EMC & NOISE Engineering Service - cst-korea.co.kr theory of SIPI and... · •PCB 자체기생성분…

Download EMC & NOISE Engineering Service - cst-korea.co.kr theory of SIPI and... · •PCB 자체기생성분…

Post on 23-Aug-2018




0 download

Embed Size (px)


<ul><li><p>Copyright 2016 E&amp;R TECH. All rights reserved.</p><p>EMC &amp; NOISEEngineering ServiceProduct / System / EFS / EMC Management Plan.</p><p>SI/PI EMC </p><p>http://www.enrc.co.kr</p><p>2016 CST SI / PI / EMC Conference</p><p>http://www.enrc.co.kr/index.php</p></li><li><p> PI (Power Integrity)</p><p> SI (Signal Integrity)</p><p>3</p><p>24</p></li><li><p> PI (Power Integrity) ?</p><p>PI (Power Integrity) [1]</p><p>: http://www.redsalt.com/service/automotive-systems</p><p> PI(Power Integrity) </p><p> PCB IC </p></li><li><p>PI (Power Integrity) [2]</p><p> PI (Power Integrity) ?</p><p>1. (load) .</p><p>2. .</p><p>3. 0 .</p><p> , , </p><p> PCB </p></li><li><p>PI (Power Integrity) [3]</p><p> PCB </p><p>VRM</p><p>BULK Cap.</p><p>Decap.Bypass</p><p>cap.Chip</p><p>ChipConnector</p><p> PDN( )</p><p>Chip VRM</p><p>PDN( )</p><p>Chip</p><p> PCB PDN (Power Delivery</p><p>Network) VRM (Voltage Regulator Module)</p><p> VRM </p><p> PDN </p></li><li><p>PI (Power Integrity) [4]</p><p> PCB DC vs AC</p><p>DC Impedance AC Impedance</p><p> DC = AC (f=0) Short Open</p><p> = 0, = 2 0 = 0</p><p> = 1</p><p>2= </p><p> = = + +1</p><p> = 2</p></li><li><p>PCB [1]</p><p> PCB </p><p>()</p><p>(Lumped version)</p><p>Z</p><p>f</p><p>Resonant wavelength at high frequencies</p><p>Z</p><p>f</p><p>Z</p><p>f</p><p>Z</p><p>f</p><p>[1] David M. Pozar, Microwave Engineering, 3rd, U.S.A.: John Wiley &amp; Sons, Inc, 2005.</p></li><li><p> PCB SMD , , </p><p>PCB [2]</p></li><li><p> PCB </p><p>PCB [3]</p><p>[2] Power Integrity Workflow: from IR-Drop to Target Impedance Calculation, CST STUDIO SUITE 2012, System Integrity Workshop Series</p><p>Port</p><p>d</p><p>A d</p><p>AC</p><p> PCB PCB </p><p> PCB </p><p> () </p></li><li><p> PCB </p><p>PCB [4]</p><p>[2] Power Integrity Workflow: from IR-Drop to Target Impedance Calculation, CST STUDIO SUITE 2012, System Integrity Workshop Series</p></li><li><p>PCB [5]</p><p>R L</p><p>CIV</p><p>-</p><p>+</p><p>inZ</p><p>( )inZ </p><p>0.707</p><p>R</p><p>R</p><p>0 1</p><p>BW</p><p>0/ </p><p>RLC</p><p>I</p><p>V</p><p>-</p><p>+</p><p>inZ</p><p>( )inZ </p><p>0.707R</p><p>R</p><p>0 1</p><p>BW</p><p>0/ </p><p> = + 1</p><p> =</p><p>1</p><p> =</p><p>1</p><p>+</p><p>1</p><p>+ </p><p>1</p><p> =1</p></li><li><p>PCB [6]</p><p> Capacitance: " </p><p>C = Qstored/V</p><p> DC Response: Qstored = 0. (Open circuit) </p><p> AC Response: Qstored 0.</p><p> :</p><p>d</p><p>A</p><p>Capacitance C : </p><p> , A , d </p><p> =</p><p> = </p></li><li><p> #1</p><p>PCB [7]</p><p>CAPACITORS</p><p>ELECTROSTATIC</p><p>CERAMIC FILM ALUMINUM TANTALUM</p><p>ELECTROLYTIC</p><p> Lower Capacitance </p><p> Higher Capacitance </p><p>+ -</p></li><li><p> #2</p><p>PCB [8]</p><p>TANTALUM</p><p>ALUMINUM </p><p>FILM</p><p>FILM</p><p>CERAMIC </p><p>CERAMIC </p><p>1.0pF 10uF 1000uF0.10uF</p><p> CERAMIC : </p><p> FILM : </p><p> ALUMINUM : </p><p> TANTALUM : </p></li><li><p>PCB [9]</p><p> (Decoupling) : RF </p><p> (Bypassing) : RF </p><p> (Bulk) : DC </p></li><li><p>PCB [10]</p><p> C L, R RLC </p><p> L , R , C .