end-fire radiation from planar and large cylindrical … · endfire radiation from planar and large...

26
'"='•" jfcSWS <0 00 a AFCflL-71-0322 UNCLASSIFIED ^ END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS Giorgio V. Borgiotti Quirino Balzano RAYTHEON CO. MISSILE SYSTEMS DIVISION BEDFORD LABORATORIES Hartwell Rd. Bedford, Massachusetts 01730 CONTRACT NO. F19628-70-C-0226 / PROJECT NO. 4600 TASK NO.. WORK UNIT NO.. 460010 46001001 SCIENTIFIC REPORT NO. 2 MAY 1971 CONTRACT MONITOR: Allan C. Schell Microwave Physics Laboratory This document has been approved for publ'c release and sale; its distribution is unlimited. TDDC n UfsEP 22 19T1 Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151 Prepared for AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Bedford, Massachusetts 01730 C \1

Upload: others

Post on 02-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

'"='•" jfcSWS

<0 00

a

AFCflL-71-0322 UNCLASSIFIED

^

END-FIRE RADIATION FROM

PLANAR AND LARGE CYLINDRICAL ARRAYS

Giorgio V. Borgiotti Quirino Balzano

RAYTHEON CO. MISSILE SYSTEMS DIVISION BEDFORD LABORATORIES

Hartwell Rd. Bedford, Massachusetts 01730

CONTRACT NO. F19628-70-C-0226 / PROJECT NO. 4600

TASK NO..

WORK UNIT NO..

460010

46001001

SCIENTIFIC REPORT NO. 2 MAY 1971

CONTRACT MONITOR: Allan C. Schell Microwave Physics Laboratory

This document has been approved for publ'c release and sale; its distribution is unlimited.

TDDCn

UfsEP 22 19T1

Reproduced by

NATIONAL TECHNICAL INFORMATION SERVICE

Springfield, Va. 22151 Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE Bedford, Massachusetts 01730

C

\1

Page 2: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

-——^— .—. «I • —"—»—" •- ■-. -"■ ■'•-"■ '«"»

-

imCLAiSSTFrFn Security Ojg»iflcrtioti

DOCUMENT CONTROL DATA (ttrwHr cl—eltlcmiim at MM«, *••> of «>CW» «Ml feMtocm«

R&D

I. ORIGIN A YIN6 ACTIVITY 'Corporar* wii<

Raytheon Missile Systems Division Radar Laboratory Bedford, Massachusetts 01730

■»— «js gyri M>««M M C«M* »MO

2«. »C»0»T IICUKITV CLASSIFICATION

Unclassified 2 6 GNOU»

1. REPORT TITLE

ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS

4. oescmPTive NOTES r*Vp« »' »P»«

Scientific Interim •mf inchiai** rfafaaj

I. AUTNORW (L»tl nmm: Hral MUM, InltlU)

Borgiotti, Giorgio V. Balzano, Quirino

«. REPORT DATE

May 1971 7a- TOTAL NO. Or PACKS

27 7». NO. OP nmws

10 •a. CONTRACT OR GRANT NO.

F19628-70-C-0226 ft. RROJBCT NO.

4600-10-01 e DoD Element: 62702F

* DoD Subelement 674600

tRTSJ

BR-6410 Scientific Report No. 2

• ft. OTHCR RfPOAT HO(S) (Any oth; number» tfiar may ft« aas/jnad tftMr report)

AFCRL-71-0322 10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution

is unlimited. II. SUPPLEMENTARY NOTES

Tech, other

12. SPONSORING MILITARY ACTIVITY Air Force Cambridge Research Laboratories (LZ) L. G, Hanscom Field Bedford. Massachusetts 01730

II. ABSTRACT

The analysis and the design of the elements of a large array of circular apertures on a triangular grid is approached by modeling the antenna as an infinite structure rotationally symmetric and periodic along the cylinder axis. Because of this particular symmetry every possible excitation is the super- position, with suitable weights, of a set of fundamental excitations having uniform magnitude and linear phase progression in the azimuthai direction and in the direction of the cylinder axis ("eigenexcitations"). Thus, by invoking super- position the electromagnetic analysis of the array is reduced to the solutions of the simpler boundary value problems pertinent to the set of eigenexcitations. This is done by expanding the field in normal modes in the region exterior to the cylinder and in the waveguides feeding the apertures, followed by a field matching at the cylinder surface (obtained approximately through Galerkin' s method). The realized gain pattern of the radiators can be modified to a con- siderable extent by using an "element pattern shaping network" (in the radiator waveguides), serving the purpose of matching the array for a selected eigenexcitation. Criteria for the network design are given. A series of numerical examples illustrates the technique and shows that a "flat" element pattern can be thus obtained with a gain fall off with respect to the peak of less than 6 db at 80 degrees.

