encs 6161 - ch7

Upload: dania-alashari

Post on 30-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 ENCS 6161 - ch7

    1/15

    Chapter 7

    Sums of Random Variables andLong-Term Averages

    ENCS6161 - Probability and StochasticProcesses

    Concordia University

  • 8/9/2019 ENCS 6161 - ch7

    2/15

    Sums of Random VariablesLet X1, , Xn be r.v.s and Sn = X1 + + Xn, then

    E[Sn] = E[X1] + + E[Xn]

    V ar[Sn] = V ar[X1 + + Xn]= E

    n

    i=1(Xi Xi)

    n

    j=1(Xj Xj)

    =ni=1

    V ar[Xi] +ni=1

    nj=1

    i=j

    Cov(Xi, Xj)

    If Z = X + Y (n = 2),V ar[Z] = V ar[X] + V ar[Y] + 2Cov(X, Y)

    ENCS6161 p.1/14

  • 8/9/2019 ENCS 6161 - ch7

    3/15

    Sums of Random VariablesExample: Sum of n i.i.d r.v.s with mean and

    variance 2.

    E[Sn] = E[X1] + + E[Xn] = nV ar[Sn] = nV ar[Xi] = n

    2

    pdf of sums of independent random variables

    X1, , Xn indep r.v.s and Sn = X1 + + Xn, thenSn(w) = E[e

    jwSn ] = E[ejw(X1++Xn)]

    = X1(w) Xn(w)and

    fSn(s) = F1 {X1(w) Xn(w)}

    ENCS6161 p.2/14

  • 8/9/2019 ENCS 6161 - ch7

    4/15

    Sums of Random Variables

    Example: X1 Xn indep and Xi N(mi, 2i ). Whatis the pdf of Sn = X1 + + Xn?For a Guassian r.v.

    X N(, 2) X(w) = ejww22

    2

    (prove it by yourself)So

    Sn(w) =ni=1

    ejwmiw22i2 = ejw(m1++mn)w

    2(21++2n)/2

    Sn

    N(m1

    +

    + mn

    , 2

    1+

    + 2

    n)

    What if X1, , Xn are not indep?? (hint: useY = AX)

    ENCS6161 p.3/14

  • 8/9/2019 ENCS 6161 - ch7

    5/15

    Sums of Random Variablespdf of i.i.d r.v.s

    Sn(w) = (X(w))n

    Example:Find the pdf of the sum of n i.i.d exponentialr.v.s with parameter .

    X(w) =

    jw (see table 3.2 on page 101)

    Sn(w) = ( jw )n

    fSn(s) =

    es(s)n1

    (n 1)!, s > 0

    This is the so called m-Erlang r.v.

    ENCS6161 p.4/14

  • 8/9/2019 ENCS 6161 - ch7

    6/15

    Sums of Random VariablesWhen dealing with non-negative integer-valued r.v.s,we use the probability generating function:

    GN(z) = E[zN

    ] = n znPN(n)PN(n) =

    1

    n!

    dn

    dznGN(z)z=0

    For N = X1 + + Xn where Xi are independent.GN(z) = E[z

    X1++Xn]

    = E[zX1

    ] E[zXn

    ]= GX1(z) GXn(z)

    ENCS6161 p.5/14

  • 8/9/2019 ENCS 6161 - ch7

    7/15

    Sums of Random VariablesExample: Find the pdf of the sum of n independent

    Bernoulli r.v.s with p0 = 1 p = q and p1 = p.GX(z) = E[z

    X

    ] = q +pz GN(z) = (q +pz)n

    PN(k) =

    n

    kpkqnk, k = 0, 1

    n

    (See Table 3.1)

    N Binomial(n, p)

