poured over the sample 39minutes after the catalyst was added to the resin solution. Even though the embedding

    resin was extremely thick when it was placed on the top of the sample, the resin still

    infiltrated the paint sample. This infiltration is shown by its infrared spectrum, whichcontains absorption bands corresponding to the embedding resin (marked with )

    3.4 BARRIER METHODS

    Since polyester resins are the embedding media of choice, several barrier methods were

    investigated to encapsulate the samples and prevent the polyester from infiltrating. These

    methods use a noninterfering material to surround the sample with a thin, impenetrablelayer prior to embedding the sample in the polyester, thus keeping the good qualities of

    the polyester without allowing it to touch the sample.

    http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    10/23

    The barrier methods tried for treatment of the samples before embedding in the polyester

    resin are shown in table 2. Only the last two of these methods were effective at

    preventing the infiltration of the polyester resin. However, the successful result was hardto achieve with the toluene thickener, because the film would sometimes remain rubbery

    rather than harden. Using fumed silica as a thickening agent is recommended as the best

    option tested.

    TABLE 2 BARRIER METHODS TESTED TO PREVENT THE INFILTRATION OF

    POLYESTER RESIN INTO THE SAMPLES

    Figures 8 and9 show photomicrographs of an unstained and FITC-stained paint cross

    section that had been coated in wax prior to embedding. The sample microtomed easily

    but the wax did not prevent the infiltration of the resin. In practice, the resin dissolved thewax and created a halo image around the sample.

    Fig. 8. Photomicrograph of embedded paint cross section that was coated with wax prior

    to embedding in polyester resin. The wax did not prevent the infiltration of the resin. Infact, the resin dissolved the wax, creating the halo effect seen around the sample. 37

    Fig. 9. Photomicrograph of fluorescent image of FITC-stained sample shown infigure 8.The nonuniform appearance of the fluorescent stain is due to the infiltration of the

    polyester embedding resin into the sample. 37

    Shrink-wrap was tested for encapsulating samples. However, the high temperaturesrequired to shrink the material are not recommended for sample preparation; in a few

    attempts, the samples could not be prepared without bubbles being trapped inside the

    plastic. The presence of bubbles keeps the sample from being held uniformly and makesmicrotoming difficult.

    The next test used a sputter coater to coat samples with greater than a 5-nm-thick layer ofgold. Several samples of two types (plaster and paint facsimile with glue ground) were

    prepared by this method. The results were inconsistent within sample type; some were

    infiltrated by the polyester, and some were not. It appeared that the smoothness and lack

    http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    11/23

    of crevices in the sample were important for success, since complete coating of all

    surfaces is necessary to keep out the polyester. Additionally, careful handling of the

    sample after coating was required, because, in some cases, a small portion of the fragilecoating would attach to the forceps and come off the sample. Figures 10and11 show

    photomicrographs of an unstained and FITC-stained paint cross section of a sputter-

    coated sample that experienced resin infiltration.

    Fig. 10. Photomicrograph of embedded paint cross section that was sputter-coated with

    gold before embedding in polyester resin. The gold layer did not prevent the infiltration

    of the resin, as can be seen by the transparent darker edges in the ground layer of the

    sample. 37

    Fig. 11. Photomicrograph of fluorescent image of FITC-stained sample shown infigure10. The nonuniform appearance of the fluorescent stain is due to the infiltration of the

    polyester embedding resin into the sample. 37

    Completely sealing samples in an aluminum foil sandwich with crimped edges was alsotried. This method was extremely time-consuming and resulted in an opaque, difficult-to-

    position sample. Resin infiltration with this method was inconsistent, and thus it is not

    recommended.

    Several conservation treatments for papers and painting relinings use nonpenetrating gel-

    like solutions such as methyl cellulose (Baker 1984), acrylic dispersions thickened with

    toluene (Keyser 1981; Mehra 1984), and acrylic dispersions thickened with fumed silica

    (Byrne 1984). Some of these methods were tested for encapsulating the samples andfound successful. Many other thixotropic, quick-drying solutions may also work in the

    same manner. Of the gels tested, the cellulose ether (Klucel G) film dissolved in thepolyester resin. The toluene-thickened acrylic (Rhoplex AC-33) was found to retain

    toluene, resulting in a pliable film that tended to stretch during microtoming. However,

    when the toluene-thickened gel was allowed to dry thoroughly (a day or more), a tough,clear film was formed over the sample. The acrylic (Rhoplex AC-33) thickened with

    fumed silica produced a tough film around the sample that dried quickly. Both of these

    http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib1http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib14http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib16http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib5http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib1http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib14http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib16http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib5
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    12/23

    last two gels, when dry, kept the polyester resin from infiltrating.