1473 UNCLASSIFIED Security Classification

Page 3: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

" .'. I 1 ■ <JWM1 ji , ■m.jy.in,.mnmjt*!iH;jn

UNCLASSIFIE D_ Security Classification

T* KEV WOfiOi

Phased Arrays Endfire Arrays Conformal Arrays

LINK *

HOLE WT

LINK ■

noLC

LINK C

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee. Department of De- fense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group < is author- ized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in alt cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progresa, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of authors) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count ahould follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, k 8d. PROJECT NUMBER: Enttr the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- cial report number by which the document «ill be Identified and controlled by the originating activity. This number must be unique to this report. 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim- itations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1)

(2)

(3)

"Qualified requesters may obtain copies of this report from DDC"

"Foreign announcement and dissemination of this report by DDC is not authorized," "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

(4) "U. S. military B^JH "-it* may obtain copies of this report directly froKi Dr<C Other qualified users shall request thtcu-':

(5) "All distribution of this report is controlled. Qual- ified DDC users shall request through

If the rrforv has been furnished to the Office of Technical Services, I. .p?.tment of Commerce, for sale to the public, indi- cate this i»ct and enter the price, if known, 11. SUPPLEMENTARY NOTES: Use for additional explana- tory notes. 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay- ing for) the research and development. Include address. 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re- port. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified re- ports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in th* paragraph, represented as (TS), (S), (C), or (V).

There is no limitation on the length of the abstract. How- ever, the suggested length is from ISO to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selectee* so that no security classification is required. Iden- fiers, such as equipment model designation, trade name, mili- tary project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED Security Classification

Page 4: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

wJWaL_,.:ujf|iapju.iJHi **•- MJJLH-* ■,~MJJUI ~^^*--—-TV-^L-r^-rcw^-«-.''

AFCRL. \^H UNCLASSIFIED

t

Details of fflus^SM«^^

END-FIRE RADIATION FROM

PLANAR AND LARGE CYLINDRICAL ARRAYS

Giorgio V. Borgiotti Quirino Balzano

RAYTHEON CO. MISSILE SYSTEMS DIVISION BEDFORD LABORATORIES

Hartwell Rd. Bedford, Massachusetts 01730

CONTRACT NO. F19628-70-C-0226 PROJECT NO.

TASK NO.

UNIT NO.

SCIENTIFIC REPORT NO. 1 MAY 1971

CONTRACT MONITOR: DR. ALLAN SCHELL USAF ELECTRONIC SYSTEM DIVISION

DISTRIBUTION

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE Bedford, Massachusetts 01730

Page 5: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

ABSTRACT

\ Endure radiation in planar finite arrays of circular apertures in aper-

tures in triangular arrangement is investigated by using a technique con-

sisting of using the results obtained via the usual infinite array model as a

zeroth order approximation of a perturbation procedure. It is shown that

finite arrays can be scanned up to 90 degrees from broadside, still retaining

substantial radiation. The endfire radiation can be enhanced through an

appropriate design of the element feed network. With minor modifications

the method can be simply applied to the approximate investigation of the

radiation of an array on a cylinder (having a large radius in terms of wave-

lengths) in the axial direction.

xii

Page 6: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

TABLE OF CONTENTS

Page

ABSTRACT ii

ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1

1. Background 1

2. Edge Effects in Planar Periodic Arrays Z

3. Endfire Radiation in a Planar Array 5

4. Finite Arrays on Cylinders - An Approximate Analysis of the Axial Radiation 6

APPENDDC 8

REFERENCES 19

Page 7: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

-. ■ ■■■ ■■ ■

UNCLASSIFIED

LIST OF ILLUSTRATIONS

Figure Page

1 Array Lattice 10

2 Amplitude of Element Voltage 11

3 Amplitude of Element Reflection Coefficient 12

4 Array Pattern, Broadside Match, Broadside Scan 13

5 Array Pattern, Broadside M-ich, Endfire Scan 13

6 Amplitude of Element Voltage 14

7 Amplitude of Element Reflection Coefficient 15

8 Array Pattern, Match at 80 Degrees from Broadside, Broadside Scan 16

9 Array Pattern, Match at 80 Degrees from Broadside, Endfire Scan 16

10 Gain versus Scan, Planar Array, Broadside Match 17

11 Gain versus Scan, Planar Array, Match at 80 Degrees from Broadside 17

12 Gain versus Scan, Cylindrical Array R = 50X 18

13 Gain versus Scan, Cylindrical Array R = 50X 18

Vll

Page 8: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

iiii.iijIWI.JIJ iiii|Wiii|i. i.i iw^iiw iiiinmipi. WIBHW»JI,.IU.IIII.IIUIII.II»IIIIL A.m.» m. .HipiW. ■ «."W—"«JJWIWUi. .-<~

UNCLASSIFIED

ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS

1. Background

The analysis of planar and cylindrical periodic arrays is usually based

on the infinite array model [ 1-6 ] . In this way all the analytical problems

related to "edge effects" are avoided by simply postulating that the environ-

ment is the same for each element. It is well known that according to this

model a planar array cannot have any endfire gain. Also for cylindrical

infinite periodic arrays the gain can be shown to go necessarily to zero in

the direction of the cylinder axis. It is consequently clear that the infinite

periodic array model becomes useless for those directions for which end-

effect plays a fundamental role, and a formalism which better reflects the

physics of the phenomena must be sought.

Considering the finiteness of the array makes the analysis very involved,

and leads invariably to facing the problem of the inversion of large matrices

with complex elements. The problem can however be circumvented through

the use of a perturbation technique, based on the recognition that for a large

array the "eigenexcitations" of the structure (eigenvectors of the element

scattering matrix) [7] are "not too different" from those of an infinite

structure (with the same element and spacing).