    ENCS6161 p.6/14

  • 8/9/2019 ENCS 6161 - ch7

    8/15

    The Sample MeanLet X be a r.v. with mean and variance 2. X1, , Xndenote n independent, repeated measurement of X. That

    is, Xis are i.i.d r.v.s with the same pdf as X. The samplemean is defined as

    Mn =Sn

    n=

    X1 + + Xnn

    =1

    n

    n

    i=1Xi

    The mean and variance of the sample mean are

    E[Mn] = E[1

    n

    n

    i=1Xi] =

    1

    n

    n

    i=1E[Xi] =

    V ar[Mn] = E[(Mn )2] = E

    Sn E(Sn)n

    2

    =1

    n2E[(Sn E(Sn)2)] =

    1

    n2V ar[Sn] =

    2

    n

    ENCS6161 p.7/14

  • 8/9/2019 ENCS 6161 - ch7

    9/15

    The Laws of Large NumbersFrom chebyshev inequality for any > 0

    P

    {|Mn

    |

    }

    V ar[Mn]

    2

    =2

    n2

    So P{|Mn | < } > 1 2

    n2

    The weak law of large numbers:

    limnP{|Mn | < } = 1for any > 0.

    The strong law of large numbers:

    P

    limn

    Mn =

    = 1

    The proof is beyond the level of this course.

    ENCS6161 p.8/14

  • 8/9/2019 ENCS 6161 - ch7

    10/15

    The Central Limit Theorem

    Let X1, , Xn be i.i.d r.v.s with , 2 andSn = X1 + + Xn. Let

    Zn =Sn

    n

    nthen as n , the distribution of Zn tends tostandard Gaussian.

    limn

    P[Zn z] = 12

    z

    ex2

    2 dx

    = 1 Q(z) = (z)

    ENCS6161 p.9/14

  • 8/9/2019 ENCS 6161 - ch7

    11/15

    The Central Limit TheoremProof:

    Zn(w) = E[ejwZn] = E

    e

    jw

    n

    ni=1(Xi)

    = E

    ni=1

    ejw(Xi)

    n

    =

    ni=1

    E

    ejw(Xi)

    n

    ( indep)

    = Ee jw(Xi)n n ( i.i.d)(to be continued)

    ENCS6161 p.10/14

  • 8/9/2019 ENCS 6161 - ch7

    12/15

    The Central Limit TheoremProof: (continues)

    Eejw(Xi)

    n = E1 +

    jw

    n(X

    ) +

    (jw)2

    2!n2

    (X

    )2 + R(w)

    = 1 +jw

    nE[X ]

    =0 w

    2

    2n2E[(X )2]

    =2+E[R(w)]

    = 1 w2

    2n+ E[R(w)]

    E[R(w)] becomes negligible compared to w2

    2n when

    n , thereforelimn

    Zn(w) = limn

    1 w

    2

    2n

    n= e

    w2

    2

    So, when n , Zn N(0, 1)ENCS6161 p.11/14

  • 8/9/2019 ENCS 6161 - ch7

    13/15

    Convergence of Sequence of R.V.sX1, Xn are r.v.s, how to define the convergence ofof r.v.s? Recall: a r.v. is a function: S R. SoX1(w), X2(w),

    are functions.

    If Xn(w) X(w) for all w, sure convergenceIf P{w|Xn(w) X(w)} = 1,almost sure convergence, Xn X a.s. (or w.p. 1)If E[(Xn(w) X(w))2] 0 as n mean square convergence, Xn X m.s.If > 0, P{|Xn(w) X(w)| > } 0, convergencein probability.

    ENCS6161 p.12/14

  • 8/9/2019 ENCS 6161 - ch7

    14/15

    Convergence of Sequence of R.V.sa.s. convergence convergence in probabilitym.s. convergence convergence in probabilityBut almost sure mean square.

    Convergence in distribution

    Xn has cdf Fn(x) and X has cdf F(x). IfFn(x)

    F(x) for all x where F(x) is continuous. We

    call Xn converge to X in distribution.

    Convergence in prob. convergence in distribution.

    ENCS6161 p.13/14

  • 8/9/2019 ENCS 6161 - ch7

    15/15

    Convergence of Sequence of R.V.sNote:weak LLN: convergence in prob.

    Mn

    in prob.

    strong LLN: almost sureMn a.s.

    CLT: convergence in distribution

    Zn Z N(0, 1) in dist.In fact Mn m.s. sinceE[(Mn )2] = V ar[Mn] =

    2

    n 0 , as n

    ENCS6161 p.14/14