    Mixtures of 1, 3, and 10 wt% of Cab-O-Sil (coated fumed silica) in Rhoplex AC-33produced semiclear films that dried in less than 2 hours. Approximately 3 wt% of Cab-O-

    Sil in the acrylic emulsion was optimum; however, since the mixture thickens with time,

    it is best to judge it by its consistency. The consistency should be very viscous, that is,greater than that of honey but less than that of butter. It should be gel-like but should flow

    enough to seal at the points where the solution meets itself. It is better to have the

    consistency slightly too thin than too thick. If the mixture is too viscous, it will be hard toget a uniform, thin layer around the sample, and it will not adhere to itself, resulting in

    coverage gaps.

    Tests were done using both pure fumed silica and Cab-O-Sil. Both materials work wellfor thickening the acrylic dispersion, but they behave differently because pure fumed

    silica is hygroscopic while the Cab-O-Sil has been coated to make it nonhygroscopic.

    Thus, Cab-O-Sil is not quite as effective at thickening the solution, is harder to mix withthe acrylic and takes longer to dry. The optimum mix for pure fumed silica with Rhoplex

    AC-33 acrylic is approximately 1 wt%.

    A five-step procedure was used to encapsulate the samples (fig. 12). The first step was to

    prepare polymerized polyester resin in the bottom half of the mold. A small, thin,

    contiguous area of the acrylic/silica gel solution was painted at the tip of the mold, and

    the sample was positioned on it in the desired orientation (typically with the top paintlayer down and horizontal to the bottom of the embedment). The area of the gel should be

    slightly larger than the size of the sample. Once the sample was in place, a small amount

    of the gel was painted thinly over the top and sides of the sample using a fine-pointpaintbrush or a toothpick. We prefer a toothpick since it is conveniently disposable. The

    sample should be completely encapsulated with the gel, since any open areas or cracks in

    the film would defeat the purpose of encapsulation. To ensure sufficient drying time, theencapsulation films were allowed to dry overnight. Attempts to hastened the drying

    process using a vacuum desiccator resulted in bubble formation in the films. Once the gel

    has dried to a film, the top layer of the polyester resin can be prepared as usual andpoured over the sample. Upon curing, the embedded cross section can be polished or

    microtomed for analysis.

    Fig. 12. Steps used for encapsulating a cross section sample with a barrier material inside

    a polyester embedding resin

    Two points should be kept in mind for success in using this method. First, the

    acrylic/silica encapsulation layer should not have any bubbles. To minimize bubbles

    http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    13/23

    during mixing, it is best to prepare only a small amount of the gel at a time. Second, the

    amount of acrylic/silica used to encapsulate should be kept at the very minimum needed

    to surround the sample completely, since thick (1mm) areas of the mixture can result inmicrotoming problems.

    Figure 13 shows a photomicrograph of a paint cross section from a polychrome sculpturethat was encapsulated in the acrylic/silica mixture and then embedded in polyester resin.

    The sample exhibits no visual signs of infiltration, and the glue-containing ground layer

    of the sample stained uniformly with FITC. Figure 14shows a photomicrograph of theFITC-stained sample. The staining, though faint due to the low concentration of binder in

    the sample, does produce a uniform color for the glue ground layer portion of the sample.

    The variations in the intensity of the fluorescence on the bottom and middle layers of this

    sample are actually due to different concentrations of protein in the gesso sottile (bottom)layer and the gesso grosso (middle) layer of the sample (Souza and Derrick 1994).Figure

    15 shows the infrared spectrum obtained from a thin section of the embedded sample.

    Infrared analysis confirmed that the ground layer of the sample did not experienceinfiltration of the polyester or of the acrylic media. Thus, the encapsulation of the sample

    was successful.