A technique based on this idea, which does not require any large matrix

inversion, has been recently introduced and applied to the analysis of an array

of uniform slits on a conducting ground plane, considering the radiators as

"one mode" elements [7] . This report extends the results of [7] in three

respects:

• The practical case of circular apertures in a triangular

arrangement is considered.

• A technique for enhancing radiation in directions close to

endfire is developed, based on the idea of modifying mutual

coupling among elements, through the us * of matching networks

in the waveguides feeding the elements. 1

Page 9: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

~~ : «"^V-BIHWSW"

UNCLASSIFIED • An approximate simple method for the analysis of the radia-

tion of a finite cylindrical structure for axial scan has been

introduced.

In Section 2 the formalism for planar arrays is very briefly discussed.

Computed examples are presented in Section 3, focusing the attention on the

influence of element matching networks on array endfire or quasi endfire

radiation. In Section 4 it is shown how the planar array results can be useful

in cylindrical array performance evaluation.

The development in this report is based on the algebraic technique

developed in Reference [7] , which for reasons of brevity, will be assumed

familiar to the reader.

2. Edge Effects in Planar Periodic Arrays

The structure investigated consists of a periodic array having as

elements circular waveguides terminated on a ground plane. The elements

are arranged in a triangular grid and the array is infinite in y direction and

has a finite length in x direction. The lattice geometry is indicated in

Figure 1. The elements in each infinite column are assumed to be in phase:

thus only scan in a plane orthogonal to the array edge will be considered.

Free array excitation is considered, i.e., the elements are excited by a

set of incident waves in the element waveguides.

The polarization is in the plane of scan and the waveguides are filled

with a dielectric material having a dielectric constant e = 2» 5. A matching

network, located far enough from the aperture not to interfere with the

evanescent waveguide mode, completes the idealized element.

In order to simplify the analysis, the functional form of the element

electrir: transverse field distribution is assumed independent of scan condi-

tion and equal to that of the fundamental waveguide mode polarized in the x

direction. Thus, the element interactions are assumed to effect only the

element relative complex voltage levels. For small elements and polariza-

tion in the plane of scan this approximation has proved to be very good in

infinite array analysis, and it can be safely conjectured that this will be true

in the finite case also. The relative complex levels of the element voltage

Page 10: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

qpr^SW« A W Rf JPI^t !«!P. ■'I'"» •■-■A M a.*^*"-^ -■■

^ jr-rv. *%,

1

UNCLASSIFIED

ai* oH*i»*d by a.*ti* - ■&£■ Vrciavlq«« of transforming the field problem into a

n*lw<»yfe pyx>tl",m. 1 bs> x&p&Hifäi consists of considering each (infinite)

column ae a «sistfl« e*e>t;c.ts£ d an equivalent linear array, and determining

tht> relative- net oi seif »-^ rautua? admittances via the Fourier Transform

method £8]. Denote by ?-. Jie excitation of an element of the ith column

^be excitatioB A aU the ether elements of the same column being the same).

The set oi ihs quantities a. can be concisely indicated as a vector column

a w fi = I. . . N-l) (1)

in the input space of the array having a dimensionality N equal to the number

of array columns. The element voltages similarly are denoted by the vector

V_related to a by:

V = -»/T(YTU + Yf1 Y ~1'2 a —"" -MZ2 3E JL» "•

(2)

where standard normalization has been used (see for example [8]).

In Equation (2) U is the unit matrix of order N and Y. is the admittance

looking into the element waveguides, assumed equal for each element. Thus,

Y. depends upon the internal admittance of the equivalent generator feeding

the element and upon the element matching network. The elements of the

Nth order matrix Y are the admittances between columns (as discussed in

some detail in the appendix) given by

+O0

it k» h ZLrf (-1) (i-t) f +00

m=-oo .00

i2/ 2 , ke„ +w -JL.

w

(3)

eju(i~t)ddu

mir "IT

where 6 and 6 , are the polar components of the Fourier Transforms of P «I»

the fundamental waveguide mode (nominally polarized in the x direction)

whose expression is given in the appendix, w is the wavenumber in the z

direction related to the two coordinates u, v of the wavenumber plane by:

w = JJ u (4)

Page 11: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

(the appropriate branch of Equation (4) being chosen in order to satisfy

radiation condition), k and rj are free space propagation constant and charac-

teristic impedance. The various integrals in Equation (3) must be calculated

for v = rmr/h, as the notation indicates.

To avoid the direct matrix inversion Equation (2), through a series of

manipulations (described in detail in [7]) the following Neumann series is

obtained:

v*1 21+(i)ä -ll" -l v = 2^ ™w y +Y(i) + M {= V= iSYg+S i=o g ' L

N-l +.., r ^s

L i=0

where m(i) are the set of vectors

M+a (5)

m(i) = j N"1/2 exp (-j2TTik/N)[ (i, k=0, 1 ... N-l) (6)

M is a matrix whose columns are the vector m(i). Y(i) is the active admit-

tance for a uniform excitation and a phase progression equal to 2iri./N for an

infinite reference array with the same elements and spacing. D is a diagonal

matrix whose elements different from zero are given by Y(i), (suitably

ordered) and:

Q = M+YM-D (7)

Once the aperture voltages are found, the element active admittances and

array patterns are determined through standard procedures (see for example

[7]). Since this investigation aims at determining the scan limitations of a

finite array, the attention will be mainly focussed on endfire or quasi endfire

scan. It is apparent that the realized gain pattern of the array in the direc-

tion <>i scan (gain referred to the power of the "free excitation" :.e.,

including mismatch loss) depends essentially upon the nature of the network

located in the element waveguide. In an infinite array it is possible to match

the structure for radiation in any assigned direction (different from endfire).