</p><p>d</p><p>A R L</p><p>R L</p><p>C</p><p> = 2 + 2 </p><p>1</p><p>2</p><p>2</p><p>, =1</p><p>2 </p><p>2 1</p><p>2</p></li><li><p>PCB [11]</p><p> TH(Through Hole) SMD(Surface Mount Device) </p><p> TH </p><p>TH Type</p><p>LCfr</p><p>2</p><p>1</p><p>SMD Type</p></li><li><p>PCB [12]</p><p>f</p><p>|Z|</p><p>Mag. of Z</p><p>targetZ</p><p>1 kHz 1 MHz 100 MHz 1 GHz</p><p>Switching Power Supply</p><p>BulkCapacitors</p><p>CeramicCapacitors</p><p>Power/GroundPlanes</p><p>Buried Capcitance</p></li><li><p> PCB #1</p><p>PCB [1]</p><p>VRM</p><p>BULK Cap.</p><p>Decap.Bypass</p><p>cap.Chip</p><p>ChipConnector</p><p> IC </p></li><li><p> PCB #2</p><p>PCB [2]</p><p>Vcc</p><p>IN</p><p>GND</p><p>OUT</p><p>IL</p><p>Id</p><p>Current</p><p>Voltage t</p><p>t</p><p>IL + Id</p><p>Id</p><p> IL low high </p><p> Id On </p></li><li><p>PCB [3]</p><p> : Resistance dominant </p><p> : Inductance dominant </p><p> Current Return Path = Signal Return Path = Ground Return Path = Return Ground Path</p><p>: : </p><p> IC IC</p></li><li><p>PI(Power Integrity) [1]</p><p> IC IC , IC (inter-IC coupling) </p><p> IC , IC </p><p>(intra-IC coupling) </p><p> IC (charge) </p><p> IC </p><p>[3] Henry W. OTT, Electromagnetic Compatibility Engineering, John Wiley &amp; Sons, Inc, 2009</p></li><li><p> Decap. </p><p>PI(Power Integrity) [2]</p><p>IC</p><p>GND</p><p>V</p><p>IC</p><p>GND</p><p>V</p><p>IC</p><p>GND</p><p>V</p><p>L or Bead</p><p>IC</p><p>GND</p><p>V</p><p> LC X2Y </p></li><li><p> SI (Signal Integrity) [1]</p><p> SI (Signal Integrity) </p><p> , , </p><p>, </p><p> EMC EMI </p><p> , </p><p>Transmitter Interconnect Receiver</p><p> Transistors Sources Clocks Memory</p><p> Circuit elements Transmission lines S parameter blocks</p><p> Transistors Passives memory</p><p> SI (Signal Integrity) ?</p></li><li><p> SI (Signal Integrity) [2]</p><p> SI (Signal Integrity) </p><p>RadiationSI Problem</p><p>Crosstalk</p><p>EMI </p><p>Problem</p><p> (Reflection)</p><p> (Ground Bounce)</p><p> (Crosstalk)</p><p> () (Reference Accuracy)</p><p> (Thermal Offset)</p><p> (Ground Offset)</p><p> / (SSN)</p><p> IR </p><p> (Terminator Noise)</p><p>ZS Z0 ZI</p><p>VSVin</p><p>Vi Vr Vout</p><p>:</p><p>:</p><p>:</p><p>* Reflections* Stub ringing* Crosstalk* Simultaneous switching* Losses, dispersion</p><p>* Reflections* Simultaneous switching* Power-supply noise* Self oscillation</p><p>* Power-supply noise* Simultaneous switching* Crosstalk in Package</p></li><li><p> SI (Signal Integrity) [3]</p><p> SI </p><p> !!!</p><p> &amp; !!!</p><p> ( ) !!!</p><p>1. (Reflection) </p><p>2. (Crosstalk) </p><p>3. () (Reference Accuracy)</p><p>/ !!!