    Fig. 13. Photomicrograph of embedded paint cross section (Catas Altas sample CA039)

    that was barrier coated with Rhoplex thickened with Cab-O-Sil prior to embedding inpolyester resin. the acrylic layer prevented the infiltration of the resin, as indicated by the

    opaque white appearance of the ground layer. 37

    Fig. 14. Photomicrograph of fluorescent image of FITC-stained sample shown infigure

    13. The variations in the intensity of the fluorescence on the bottom and middle layers ofthis sample are due to different concentrations of protein in the gesso sottile (bottom) and

    gesso grossso (middle) layers of the sample. 37

    Fig. 15. Infrared spectrum of paint cross section shown in figure 13. The spectrum shows

    that the embedding resin did not infiltrate the sample.

    http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib22http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib22http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib22http://l/http://l/http://l/http://l/http://l/
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    14/23

    4 DISCUSSION

    Preventing infiltration of the embedding resin into a sample will allow it to maintain itsoriginal physical and optical characteristics. This may or may not be desirable depending

    on the type of sample and the type of analyses to be done.

    In the case of a porous, powdery sample the advantages of resin impregnation during

    embedding are that it will produce a solid, consolidated sample that may be highly

    polished to a flat, smooth surface. These qualities are useful for photomicrography,

    pigment identification, and SEM/EDS analysis. If needed, the sample should microtomewell into intact thin sections. However, interpretation of any staining or infrared analysis

    would be difficult due to the presence of the resin within the sample. One viable option

    would be to perform infrared analysis on particles from a corresponding nonembeddedportion of the sample.

    Conversely, if this sample were not infiltrated with resin, the resultant embedment wouldcontain a fragile and poorly cohesive sample. Some particles may fall out of the sample

    during polishing, and microtoming the sample will be difficult and time consuming. The

    advantage of an unadulterated sample is that any analysis method used for examining the

    sample is doing just that, examining the sample and not any added component. Resininfiltration may particularly affect the results of photomicrography, fluorescence,

    staining, colorimetry, or infrared microspectroscopy. The examination and detection of

    glazes and other thin, organic layers may be very susceptible to resin infiltration.

    In our experience, the porous, crumbling sample is a rare, worst-case situation. Many

    cohesive samples that were not expected to be infiltrated were found to contain polyesterresin after embedding. Thus, it is important to recognize that infiltration can occur and

    make a determination whether it is necessary to prevent the infiltration.

    5 CONCLUSIONS

    In a comparison of several types of polymers, polyester resins met the requirements for

    an ideal embedding media for most paint cross sections much better than did epoxies oracrylics. Polyester resins set rapidly without heat, are clear, polish readily, and microtome

    easily.

    However, embedding resins, such as polyester, can dissolve some waxes, colorants, and

    resins. In addition, during the embedding process, porous, low-binder paints are

    penetrated by most types of polymer solutions, including polyester. Infiltration can occurwith matte or porous paints that are often found in wall paintings, polychrome sculptures,

    ethnographic objects, and with glue gessos. This infiltration is visually detected by

    examining the cross section for poorly defined edges, darkening or discoloration, and

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    15/23

    blotchy stain results. Infiltration may be confirmed by the analysis of the sample with

    infrared microspectroscopy, where the presence of the embedding resin in the sample will

    produce a spectrum containing absorption bands characteristic of the resin.

    It is important to recognize that infiltration can and has occurred in embedded paint cross

    sections. Infiltration has advantages and disadvantages, because it consolidates andsupports the sample but can also hinder the analysis of the sample's components. Thus,

    potential infiltration should be considered when samples are examined, and a decision

    should be made whether it is necessary to prevent the infiltration based on the type ofsample and the type of analyses.

    In the cases where embedding without infiltration is chosen as the best option, several

    barrier methods have been tested for coating the sample with materials before embeddingthe sample in polyester resin. A method using Rhoplex AC-33 thickened with fumed

    silica worked best, forming a uniform coating around the sample that, when dry, did not

    allow the polyester resin to infiltrate into the sample. Many other types of high viscosityor thixotropic materials would probably work as well for precoating the sample.