In a finite array instead the input admittance is different for each element,

Page 12: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

'■"-r~■■■" -■ ./^wanajwB

UNCLASSIFIED and a perfect match of the array can be obtained only by using different

matching networks for different elements. However, it is physically clear

that placing in each element transmission line equal networks which would

yield perfect match at a direction close to grazing angle for an infinite array

will improve endfire or quasi endiire radiation. This is obtained, of course,

at the expense of broadside gain.

3. Endfire Radiation in a Planar Array

Consider an array with a number of columns N = 26. The element size

and lattice are those of Figure 1. The "free" array excitation a consists

of terms having equal magnitude for each column with a linear phase taper

from one column to the other. Different choices of the element tuning net-

work (equivalent to a shunt susceptance and a perfect transformer) are

considered, yielding perfect impedance matches for different scan angles

in an infinite reference array (i. e., with the same element and lattice ).

In Figure 2 the magnitudes of the aperture voltages of the elements versus

element positions have been shown for broadside match. Three different

scan directions have been considered. A long "spatial transient" is present

for 80-and 90-degree scan conditions. The aperture voltages for endfire

scan vary along the array tending to the short-circuit condition typical of an

infinite array. The phase of the voltages is essentially linear with only little

difference from that of the free excitation, and thus has not been indicated.

Figure 3 shows the magnitude of the reflection coefficients for the same

match condition and three scan directions. For endfire radiation the moduli

of the reflection coefficients increase going toward the edge from which the

radiation occurs. All the elements in this scan condition are badly mis-

matched as expected. Figures 4 and 5 show two array patterns (for this

match condition) for broadside and endfire scan. Figures 6 through 9 show

the effect of a different matching network. The reference infinite array is

matched for scan at 80 degrees from broadside. It is apparent that now the

The evaluation of the active admittance in the finite reference array necessary for the calculation of the parameters of the tuning network is done through well known methods recently developed [5-6],

Page 13: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED array is matched in a much better way for extreme scan angle. The element

active reflection coefficient now decreases when approaching tl e radiating

edge (Figure 7). Figures 8 and 9 show the radiation patterns for broadside

and endfire scan. For this match condition the difference of gain scanning

from broadside to endfire is about 3. 7 dB.

The difference of behavior between the two element match conditions is

clearly illustrated by the curves of gain envelope versus scan angle in

Figures 10 and 11.

4. Finite Arrays on Cylinders - An Approximate Analysis of the Axial Radiation ' ' " '

The "infinite array" method of analysis consists of considering a

cylindrical array as the excited section of an infinite structure periodic in

both the longitudinal and azimuthal directions [10], This model neglects

endfire effects and therefore is of no use in predicting the radiation pattern

for directions close to the cylinder axis. Here below a very simple method

is presented which is believed to yield reasonably accurate performance

predictions for radiation patterns in directions belonging to the axial

symmetry plane of the array.

Consider a structure consisting of N rings of elements on a cylindrical

surface. The elements are the same and are arranged with the same lattice

as in the planar array previously considered for the planar case. Suppose

that only a region azimuthally confined between the two angles ~4> and <j> is

excited. The analysis of the radiative properties of this structure can be

performed through a procedure requiring the inversion of matrices of Nth

order only. As discussed in detail elsewhere [9], this is obtained by

decomposing the original problem into a set of simpler reduced problems

concerning the analysis of linear arrays having as "elements" entire rings

of radiators excited with constant amplitude and linear phase taper. These

reduced problems can be in turn approached by using the technique described

in Section 2, avoiding in this way even the direct inversion of the Nth order

matrices. The procedure will not be described in detail because in most

cases it can be replaced by a useful simple approximate technique, based on

the recognition that for a cylinder with a large radius both the realized gain

Page 14: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED pattern and the pattern of the isolated elements are, in the axial plane,

practically identical to their counterparts for a planar array. Consequently,

in the axial plane the cylindrical array pattern can be obtained from that of

a finite planar array simply by multiplication by a factor a depending upon

the azimuthal angular extension 2$ of the array. This factor takes into

account the polarization effects arising from the fact that axially polarized

elements located in different azimuthal positions give differently polarized

contributions to the radiation field on the cylinder axis.

Suppose that the array aperture has a rectangular shape, limited by the

angular abscissa <j> and -<J> , symmetric with respect to the axial scan

plane. Consider a planar array having the same elements and lattice, and

a number of columns equal to the number of array rings. When all the

elements are phased to contribute in phase in the scan direction the pattern

of the conformal array in the axial plane is approximately obtained by

multiplying the planar array pattern by the factor

-, ? sin <}> a (9) = cos^ 6 + sin^ 9 ° (8) p s s s <j>o

9 being the angle from broadside in the plane of scan. Expression (8) is

determined on the basis of simple geometrical considerations. In many

cases for large cylinder radii and relatively small 4> 's, the expression

(Equation (8)) is very close to unity.

