emulsion rheometry

55
Emulsion Rheometry and Texture Analysis *Food Structure and Functionality Laboratories Department of Food Science & Biotechnology University of Hohenheim Garbenstrasse 21, 70599 Stuttgart, Germany Jochen Weiss Emulsion Workshop November 13-14 th , 2008, Amherst, MA 1

Upload: phani12chem5672

Post on 03-Jun-2018

249 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 1/54

Emulsion Rheometry andTexture Analysis

*Food Structure and Functionality LaboratoriesDepartment of Food Science & BiotechnologyUniversity of HohenheimGarbenstrasse 21, 70599 Stuttgart, Germany

Jochen Weiss

Emulsion Workshop

November 13-14th, 2008, Amherst, MA

1

Page 2: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 2/54

Background on Emulsion

Rheometry

Fundamental of RheologyConcepts of Stress and Strain asRelated to Experimental Designs

2

Page 3: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 3/54

Rheometry/Texture Analysis of Emulsions

• Rheology is the science that describes the

response of a material (deformation) to asuperimposed stress (force per unit area)

• Rheometry is the measurement of therheological properties of a material

• Texture Analysis: Extentional/compressionalrheometry typically at large strains

• Emulsion rheology influences: – Texture, Mouth Feel, Shelf Life,

Processing

3

Page 4: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 4/54

Emulsion Rheometry:

Parameters Impacting Quality of the ProductEmulsion Property Industrial Branch Quality of Endproduct

Mean droplet size

Droplet sizedistribution

Droplet shape

Droplet interactions

Mechanical strength ofdroplet

Droplet “porosity”

Droplet density

Droplet concentration

Food Manufacturing

Shelf stability

Sensory Consistency

Coarseness

Roughness

Filling/Dosing Behavior

Cosmetics andPharma

Spreading (creams, pastes)Effectiveness (resorption,

protection)

Stability

Paints

Color intensity

Lightness

Paintability

Adhesion

Stability

4

Page 5: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 5/54

Emulsion Rheometry:

Determination of Emulsion Material Functions

Actio(stress)

Reactio(deformation)Emulsion

Stress = f(Time, Deformation) * Deformation 

Emulsion material functions are deformation and  time-

dependent two experiments required !!!

5

Page 6: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 6/54

Emulsion Rheometry:General Measurement Scheme

Induce Stress:

- shear- compression

- large deformation- small deformation

- static- dynamic

Measure Response:

“Rheogram”

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

Shear Stress (Pa)

      η      ηη      η

   /   P

  a

  s 22%

40%

50%

6

Page 7: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 7/54

Page 8: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 8/54

Deformation (Strain) γ  – The Reaction to Stress

Motion

P

Q

x

y

z

da

P’

Q’

da’

Strain Rate: Change of strain with time (time derivative), influids equivalent to the velocity gradient

γ = tan α

αααα

8

Page 9: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 9/54

η = ⋅ &

2. Fluids: Newton’s law

1. Solids: Hooke’s law

= ⋅G

τ = F/A

τ = F/A

Emulsion Behavior : Between Liquids and

Solids

State depends on the nature of the emulsion (O/W) (W/O), the physicalstate (crystallized, liquid), the droplet concentration and the structure

(agregated, non aggregated)

9

Page 10: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 10/54

Different Stress Situations Require Different

Testing MethodsShear Stress

τxy

τxy

Tensile andCompressive Stresses

σxσx

σxσx

UniaxialCompression

p

p

pp

p

p p

p

Rotational RheometerViscometer

Elongational RheometerTexture Analyzer

Pressure Cell

10

Page 11: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 11/54

Experimental Design -

Rheometry

Rheometer DesignsSteady and Dynamic Shear

Experiments

11

Page 12: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 12/54

RheometerOperating Mode

TemperatureControl

SampleHandling

OtherFactors

PreparationLoadingThickness

Trimming

Conditioning

T. ExpansionT. EquilibriumSample bulge

Sample size

Test Selection: Time sweep, flow curve, creep/recovery, amplitudesweep, frequency sweep, temperature sweep,

normal force, superimposed flows, squeeze flow.Test Conditions: Number of points, time per point, integration time.Data Analysis: Selection of regression model and interpretations of

parameters

PeltierConvectionElectrical

Cont. strainCont. stress

Food Emulsion Rheometry:

Experimental Considerations

12

Page 13: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 13/54

Basic Rheological Tests

of Food Emulsions

1. Simple Shear: Application ofconstant shear measure stress

response

2. Creep Test: Application ofconstant stress measuredeformation response

3. Relaxation Test: Apply constantstrain, measure decay in modulus

4. Oscillation: Apply strain rateoscillations, measure stress

respone5. Ramp: Increase shear rate,

measure stress increase

TEST CONDITION RESULT

13

Page 14: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 14/54

Rheometry of Emulsions:

Rotational and Capillary Rheometers

• Based on shear not onelongation!

• In capillary rheometers,shear is generated viapressure differencebetween in and outlet ofcapillary – flow withfriction at the wall (v=0 atwall, initial conditions)

• In rotational rheometers,shear is generated viameasurement tools thathave relative velocity

differences, thuis forminga “shear slit”, angularvelocity as a function ofthe torque.

14

Page 15: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 15/54

Historical Rheometers

Lipowitz, first

device to measurehardness of foods(for fruit gelsfilling of funnel withlead beads untilsinking)

Bloom Gelometer,(iron beeds to

increase weight of aplunger until theplunger penetratesthe gel)

Lüers, Pectinometer(measures forcenecessary toremove a probe that

is enclosed in apectin gel)

WOLDOKEWITSCH,first force-deformationmeasurement onsolid/semisolidfoods

15

Page 16: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 16/54

“Relative” Rheometers – Suitable For Low

Level Quality Control

Flow Methods Penetration Methods Mixing Methods

Sedimentation Methods Tear Methods

Relative indirectdetermination via acorrelated base

parameter (e.g.penetration depth,time to empty a

vessel….)

16

Page 17: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 17/54

The First Viscosimeter by Wilhelm Ostwald

 LV 

 p R

&

∆=

4π 

η 

• Laminar flow at Re <2300: wall frictionexclusively caused due toviscosity

• Can be modeled and

calculated

• Capillaries can be circularor rectangular (slits)

log τ

   l  o  g     γ

η0

η∞

correctedThe Capillary

Viscosimeter by WilhelmOstwald (1853-1932).

17

Page 18: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 18/54

Modern Capillary Rheometers• Spherical, coaxial, slit

exit geometries• High-pressure capillary

rheometer (continuous)

• High pressure capillaryrheometer (batch)

 – Piston force can beregulated

 – Piston velocity can beregulated

18

Page 19: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 19/54

Errors in Capillary Rheometers

Error Source Reason When?

Inlet energy lossConversion of pressure into kineticenergy at the inlet (Hangenback

correction)

Always

Outlet energy loss Energy loss at exit of fluid Always

Elastic pressureloss

Elastically stored deformation energyis partially converted into heat

Viscoelastic fluids

turbulence Heat losses due to non-laminar flows At high Reynoldsnumbers

Pressure lossoutside of capillary

Frictional losses converted into heat Piston Viscosimeter

Fluid friction

Slight time delay due to friction at the

walls of the capillary entrance error in measuring volume flow rate

Glas capillary

viscosimeter

Surface tensionVariations in surface tension impactcapillary effects

Thin capillary

19

Page 20: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 20/54

Rotational Rheometers - Measurement

Systems• Cone/plate

 – Viscoelastic and viscous

 – Uniform shear, but smallgap at center

• Plate/plate:

 – Viscoelastic Fluids – Variable gap, but non-

uniform shear

• Concentric cylinders: – Viscous Fluids

 – High sensitivity

M, ω

FA

M,ω

Motor

FA

M,ωMotor

20

Page 21: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 21/54

Rotational Type Rheometer

21

Page 22: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 22/54

Emulsion Rheometry:

Coaxial Geometries

• Consist of cup and bob

assembly• Geometrical variations

available to prevent “end”effects or to increase

sensivity

Md

=F*riMd=2πr2Lτ

τi=Md /(2πRb2L)

τo=Md /(2πRc2L)

22

Page 23: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 23/54

Emulsion Rheometry:

Possible Measurement Errors

Vibration and Offset errorHysteresis - insufficient

damping

Resonance at critical RPMs,

Heating and cooling effects

Not enough time for heatingNonlaminar flow profile

Overfilling, spinning out offluid, end effects

Phase separationviscoelastic oscillations

Shear Rate

   S   h  e  a  r   S   t  r  e  s  s

23

Page 24: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 24/54

Compressive Measurements of

Concentrated Emulsions

Texture Analyzer – not suitable for low

viscous emulsions, but suitable for

mayonnaise, butter, margarine etc.