    6 EXPERIMENTAL

    6.1 SAMPLES

    Five types of samples were embedded in this study. The first type was a concentration

    series consisting of known mixtures of glue and gypsum to test the effects of binder

    concentration (figs. 5,6). The second set of samples was obtained from a facsimile

    painting that had a glue-calcium carbonate ground layer with a glue content of 15 wt%.This set was used to evaluate the various kinds of embedding media shown in table 1.

    This set of samples along with samples of plaster (no binder) also were used to test all of

    the barrier methods shown in table 2. The fourth set of samples consisted of smallportions obtained from a larger sample (CA042) that had fallen off a polychrome

    sculpture from the church of Catas Altas, Minas Gerais, Brazil (figs. 2,3). Quantitative

    analysis of the protein content of the sculpture sample by gas chromatography showedthat it contained 12% by weight of glue in gypsum (Schilling 1994). After the acrylic-

    silica barrier layer was found to work on the test samples, it was then tried on portions of

    another polychromy sample (CA039) from the church. This last set of samples, shown infigures 13 and 14, contain a gesso sottile layer (analyzed glue content of 5%) on the

    bottom and a gesso grosso layer in the middle (analyzed glue content of 10%).

    6.2 MICROTOMING

    An RMC Model 7000 microtome configured with a glass knife was used to produce 5 mthin sections of the embedded samples. Tungsten knives may also be used to prepare thinsections in this range; stainless knives usually are used to produce thicker sections (20

    m) and diamond knives for thinner sections (1 m). Glass knives are made by scoring

    and breaking a 1 in. square of glass to give 2 triangular pieces, each with a sharp edge.This procedure produces a 45 angle on the blade. This angle may be increased for

    cutting harder materials and decreased for softer materials (Malis and Steele 1990).

    http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib21http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib21http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib15http://l/http://l/http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib21http://l/http://l/http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib15
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    16/23

    Small samples are easier to microtome. Larger samples may be cut into a pie shape and

    positioned in a mold so that the point is cut first. An embedded sample should have all

    excess medium trimmed from the embedment, leaving only a facet with a few mm ofmedium outside of the sample at the cutting surface. Too large a cutting surface can cause

    the section to curl and the sample to debond from the medium.

    Orientation of the sample to the knife edge can affect the quality of the section. In this

    description, a multilayer sample is considered as a series of parallel lines that can be

    placed either vertically or horizontally in a rotatable vise of a microtome with ahorizontal knife edge. For most samples, the initial cut is best made with the sample

    rotated 10 from vertical with the most important layer closest to the knife. Exact vertical

    orientation of the layers can increase section curling and particle loss, while direct

    horizontal orientation can result in the compression of the sample. Depending on thesample and how it behaves during cutting, the orientation may need to be changed. In all

    cases, the sample and the knife should be fastened securely and checked often for

    tightness.

    The optimum thickness of a sample for infrared transmission analysis is 110 m(Derrick et al. 1991). Sections over 15 m can absorb IR radiation too strongly. Cuttingthick sections can also result in particle loss, chattering of the knife, and damaged knife

    edges. Whenever a problem occurs, it can often be solved by slicing thinner sections (1

    m) and then returning to slice a thicker section (510 m). All cuts should be smooth

    and slow, using a motorized microtome, if available, set at speeds of 0.13.0 mm/sec.

    Vibrations, drafts, temperature, and humidity can all adversely affect microtoming

    results, as can variations due to lighting, hand temperature, and human breath. Whenproblems occur, all factors should be considered and modified when possible.

    As the section is being cut, it should be encouraged to cling to the knife. With a small,stiff artist's brush (size 2 or 3) the initial cut edge of the section can be held to the knife

    surface without touching the sample region. Static charges should keep the section on the

    knife. After the section is cut, it can also easily and delicately be picked up from the glasssurface using the brush. For infrared analysis, our sections were taken directly from the

    microtome, placed on a BaF2 window, and transferred to the sample stage of the infrared

    microspectrophotometer.

    6.3 INFRARED MICROSPECTROSCOPY

    A Spectra-Tech IRS organic microprobe was used for the infrared analysis of the thinsections of each sample. It is equipped with a narrow-band, cryogenically cooled mercury

    cadmium telluride (MCT) detector. The spectra are the sum of 200 scans collected from4000800 cm-1 at a resolution of 4 cm-1. The IRS is continually purged with dry, CO2-free air.