</p><p>4. / (SSN) </p></li><li><p> SI (Signal Integrity) [4]</p><p> (Reflection) #1</p><p>Driver</p><p>72 mm PCB </p><p>Receiver</p><p>Low Impedance (~ 50 Ohms) High Impedance</p><p>[4] Dr. Eric Bogatin, CTO, Taking the Mystery out of Signal Integrity, GigaTest Labs</p></li><li><p> SI (Signal Integrity) [5]</p><p> (Reflection) #2</p><p>[4] Dr. Eric Bogatin, CTO, Taking the Mystery out of Signal Integrity, GigaTest Labs</p><p>72 mm PCB 72 mm PCB </p><p> (~40 Ohm)</p></li><li><p> SI (Signal Integrity) [6]</p><p> (Reflection) #3</p><p>[5] Eric Bogatin, Signal Integrity - Simplified, Prentice Hall</p><p>Vreflected = 1 V</p><p>Vincident = 1 V</p><p>Vmeasured = 2 V</p><p>Z1 Z2 = OPEN</p><p>=-0.67 =1</p><p>TD = 1 nsec</p><p>10 50 </p><p>1 v 0.84 v</p><p>V = 0.84+0.84 = 1.68 v (t=1nsec)</p><p>0.84 v</p><p>-0.56 v</p><p>-0.56 v</p><p>0.38 v</p><p>0.38 v</p><p>V = 1.68+-0.56+-0.56 = 0.56 v (t=3nsec)</p><p>V = 0.56+0.38+0.38 = 1.32 v (t=5nsec)</p><p>2.0</p><p>1.5</p><p>1.0</p><p>0.5</p><p>0.0</p><p>Vo</p><p>ltag</p><p>e, V</p><p>Time, nsec</p><p>0 5 10 15 20 25 30</p></li><li><p> SI (Signal Integrity) [7]</p><p> (Crosstalk) #1</p><p>dt</p><p>dILV drivermL,noise m </p><p>Mutual Capacitance, Cm</p><p>dt</p><p>dVCI drivermC,noise m </p><p>CmAggressor</p><p>Victim</p><p>Mutual Inductance, Lm</p><p>Lm</p><p>AggressorVictim</p><p> (Crosstalk) </p><p> Mutual capacitance Mutual inductance</p></li><li><p> SI (Signal Integrity) [8]</p><p> (Crosstalk) #2</p><p> CASE 1</p><p>S V</p><p>CASE 2</p><p>S V</p><p>CASE 3</p><p>S VG</p><p>W S1 W</p><p>H</p><p>t</p><p>S2</p><p>S1</p><p>FR4Ground</p><p>t 36 um </p><p>H 0.8 mm </p><p>W 1.488 mm trace </p><p>S1 1.488 mm 1</p><p>S2 4.464 mm 2</p><p>4.4 </p><p>S - trace</p><p>V - trace</p><p>G - guard trace</p><p>r</p><p>r</p><p> Case </p></li><li><p> SI (Signal Integrity) [9]</p><p> (Crosstalk) #3</p><p>0 1 2 3 4 5 6 7 8 9 10</p><p>-0.2</p><p>0.0</p><p>0.2</p><p>0.4</p><p>0.6</p><p>0.8</p><p>1.0</p><p>1.2</p><p>1.4</p><p>1.6</p><p>1.8</p><p>2.0</p><p>Time [ ns ]</p><p>Vo</p><p>lta</p><p>ge</p><p> [ V</p><p> ]</p><p> Vs</p><p>0 1 2 3 4 5 6 7 8 9 10</p><p>-100</p><p>-80</p><p>-60</p><p>-40</p><p>-20</p><p>0</p><p>20</p><p>40</p><p>60</p><p>80</p><p>100</p><p>Vo</p><p>lta</p><p>ge</p><p> [ m</p><p>V ]</p><p>Time [ ns ]</p><p> CASE 1</p><p> CASE 2</p><p> CASE 3</p><p>FEXT</p><p>CASE 1 71.92 mV</p><p>CASE 2 23.30 mV</p><p>CASE 3 15.33 mV</p><p> (Crosstalk) </p><p> , </p><p>[6] Felix D. Mbairi; W. Peter Siebert; Hjalmar Hesselbom, On The Problem of Using Guard Traces for High Frequency Differential Lines Crosstalk Reduction, IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 1, pp. 6774, Mar. 2007</p></li><li><p> SI (Signal Integrity) [10]</p><p> () (Reference Accuracy) #1</p><p>3 mm</p><p>d</p><p>A B</p><p>Stitching </p><p> MHz </p><p> A B</p><p> 1-10 nF stitching </p></li><li><p> SI (Signal Integrity) [11]</p><p> () (Reference Accuracy) #2</p></li><li><p> SI (Signal Integrity) [12]</p><p> / (SSN) #1</p><p>[6] Desmond Tan, The Basic Concept of Signal &amp; Power Integrity, Signal Integrity Solutions, Ansoft