24

Page 25: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 25/54

Emulsion Rheometry:

General Compressional Rheology Terms• Engineering Stress: applied force/initial cross section

• True Stress: applied force / true (deformed) cross section

• Engineering Strain: ratio between the deformation of specimenand initial length, where deformation is the absolute elongationor length decrease in the direction of applied force

• Engineering Strain: True Strain if deformation is small.

• Failure characteristics can be measured using compression,tension or torsion, most commonly uniaxial compression

• Assumes that shape is maintained lubrication of surfaces

• In uniaxial compression, area in contact increases, Ratio in

increase in diameter but decrease in height is the Poisson Ratio• In compressive measurements: specimen stiffness, Youngs

modulus, strength at failure, stress at yield and strain at yield

25

Page 26: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 26/54

Definitions in Texture Analysis -

Compressive Tests• Engineering Strain and Engineering Stress

• True Stress and Henky Strain:

• Youngs Modulus and Stiffness:

• Youngs Modulus for Stiff Bodies and Poisson Ration

• Biaxial Stress, extensional strain rate and extensional viscosity

0 A

F eng  =σ  

0 L

d eng  =ε 

engengh   ε σ  σ     −= 1 engh   ε ε    += 1ln

h

h E ε 

σ  =

F stiffness =

0

0

 Ld 

 X  X ∆= µ ( )

2

222

285.14

116

 Dd 

 E  ×

=

  µ 

00h A

Fh

 A

F  B   ==σ  

( )t uh

u

 z

 z B

−=

01

ε &

 B

 B B

ε 

σ  η 

&=

26

Page 27: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 27/54

Emulsion Rheometry on Texture

Analyzer With Back Extrusion• For low viscous systems

such as emulsions with

medium dropletconcentration, backextrusion may be used

• Material is pushed

through the annular gapbetween the plunger andthe sample cell

• Flow situation very

complex• Exact mathematical

description difficult

27

Page 28: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 28/54

Experimental Design -

Rheometry

Rheometer DesignsSteady and Dynamic Shear

Experiments

28

Page 29: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 29/54

Emulsion ViscosityFrom Latin: mistletoe = viscum, a plant thatexudes a viscous sticky sap when harvested

Ratio of shear stress to shear rate (Pas, N/m2s)→ shear rate is the velocity of the fluid at a givenpoint in the fluid divided by the distance of that

point from the stationary plane.An “internal friction” coefficient!→ as fluid layersof different velocities move relative to eachother, the friction generates heat and energy isdissipated

Viscosity is an energy “loss” term.

29

Page 30: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 30/54

Page 31: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 31/54

Apparent viscosity:Viscosity at aspecific shear rate!

Rheogram: Graphical representation of the flow behavior,

showing the relationship between stress and strain rate.

Steady Shear Flow Curves – “Rheogram

( )γ  

γ  η 

&

&   ==   f η1

η3

η2

τ

γ 

31

Page 32: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 32/54

High Shear

Rate Range

   V   i  s  c

  o  s   i   t  y     η     ηη     η

ηηηη∞∞∞∞

Shear Rate γ γγ γ 

Viscosity Behavior of Multiphase Dispersed

Systems (Emulsions)

γ γγ γ 1   γ γγ γ 2

ηηηη0

Disp. Phase Cont.

Structural forces

Disp. Phase Cont.

Yield Stress τ0

Hydrodynamic forces

Disp. Phase Cont.

Disp. Phase Cont.

Disp. PhaseCont. Phase

32

Page 33: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 33/54

Emulsion Flow Curves In Absence of “Time-

Dependent Behavior”

Yield Stress:

Emulsions thatmaintain shape

(don’t deform) aslong as they are

subjected tostresses below acritical level.