    Once microtomed, the thin section slices were placed on a BaF2 window and transferredto the sample stage of the infrared microspectrophotometer for analysis. An incandescent

    light is used to locate and focus on the sample. A small rectangular region of the sample,

    typically 30 60 m, is isolated using dual adjustable knife-edge apertures located above

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib8http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib8
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    17/23

    and below the sample stage. The radiation source is then changed to an infrared beam for

    analysis of the imaged area.

    6.4 FLUORESCENT STAINING

    Fluorescein isothiocyanate (FITC) was used as the reagent for staining the proteinaceous

    media. Autofluorescence and other stains, such as amido black and rhodamine, may alsobe affected by infiltration of the resin. Our method used an aqueous solution; FITC in

    acetone also exhibited nonuniform intensities related to the resin infiltration.

    FITC reacts with free amino end groups in the proteins to give a characteristic bright

    yellow fluorescence that is most visible in light color pigment areas. FITC and all "amine

    reagents" react best above pH 8 where the fraction of the free-base form of amines ishigher(Haugland 1992). Following the procedure ofVera and Rivas (1988), an FITC

    solution was prepared by first dissolving FITC in acetone (5mg/ml) and then diluting it to

    0.25% with a 0.1M phosphate buffer solution at pH 8.0 that additionally contains 0.1%nonionic detergent (Triton X-100) for better surface wetting. In comparison tests using

    glue, gelatin, whole egg, and casein, the aqueous FITC in phosphate buffer gave a muchbrighter yellow fluorescence color than a corresponding amount of FITC (0.25%) inacetone solvent. FITC is quite stable in water but will experience some degradation at

    increasing pH's. Therefore, the supplier, Molecular Probes, recommends pH 8.59.5 as

    optimum for reactions (Haugland 1992). We found that a pH 8.0 solution had goodsensitivity (detection limit of 0.2% glue in a white pigment) and good stability.

    Two photos were taken for each sample: (1) incandescent, incident light and (2) FITC-

    stained, fluorescent incident light using a mercury light source and a Leitz D filter cube.The Leitz D filter cube has a band pass excitation filter of 355425 nm and a long pass

    barrier filter at 460 nm. For FITC staining, Leitz recommends a Leitz I2/3 filter cube

    (band pass filter: 450490 nm, long pass filter: 515 nm) (Becker 1989). However, ourstudies showed that some proteins autofluoresced when we used a similar Leitz H filter

    cube, and that made it less effective for determining positive protein tests than the Leitz

    D filter cube. Also, the broader range of the Leitz D filter cube provides a brighter thoughless wavelength-specific fluorescent image.

    For staining, a drop of the FITC solution was placed on the sample and allowed to set for

    3060 seconds. The excess solution was wicked off with a nonfluorescent, absorbenttowel, since leaving the solution on the sample for longer periods, 515 minutes, may

    cause some of the proteins to swell.

    REFERENCES

    Baker, C. A.1984. Methylcellulose and sodium carboxymethylcellulose: An evaluation

    for use in paper conservation through accelerated aging. InAdhesives and consolidants.

    ed.N. S.Brommelle, et al. London: International Institute for the Conservation of Historic

    http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib24http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib24http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib3http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib24http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib12http://opt/scribd/conversion/tmp/scratch2359/jaic33-03-001_appx.html#bib3
  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    18/23

    and Artistic Works. 5559.

    Baker, M., D.van derReyden, and N.Ravenel. 1989. FTIR analysis of coated papers.Book and Paper Group Annual8:112.

    Becker, E.1989.Fluorescent microscopy. Germany: Wild Leitz GmbH.

    Bischoff, J.1994. Personal communication. Detroit Institute of Arts, Detroit, Mich.

    Byrne, G.S.1984. Adhesive formulations manipulated by the addition of fumed colloidal

    silica. InAdhesives and Consolidants. ed.N. S.Brommelle, et al. London: InternationalInstitute for the Conservation of Historic and Artistic Works. 7880.

    Cartwright, L. J., N. S.Cartwright, and P. G.Rodgers. 1977. A microtome technique for

    sectioning multilayer paint samples for microanalysis. Canadian Society of Forensic

    Science Journal10:712.