Figures 12 and 13 show the gain envelope versus scan angle for a 273-

element cylindrical array with a rectangular aperture and an angular exten-

sion 2(j> = 49 degrees. The element size and lattice are those of Figure 1.

Page 15: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

APPENDIX

Denote by E^ (x, y) the transverse electric field distribution on the

reference element, whose center is at the origin of the x, y coordinate

system. Thus, the electric transverse field of the ith column can be

written

E(l) (x, y) = V* E^ [x - id, y - (2m+i)h] m=-oo

where d and h are the distances between columns and between rows,

respectively. Introduce the Fourier Transform £ (u,v) of E (x, y):

+00 +00

£o(X« y) = 27 / / £ (U' v)e"j(UX+Vy) du dv

(Al)

(A2)

.00 -00

The transverse electric field of the ith column can be expressed as follows:

+oo +00 +00

E(i>(x,y)^ f f iKv^-^e^^^ «<v-E*)dudv (AJ)

_oo -oo m=-oo

Use has been made in Equation (A3) of the well known Fourier representation

of a periodic delta function.

The mutual admittance Y.. between two columns i and t is defined here

as the short circuit aperture current of an element in the column i when all

the elements of column t are excited with equal unitary voltages. By using

the results of [5] it is easy to establish the expression (3) for Y...

The polar components of the fundamental circular waveguide mode

polarized in x direction are given by:

8

Page 16: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

/

t

i

UNCLASSIFIED

/Z Veil»"1

where a is the radius of the element aperture, x*. is the first root of the

equation JWx) = 0 and

4. / 2 J 2 t = vu + v

u COS [I

777 2 V

V sin |x =

vu i v

If in Equation (A3) |i-t| >> 1 (practically > 3) the following asymptotic

expression can be conveniently used:

2 +°° v * Y™* I. 2r2 2 2 „ (2) . |. .... Yit = k^h L, k*p

+rf+w | Ho '(um|x-t|d) m=-oo m

with:

u m i^)

Page 17: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

*«■•■■•«•■• BHIBII II «tlllllltllllM* »I BUB II» •■lllll(M«MI ••«■■■■■llOilOMKtt ■•■■! • ■•)■■•■■•■ •■■■■•■■■■*■■■■*•■•«■■■■■•■»•■ Itmitlltltl I IKIIIUIIukllMIIIUUtllM ««*!• ■ •■a« aiinaaaiailiaa BI£*B ■««■■ ■•■ a v aaaat laaailaaai laia-" .. ..: MuiiiiiiiiiiiiiiiiiiihiiiiMiiiiiiiii liilliillltlltllllllllltlUlM iHllMiflililiililiM .iMliilu'iUliiiiiliiiili tlMiltiiiiiiin ixiiiiiiiiuilllllllllllilHIlllyiiimiMllliiiili rj4iiiimiiii>.<iiiliiii»iiiiiiiii>iiiiii)iiiiiiiiti ■ ii*iiiii*iiiii>iiiiiii«iiiiiiiiiiMiiiiiff*liii«' ilUiiiBiiiiiiik^tiilililiBiii uiiiiiiiiiiiii • ■■•■■■■■■ ■IMIIII|ll|U|IHHMNlMni|IH«fll' 4i>l>iiiiiill»n«ui •■■••■■•■■■■■■■■■■■■•■■■■■■■■■I HllltllilllMlUHIIIIIIIIMIIIIMIIIIIlllililMIIIIIIMflllllllllklllllllllllllllllllllllllllllllll iii«iiiiiiiiiiiiii«iiii|iii«iillUM«iiii««llii iMMit •• iiiiiiiH Hiiiuiiuiiiiiiitiirtiii ■ ^••■■■■■■■■■■■»■•■■■■■■•«••■••■■.■»■■«•■»»««»^•■■■■«a «'«■HHHIiiiillliiliiiiiilliiilililatiiliiii ■ Miii*tu)iiiiiiit*iiiiiMtiiinuiiMMii*ii imim iiuiuiiiia IIMIKMIIIIII >iiia<i>u iiniimi Mi«ii««iiiiiiii»t»iiiiiiifiiiiiHii IIIIIIII. -iiiiiiiiiiiiii ■iiiiiiiiiiiiMiiiiiiiiiiiiiiii ■ iiiiiiiiiiiiiMiiiMiitiiiKiiiiiiiiiiiiiiiiimiiiiiiiii iiiiiiiMiii ■•■■■•*■■■ iBffiaaaaa ■■■■■■■■in ItUilliinilliiilil IIHIIIIMMIIIIIMIIIIIHIIIIIIIilltlilllllliilll ■■■lIUIIItllllllllllllllMIIH

aii*i«iiitiiiiiiiiiulMilliiliiniliili niiiiiiiiic ;kiiiiiiiii<Miiii«(i*i«ii»iiiii»ii«iiii ■ ■■iiiiiilitii»iiiiMiiiiiiiiniiitMri ■Miiiaiiiiim ^iiiiiMiiiintiiiiiiiiiiMMiiii >