Can be an importantquality parameter(mayonnaise)

Can pose problemsin processing

   Y   i  e

   l   d   S   t  r  e  s  s

Shear Rate

   S   h  e  a  r   S   t  r  e  s  s

33

Page 34: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 34/54

Shear Rate [1/s]

0.001 0.01 0.1 1 10 100 1000

   S   h  e  a  r

   S   t  r  e  s  s   [   P  a   ]

2

5

20

50

1

10

100

upcurve

downcurve

Time-Dependent Behavior Becomes

Apparent at High Droplet Concentrations

• Rheometry can

reveal time-dependence ofcolloidal

interactions• Reformation of

flocculatedstructures after

disruption

34

Page 35: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 35/54

Observations:Materials like rubber

instantaneously deform whenloaded with strain.When the load is removed,elastic materials recover

immediatelyEmulsions require time andmay not recover at allplastic behavior especially at

high droplet concentrationsEmulsions areVISCOELASTIC

Time

γ 

Time

τsolid

Visco-elasticliquid

Time Dependence of Emulsion Flow

Behavior

35

Page 36: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 36/54

Emulsions: “Lossy” Materials with Spring and

Damper Similarities Elastic materials store energy

Emulsions are viscous anddissipate energy:

Emulsions with high dropletconcentration store and dissipate a

part of the energy

t

   E  n  e  r  g  y

   E  n  e  r  g  y

   E

  n  e  r  g  y

t

t

Time Dependence !!!

36

Page 37: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 37/54

1. For small strains, the material function is ONLY afunction of time:

dττττ = G * dγ γγ γ 

2. After a step-strain experiment, the stress of viscoelasticmaterials decreases exponentially:

G(t) = G0 * exp (-ττττ/l)

3. If we conduct the step strain experiments at differentintervals, we’ll find that for each time we’ll get a different

relaxation – the overall relaxation is the sum!G(t) = Σ Gk * exp(-ττττ/lk)

How to Describe Time Dependence of Emulsions?

- Maxwell’s Approach

37

Page 38: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 38/54

Maxwell’s Approach Visualized as Springs

and Dampers

oe   τ  σ σ  −

=

1 2 3

1 2 3..............   n

t t  t t 

n ee e e e

  τ  τ   τ τ  σ σ σ σ σ σ    −−   − −

= + + + +λs

λd

n

Relaxation

time

A series of springs and damperseach having a characteristic

“response” time

38

Page 39: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 39/54

-3

-2

-1

0

1

2

3

0 13

time

   s   t   r   e   s

   s    o

   r

   s   t   r   a   i   n

-3

-2

-1

0

1

2

3

0 13

time   s   t   r   e

   s   s 

   o   r

   s   t   r   a   i   n

-3

-2

-1

0

1

2

3

0 13

time   s   t   r   e

   s   s    o

   r

   s   t   r   a   i   n

0o < δ < 90o

δ = 90o

2π/ω

ELASTIC

VISCOUS

VISCOELASTIC

How to Measure The Time Dependence? -

Oscillation

Gelastic   ′=

The stress response is the sum of

an elastic and viscous response:

Apply oscillatory deformation:

( )t sin0=

τ    &

Gviscous   ′′=

 f π 2=

( ) ( )t Gt Gsumτ   cossin00

  ′′+′=

G’: Shear Storage Modulus

G”: Shear Loss Modulus

δ=atan(G”/G’): phase angle

39

Page 40: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 40/54

Response of an Emulsion to Frequency Sweep

Storage Modulus (E' or G')Loss Modulus (E" or G")

TerminalRegion

RubberyPlateauRegion

TransitionRegion

GlassyRegion

12

                                                                                                                                                           l                                                                                                                  o                                                                                                                        g                                               

                                                                                                                                                             G                                                                                                                                                           ‘

                                                                                                                  a                                                                                                                        n                                                                                                                                                          d      

                                                                                                                                                             G                                                                                                                                                           "

ωlow droplet conc.