    Demmler, K.1980. The determination of residual active oxygen in parts of unsaturated

    polyester resins and its influence on post curing and yellowing by light.Kunstoffe70:786

    92.

    Derrick, M. R., D. C.Stulik, and J. M.Landry. 1991. Scientific examination of works of

    art: Infrared microspectroscopy. Marina del Rey, Calif.: Getty Conservation Institute.

    Derrick, M. R., D. C.Stulik, J. M.Landry, and S. P.Bouffard. 1992. Furniture finish layer

    identification by infrared linear mapping microspectroscopy.Journal of the American

    Institute for Conservation31(2):22536.

    Godla, J.1990. The use of wax finishes on pre-industrial American furniture. M.A. thesis,

    Antioch University, West Townsend, Mass.

    Hansen, E. F., R. Lowinger, and E.Sadoff. 1993. Consolidation of porous paint in a

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    19/23

    vapor-saturated atmosphere: A technique for minimizing changes in the appearance of

    powdering, matte paint.Journal of the American Institute for Conservation32:114.

    Haugland, R. P.1992.Handbook of fluorescent probes and research chemicals. 5th

    ed.Eugene, Oreg.: Molecular Probes.

    Horie, C. V.1987. Material for conservation. London: Butterworths. 16165.

    KeyserB.1981. Use of acrylic emulsions as non-penetrating lining materials for paintings

    at the National Gallery of Canada.International Institute for Conservation-Canadian

    Group6(3):910.

    Malis, T. F., and D.Steele. 1990. Ultramicrotomy for materials science. Workshop onspecimen preparation for TEM materials 2, ed.R.Anderson. Materials Research Society

    Symposium Proceedings 199. Pittsburgh: Materials Research Society. 343.

    Mehra, V. R.1984. Dispersion as lining adhesive and its scope. InAdhesives and

    consolidants. ed.N. S.Brommelle, et al. London: International Institute for the

    Conservation of Historic and Artistic Works. 4445.

    Meurgues, G.1982. Synthetic resins can be dangerous. Museum34:6061.

    Plesters, J.1956. Cross-sections and chemical analysis of paint samples. Studies in

    Conservation2:11057.

    Purves, P. E., and R.S.J.Martin. 1950. Some developments in the use of plastics inmuseum technology. Museums Journal49:18495.

    Reedy, C.1994. Thin section petrography in studies of cultural materials.Journal of theAmerican Institute for Conservation33:11529.

    Schilling, M.1994. A fast, sensitive, reproducible method for the analysis of amino acids

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    20/23

    using ethyl formate derivitization. Getty Conservation Institute internal report.

    Souza, L.A.C., and M. R.Derrick. 1994. The use of FT-IR spectrometry for the

    identification and characterization of gesso-glue grounds in wooden polychromed

    sculptures and panel paintings. In Materials issues in art and archaeology 4, MaterialsResearch Society Symposium Proceedings. Pittsburgh: Materials Research Society.

    Tsang, J., and R.Cunningham. 1991. Some improvements in the study of cross sections.Journal of the American Institute for Conservation30:16377.

    Vera, J. C., and C.Rivas. 1988. Fluorescent labeling of nitrocellulose-bound proteins at

    the nanogram level without changes in immunoreactivity.Analytical

    Biochemistry173:399404.

    Waentig, F.1993. Casting resin systems for embedding specimens.Restauro3:19599.

    Ward's Natural Science. 1990. Ward's curriculum aid: Embedding in bio-plastic, 6th ed.

    No. 246-0005. Rochester: Ward's Natural Science.

    Wilkinson, J. M., J.Locke and D. K.Laing. 1988. The examination of paints as thinsections using visible microspectrophotometry and Fourier transform infrared

    microscopy. Forensic Science International38:4352.

    Wolbers, R. and G.Landrey. 1987. The use of direct reactive fluorescent dyes for the

    characterization of binding media in cross sectional examinations.AIC preprints,

    American Institute for Conservation. 15th Annual Meeting, Vancouver. Washington

    D.C.: AIC. 168202.

    Wolbers, R.1993. Personal communication. Winterthur, Del.