a»«■■■•••■ ■■■■IIIIIIII .«iiimiliili« it »■«■■••ill IMUIIII l*iil > ' II4IIII, ■•■•■■*•■■•■ ■■. *■■■>** |ll|llllllllllllllt»IMIIIIIIIlilfllll.llllllltfllUII||l|ll l-l ,]_' i ( Ml.lllpllMHIlMliLillllI II1HIIIIIIIIIIIII1I llllllllllllllMMIIIMIIH^IIlllIll.jllll'jfllllUI llilltlllllllltlll, mil |IHia»MMIIJiltlll'ii1lii|Mill<tllilll llllllflllk^ lltlll/llllllllr illMiii Ulli ■•■■ ■•MlllUiiaillUll iilllllilltlUllllltli miiiiiiti.'uaMiii'jiiiMiiaia laiiiiiaaaiiianiaiiii nil ■ •■■•■fllMitMtlll' MHIIIIIIIUIIIIIIH a !•««■«••» ii|i> - " •••■■•^•i iiirvii '»■ imiiMiii mill »•■ MiiiaiiiiiiiMiii (iiiiiiiiiiiiiiiiitiir it itaiiiiMiu iiiiiuinn Jiit iitiaiiiiiiimitt itt liiiiitaiiiiiaitai iiiiiiiliii|iiiiiiilliitilMililuiiiiiii>iiiiti«iiiua ia-_- iliuillllillllllii »a« ■ ■■•iiitiiMaiiHliDiiiilllllllilllillllltiliaMlliilliitiM« ■lllllHllll ■• aa■ ■■ ■«■■!■■■■■ Ill■■ if III ■■■■■«■■•a iBiaatpi ■■ ■■■JiiiiiiiiaiaaiafliB a a Banaaaiiaiiaiaa ut jimaaiaaii •■•■tiniiMiiiiiliHiai >■■

a mil ui«i iniiiiiitn

a a a a a a-a a a a a a a

aiiiaaia Sniaiii IIIIIII

ma« iiaaiiaai •■iiitnaaMiiaailiia r ■■■■■■■■■■■>«iMM!li.'*iHIII ail« 'lilHiiillliailtuiiniiii liiiiiiniiiuiliiil nil uiiiiiiiti jimiiaiiif.iliiiliiiiii. lliiiiiiiktiuiiMain • ,iiaaa mill «iiitiiii iliiuiilUlilllli IHII4III' **o*aaaBaaaaiaak.t»aaa»jB*a..afiaia*aaBaaaai«>a liaiaa

iiiiiiiiiluiiiiuiiia.'iiiiiiiiiliiirjiiiiiiair*aii«jiiiiiiiiiiiii. aa iiiiaii. iniiii ■■■■■■«- maaaaa iaaaiiaaafiaMiiBa»|aik"iaaitii|ti'4Miiiaai«i <iiiaaa.aiaaia ■•■■■■■■M uiiiiiik -IIIMIIMI -«aaaaaaai ■ iiiiriiiHIiiliiMiiiiiiih.■«•in»' .iliiIiailll'iililHHiiaMilliiliHHi I. '«»■• - aaaaiaaiaaa. • Illllllllllllllllllllllll lllllHllll lllllllllllllll ItlMIMMIO tu I

iiaaiSSSSiiSS

lll.lHllllillllilllir;iaiiilllllllMMMal.aaiiiiiaiaiiaMiiiiiiii ■ nit. •■MMaiiamiir.iaaMiiiMliMMaMMiaa piaa ■■■■•■ aanaaiaai amiaiiai ■ ■■■iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiipiiaiaiiiiiL ilMiHHiiaaai''iaiiiaaaiinaaiiiiiiiiii piiiiiiiiMimiiiaiiiiiiiiiii

aiiäaiaSiaiiiiaaiiaiaiaaaiiaiiaiaiaiiaiaaiaiaiaaaa.-aaaaaiiaaaaa'^aaaa« mtaa • • ■ lllllliiliiitlllilillllliiiiUlllllUllllllllilllll, •MllltlfMlill iiiMMiaiiinnMiii niaai illiialliliiliil ■■ iMliliiMiitilll •■iiMiililliiiiMliiMini a IIIMIIM aMIiaiMiMMiMi iMiiaaaliiilBiaiaiiiiMMMiMiiiaia ■■iiMiiiiiintaMiaaaataMaiaiaMM iiaiaaaaa

Figure 1 - Array Lattice

N0T REPRODUCIBLE

10

Page 18: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

■a! ■•••■•■ !"!!.!E.i ■"••"•■! •*

i::::::::':::!::::::::::::::i;