Corporation (South Asia Operations)</p></li><li><p> SI (Signal Integrity) [13]</p><p> / (SSN) #2</p><p>Vcc</p><p>IN</p><p>GND</p><p>OUT</p><p>IL</p><p>Id</p><p>Current</p><p>Voltage t</p><p>t</p><p>IL + Id</p><p>Id</p><p> IL low high </p><p> Id On </p></li><li><p> SI (Signal Integrity) [14]</p><p> TDR(Time Domain Reflectometry) #1</p><p>TDR Waveforms - Open, Short and 50terminations</p><p>Amplitude</p><p>Open (Z =)</p><p>(Z = 50)</p><p>Short (Z = 0)</p><p>Time</p><p>Reflected</p><p>+ 1 </p><p>0 </p><p>- 1 </p><p>t0 t1</p><p>Incident</p><p>[7] TDS8000 and TDR Considerations to Help Solve Signal Integrity Issues, Tectronix</p></li><li><p> SI (Signal Integrity) [15]</p><p> TDR(Time Domain Reflectometry) #2</p><p>[7] TDS8000 and TDR Considerations to Help Solve Signal Integrity Issues, Tectronix</p><p>CapacitiveDiscontinuity</p><p>InductiveDiscontinuity</p><p>Z</p><p>Time</p><p>100</p><p>50</p><p>0</p><p>incident</p><p>Z0Z0 Z0</p><p>1</p><p>1</p><p>2Z</p><p>tCeq </p><p>2</p><p>22tZLeq </p><p>Z1Z2</p><p>t1 t2</p><p>Z1</p><p>Z2</p></li><li><p>FFT (Fast Fourier Transform) [1]</p><p> The Time Domain</p></li><li><p>FFT (Fast Fourier Transform) [2]</p><p> The Frequency Domain</p></li><li><p>FFT (Fast Fourier Transform) [3]</p><p>Text, voice,picture, etc.</p><p>Text, voice,picture, etc.</p><p>Digital</p><p>Analog</p><p>Information</p><p>EncoderDigital</p><p>Analog</p><p>Signal</p><p> , </p></li><li><p>FFT (Fast Fourier Transform) [4]</p><p> (Fourier transform) </p><p>A</p><p>F</p><p> t , </p><p> (Fast Fourier Transform, FFT) ((Discrete Fourier</p><p>transform, DFT) </p><p>( ) ( ) j tX j x t e dt</p><p>Period, T Am</p><p>plit</p><p>ude</p><p>Time Domain Frequency Domain</p><p>Frequency</p><p>Am</p><p>plit</p><p>ude</p></li><li><p>FFT (Fast Fourier Transform) [5]</p><p> Frequency Components of Digital Signal</p></li><li><p>FFT (Fast Fourier Transform) [6]</p></li><li><p>FFT (Fast Fourier Transform) [7]</p><p>F(t)</p><p>Log Ff =1/T</p><p>2f 3f</p><p>T</p><p>A</p><p>T</p><p>A</p><p>Log F</p><p>F(t)f =1/pt</p><p>f =1/ptr</p><p>tr</p><p>t</p><p>(Trapezoidal Wave) </p><p>(Square Wave) </p><p> rising/falling time </p></li><li><p> =11 1221 22</p><p>S-parameter [1]</p><p> S-parameters</p><p>Linear 2 port</p><p>a1</p><p>b1</p><p>a2</p><p>b2</p><p>SijOutput Input</p><p> S (scattering) RF </p><p> S </p><p>Reflections (Sii)</p><p>Transmissions (Sij)</p><p>11 = 11 2=0</p><p>22 = 22 1=0</p><p>21 = 21 2=0</p><p>12 = 12 1=0</p></li><li><p> Reflection Loss / Insertion Loss</p><p>S-parameter [2]</p><p> (Reflection loss) :</p><p> (Insertion loss) :</p><p> (Reflection loss) </p><p> , S11 S22 ,</p><p> S11 dB </p><p> (Insertion loss) </p><p>( ) , S21 S12 , </p><p>S21 dB </p><p> (, gamma, Reflection Coefficient), (T, Transmission Coefficient) :</p><p>ZLZ0</p><p> V-</p><p> V+</p><p>[8] David M. Pozar, Microwave Engineering, John Wiley &amp; Sons, Inc, 2005</p><p> = </p><p> += 0 + 0</p><p>, = 1 + 0 + 0</p><p>= 1 + </p><p> = 20 </p><p> = 20 </p></li></ul>