    SUPPLIERS

    Materials tested in this study were obtained from the suppliers listed below. These

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    21/23

    products are also available from other suppliers that specialize in general laboratory and

    microscopy products.Butylmethyl methacrylate (acrylic)

    Ladd Research Industries, Inc., Burlington, Vt., 05402; (802) 6584961

    Bio-Plastic (polyester)

    Ward's Natural Science, P.O. Box 92912, Rochester, N.Y.; (800) 9622660

    Cab-O-Sil (coated fumed silica)

    Conservation Materials Ltd., 1165 Marietta Way, P.O. Box 2884, Sparks, Nev. 89431;,

    (702) 3310582

    Caroplastic (polyester)

    Carolina Biological Supply Company, 2700 York Road, Burlington, N.C. 27215; (800)

    3345551, Buehler, 41 Waukegan Road, Lake Bluff, Ill., 60044; (800) 2834537

    Castolite (polyester)

    The Castolite Company, Woodstock, Ill. 60098;, (815) 3384670

    Epon 812 (epoxy)

    Ted Pella, Inc., P.O. Box 2318, Redding, Calif., 96099; (916) 2432200

    Fluorescein isothiocyanate (FITC)

    Molecular Probes, Inc., 4849 Pitchford Ave., Eugene, Oreg. 97402; (503) 4658300.

    Krazy Glue and Krazy Glue Gel (cyanoacrylate)

    Distributed by Borden, Inc., HPPG, Columbus, Ohio 43215

    LR White (acrylic)

    Ladd Research Industries, Inc.

    LX-112 (epoxy)

    Ladd Research Industries, Inc.

    Maraglas 655 (acrylic)

    Ladd Research Industries, Inc.

    Paraplast (wax)

    Ladd Research Industries, Inc.

    Pelco, embedding molds

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    22/23

    Ted Pella, Inc.

    Rhoplex AC-33 (acrylic emulsion)

    Rohm and Haas Co., Philadelphia, Pa., Distributed by Conservation Materials, Ltd.

    Silica, fumed

    Aldrich, 1001 W. Saint Paul Ave., Milwaukee, Wisc. 53233; (800) 5589160

    Quetol 523M (acrylic)

    Ted Pella, Inc.

    SPURR (epoxy)

    Ted Pella, Inc.

    Vestopal W (polyester)

    Ladd Research Industries, Inc.

    AUTHOR INFORMATION

    MICHELE R. DERRICK graduated from Oklahoma State University in 1979 with an

    M.S. in analytical chemistry. In 1983 she joined the scientific program of the Getty

    Conservation Institute, where she is currently an associate scientist. Her research involvesthe development of new methods for the characterization and identification of organic

    materials in cultural objects primarily using infrared spectroscopy and pyrolysis gas

    chromatography. Address: Getty Conservation Institute, 4503 Glencoe Ave., Marina delRey, Calif. 90292.

    LUIZ A. C. SOUZA received his B.S. (1986) and M.Sc. (1991) in chemistry from theFederal University of Minas Gerais. The experimental work for his M.Sc. was done at the

    Institut Royal du Patrimoine Artistique, Brussels (198788). Since 1989 he has been

    teaching and researching at the CECOR Center for Conservation and Restoriation of

    Movable Cultural Properties of the Federal University of Minas Gerais, Brazil. He iscurrently a research fellow at the Getty Conservation Institute. Address: CECOR, Escola

    de Belas Artes, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo

    Horizonte 31270, MG, Brazil.

    TANYA L. KIESLICH received her B.S. from Loyola Marymount University in 1992

    with a major in chemistry and a minor in art history. As part of her undergraduateresearch, she used infrared microspectroscopy for the analysis of paint samples. She is

    currently attending the Courtauld Institute of Art for a postgraduate diploma in the

    conservation of easel paintings. Address: Courtauld Institute of Art, Dept. of

    Conservation and Technology, Somerset House, Strand, London WC2R ORN, England.

    DUSAN C. STULIK graduated from Charles University in Prague, Czechoslovakia, with

  • 8/8/2019 Embedding Paint Cross-section Samples in Polyester Resins

    23/23

    B.S. and M.S. degrees in chemistry. He subsequently obtained a Ph.D. in physics from

    the Czechoslovakia Academy of Sciences. He is currently acting head of the scientific

    program at the Getty Conservation Institute. His current research is in the application ofmodern scientific methods in conservation science. Address: same as for Derrick.