«■•■••■■••■•(■■■•••■■•••■••■■••••■■■tu •••«•■■••iitiiiiiiiiiaiitii tu«* ■>fiit>iiaiiitii»i>»i [••«■•■■••••■•••••••■•■■••"•••■•■»■■•■•■•■•«••••••••«••■••••■•■•••••••••••••■•■••••••■••••■■••••(■■•••••' ■•■■•■■■■■a■■■■■■■•■■■■•■at■■■■•■■■■■■■■■■■■■■■■■■■i■■■■pa■«■■■■■■■■■•■■■■••■Maaiaaaaaaaaaaaiaaa■■■■■■•■) ■ ■•■■••■■•■■■■■••••■■■■■■■•■■■•■•■■■•■■•••■•■■•••■■••■•••■•■•■■•••■•••••■■■••■••••■•■■•■••••U'ltlllllli»' ■ •■■•■•■■•■■■•■•••llalll ••■••••••••••■■••■■■••■•■■■•IIIIIIIMillllilllllllllllKIIIIIIMIIIlMII ' IB • llMaiiiaaiiliail(ii>ailaiiiailiiaiiiiaaliiiaiiMiaiil(iila|liii|||||||||||||||||l|ai'iiiiiaiiiaiiiiijaii ••■■•■■■••■•■■■■•••■•l(liailllllliiiiiiilHiaiaai>ai|aM(lllllllllaiiaiiilaiiilui>l(illllltllMliiil^ *•»■ ma a■■•■■■■•■■■■■■aaaaaa■•■••■■••■■■•■iiaaii■••■••■•alalaaa■*■■•■•••■■■■•■■■••■•••••■••••••••■i•■••'.■•■ ■• • ■ ■•■■■■■••••■•■■■[••■•■■••••••«•■■■•■•■•••i ■■•■■•■••■••■■■•■■■•■■••■■■•■■■I i....iiii. ..■ ■■•- • ■ ■■■■aiaaaaaaaaiaarf*alMaaa|aaaaaaaaaaaaaalaaaiaaaaakaaaaaaaaaaatraa••••■aaaaaaaaaa•■•■•••■■••■•• .aa-.aa-i • ■■■■■••■••■••■■••■••••iiaaiiiiaiiiiiiiiiiiiiaiiiiiiaiiaiiiiiiiiaiaiiiiiiiiiiiiimimiiiiiiiaiiMti . • > . • «••■••i ■aMMi«aaiiiii.iaiiiiiiiiiuiaiHaiiiiiaiaiiiiiiiiia|iiiiiaiiaiaiiai«aiiaaiiii •■■-•■ ■ • •••••■aiaia>iat«ii»aiiaaiiaiMiHiiiiaa.iaiiaiiiai«iaaaiiiailiatua»aaaaaaiiaiaiiiaiMiaaa«iaaaaaiaa'Maa ■ •■■•■■■■■••••■■■a •••*•■»•••» ■•••■•••••■•••■■■•«■■■•aaaaaaaiiiaioiBiiiii^<((iiiaiaiMt>l»iaai>aitiaa « ■ ••■■■•■•■••i •••••••laiiiiiiiiiiiitiiHiiiiiiiiiiiniiiiaiiiiiiiaiiiiiiiiliiiiiiiiiiiipiiiiMiii' ■ •■■•■••■■■•■••■■■■•MiiaaiMiaiaiifiiiaapiiiiUiMxi Mafiiiiaaiiaiii>iaiiiailiiniMaiMili> •■ • ■•■••■iMiliiMitiiaaaiaaiaaaiaaiaitiiaiaaiiaM •■•••••■••••■•■•■■aMiiatiaiiM»iai>a>it>iaa|ia<aia' • •■•■••liiaaaaaaiaiaaaiaaaaiiitdniiiannanaitaaiaitK^iiiataiutiMiliailMaaliaattl'tlluaaiaaa. • • iiiiiiiiiiiiiiiOMtMiiHiiiaiiMiliiiaal ■MMItaaiAiiMiiMiiiMiiiiiiiiiiaaMMiiiiinir •••••lllllit ••<lltllllM«lit|MII>IIIIM> ••••IMIIIIMIIIMIIII«IH(Mtltn4MIMIMiillM>> •.■■ ■■■■■•■■■•■■•■•*■•■■■•■■■ laaaiaaaai ■•■■•■tioiiioiiii faa HI aaaaiaaaaliaaaaaaaaaBBBaaaiaaaaaaaa ■■•■■*■• aaaBMaaliaaaaaa aaa aaaa Maaafiaaa aaaaaiaailaaaaSaaaa taaaaa aaaaa aBflaBMaafl-Ba aaa aaaaa aaaaa aaaaa ■■•■■•■ ■ *■*»■•■••••••••■•1■ aaaiiaMaiaaaaaaaaa•■■•■■■■••••■•■iati •■■«■■■■■•«I■■■•■■■•■•■■■■■■■a»*••■*•a«•••■••■■ la a

»aaiaaaaaaaaaaM«a ■••■••aaaa taaaaaaaai llaaa aaaaaaaaaaaaaM aaaa« aaaiitaaSSaaiaU aäaaa läaaaMaaM miiiiiiiiiiiuiii>i*ii>a>liiaaij|aaaiialaa|aaiiiiai>(aaaiaall|ai|iiiaiiiiiiaa •[••••••■•ll«>l>ilaa »•■■■•■iiaiaaiaiaaiaailllllll|lUiailillaaaaialai«ilillaMiilai>lii|liiitii liiiiiiiliilliKiaMtMia I »Ma aaiiaaaiilillHiimiaiiaaiiiiiiila^iiKaaMainiiaiiiiaaaMaaaiiaatiliiliiaiilitiaiia • •••aamilai■ aiaaaaaaaalMitiitiiiiaiaaaiiiiiii ■•■■•••■•■ aaäaiMM«••!■■!■>■••!■■•■•••■ ••••••■••••••■!a■• >•(••! ••» •IOMIll>«lil)llll>tlliMM«IMMII IIM II I ••••■••••••