High droplet con./ W/O emulsions

Not observable with standardrheometry

40

Page 41: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 41/54

1 0 0

1 , 0 0 0

1 0 , 0 0 0

P a · s

|ηηηη* |

1 00

1 01

1 02

1 03

1 04

1 05

1 06

P a

G '

G ''

0 . 0 0 10 . 0 10 . 1 1 1 0 1 0 01 , 0 0 01 / s

A n g u l a r F r e q u e n c yωωωω

 

P C f

|η* |C o m

G 'S t o

G ''L o s

P C f

|η* |C o m

G 'S t o

G ''L o s

P C 2

|η* |C o m

G 'S t o

G ''L o s

P C 2

|η* |C o m

G 'S t o

G ''L o s

Low Strain Frequency Sweep of O/W Emulsion at

Increasing Temperatures

20 ºC30 ºC

40 ºC50 ºC

Temperature

Angular Frequency ωωωω [Hz]

41

• Can yieldinformation aboutstructural changesupon heating

• Fast relaxation athighertemperaturesincreasinglyviscous behavior

   C  o  m  p   l  e

  x   V   i  s  c  o  s   i   t  y   (  m   P  a  s   ]

E l   a s t  i   cM o d 

 ul   u s

Page 42: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 42/54

Time-Temperature Superposition

42

Page 43: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 43/54

105

106

107

108

109

1010

Pa

G'

G''

-200 -150 -102

-50 0 50 102

150 200°C

TemperatureT

 

Storage Modulus

Loss Modulus

102

103

104

104

101

105

   G

   ’ ,   G   ”   [  m   P  a   ]

Temperature [ºC]

20 30 40 50 60 70 80 90 100

Crystallized

Outer Phase

Melting and

Breakdown

43

Rheological Investigation of Margarine Breakdown

Page 44: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 44/54

Texture Analysis of Emulsions

• Large strain deformation

• Simple compressionbetween two plates

• More complex testspossible with additionalprobes

• No “rheological”information is using

complex probes

x

FSample

Displacement x   F

  o  r  c  e   F

E

F*CriticalForce

44

Page 45: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 45/54

The Instruments: Texture Analyzer

ControlPanel

Servo-motor

LoadingCell

Platform

45

Page 46: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 46/54

Metal versus Teflon Sensors

 

46

St d d T t

Page 47: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 47/54

Standard Tests:

I. Compression and Decompression

Elastic Material (ideal)Nonideal Elastic

MaterialEmulsion

Deformation

   F  o  r  c  e

47

R bl W k

Page 48: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 48/54

Recoverable Work

Total Work

Deformation

   F  o  r  c  e   (   N   )

Compression

Decompression Recoverable Work

Relationship between recovered work and total

deformation yields information about material elasticityImportant in highly concentrated emulsions

48

Standard Tests:

Page 49: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 49/54

Standard Tests:

II. Multiple Compression CyclesDuring multiplecompressions, material

may irreversible deformThe amount ofrecoverable worktypically decreases

Can give insights aboutstructural changessustained during thecompression

Important for Emulsion-”Gels”

   F

  o  r  c  e

Deformation

Multiple Cycles

1st 2nd 3rd

49

Standard Tests:

Page 50: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 50/54

Standard Tests:

III. Relaxation Tests

Viscoelastic Materials

(Emulsions):Intermediate behavior

Structural and

molecular reorientationProgressivebreakdown

Stress relaxation

elastic

viscoelastic

viscous

Time

   F  o  r  c  e

Holding

Compression

50

Page 51: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 51/54

Standard Tests:

Page 52: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 52/54

Standard Tests:

IV. Creep

1

2

3

ε0

ε4 > ε0

   D  e   f  o  r  m  a

   t   i  o  n Creep

Recovery

PermanentDeformation

ε

0

Time

1

100 g100 g 100 g

2 3

4

4

52

Creep in Emulsions

Page 53: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 53/54

Creep in Emulsions

Time Time

IDEAL SOLID IDEAL LIQUID

Equilibrium

Continuous Flow

   D

   E   F   O   R   M   A   T   I

   O   N

Emulsion behavior can vary between these two extremes

53

Standard Tests:

Page 54: Emulsion Rheometry

8/12/2019 Emulsion Rheometry

http://slidepdf.com/reader/full/emulsion-rheometry 54/54

Standard Tests:

V. Texture Profile AnalysisOriginally developedby General Foods

Good correlationwith sensoryparametersVery important:consistent sample

preparationSame size, avoidedges, degree ofcompression,plunger size and

crosshead speedshould stay thesame

54