• ■■•■•■■■■■■■•iiiMiiitaaaaiatinainaanaixiiiaiikiaaiaaiiitaaiiiaaiiaaaiiiiaaKiKaaaa ■•••■■■•i ■•■•■•■•■■••■•■•■iaatiiilllliM|(ililiMiaiit|aMiaiiiliaiiiatiii|ii«||iiiiii«Hiiiiiiliiaila,ii; "•••• HHIII •llllllilililillllliiililllllMMIIIIIIIMIIIIHiMillMalllilllliMlUlliililill ■ ■■■a laaaa■ ■•■■■••■■«■■■ ■ aalaaaaaaaaaaaa■■■■■ ■ laaaaaaaalaaaaiaaaaa !■■■*>■■■■>!■ *■■■•■ ■•■•■■ ■■#■■> aaa»aaaa ■ ■■••■aitiiiiii .■••IlMllliaMiiiiiiiliiiiMiiiliiiiiiililaitiaiaaaliiiiaiiltllliaaiianiaiiiMiiai ■ aaaaiaaaaaaaaMaiaaaiaaiaaaaalaaaaiaailiaaaiiaaaalaaa>a>lai><i«aia>a>a»iiiai>i(iia>iaiii ••••• iiiEiitiiiiiiiiiiiiiiiiiiiiiijifit|iiiiiiiiiiiiiiiliai|iiiiiiiiiiiiiiiiai>iiiatiiaiaaiiMiiia«iiiaiiaii

■ ■■•■■iitiaiitiiiiiiiiitii ■■■atiiaaiMiiMif ■•■(■••■• . ••■■.■(■■•■■•■■■■■•■•> . - .■■■■■•■■■■•■••■*■■ •••aatia •••■iMlllllll|ll •••■■• •••• ••••• •■•■•aaiaaa ■■• • ■■•••■•■••■■■■■■•■■lii>iii>M|iiiiiilliiHuiiili|lliiliia«a<aiiliiiliinaiiiiiiiaaa.iaiaiiiiiii ■ ■•■•fiott tliii«>tliiii|ia.(iM>ait a .tt tttntinaii MMtaitil ■ >• ••••■••• ••■••••■■•••■■■••■••^■••'■•illii Uli iiililMut.itiiioii •>■ ■■■>■■■■■•■■■ . ■■• ■ ■■.••■■•■■(■•■■•■■■■■■••iiiiiiiaaiaiiaaiiiiiiiaai.itM. ■■■•■■■■■■■■■■■■■•I i<>>,>>>-'--- '•'■»■« •*i.linm...?n.i.l»nu ..imil' aaaaaaaiaaa. aaa • (•■■■•■••■■■■■■■••i ■■■•■■■liill|»iiiailiiluiia»iiaaaait)MiiiMMiii» » ■ ■■■■•■■■■ •■•••••» • ■••■•■•i •iMialaKiaiiaalliitiiiuiiliiiiiliiia laaalaioiattiatiiiiiiiia. .1 laliiMiiiiatui • ■■•■■•■•••••■■•■■■■•■••••■••■•■•■•■|iiaaiaaiiallialriiii-aaaiaiiiMiiiia>iiiiiaiui»iu>iit| itn

"2::-!>!H:!:iü!SUHi::n!!!n!!n!ütU!!:!:nnilt!>niHnü!HH:nS:H:H! •L ■■ ■■•■•■■iMiiaii ■••MiiMMiaaaMiaaMiiiiiii>Miai>itiii*>iiiiilaiiiliii i-iit'iai^aaaiaa>Bitiaiilaiiaiaailiiaaliaaaliatlliiia|iiiiaiiaaiiiiiM-aiaaaaaaaiali

.■ •■■ •■■•■»-■■■„■■■■■■■■■■■■■■■■••■«•■■■■■• tii a MM* ■■■•■■■■■■aaaaaa a.ieaaanaaaaai aaai'.itailaaiMainaaaiit laaaia iiaiittiilulaaii

1 ■ aa . ••liaaaaiaiaiiiiiaiaaalailiiiiillliaiillllliiiiiiiiiliiiiiiiiiiiiiiiltlllHili 1 •■ a a «a ■«>lli*Mliata aajlllillllitlliaiai , ,\ ■■ < ■■■fiaiianiMiiiiaaiiaiaaiittiliiiii aaaaaaaiaalaaal-->aaMliiiiat

a a •■••■••■iii|lMtil*<iiMiiiitiMiMM.r<alii|<laiai>IiitiiiiiaiitiitiiiiMiii( ' ■|i>uiiiiaa iMaiuaiiiiiiliaa iiiliiliiiiiiiiiiiiiiuiiiiiiiiiiaaiiini • ••■■'••iiaiMiiriaaaaaaiiiitiaaiiliaaiiaaiaiiaiiiiiiiiiiaiaaaiiiiir ■aaiitiiiiiani

• ■■ '•■■■■■■■■■■I.JB ■■■■•*■ ■■■■■■■■ aaiiamaaauaiiiiii aaaaiiaaiiiiit.iaiiii >n • '■a • aaaaiaiiiiiiiiiiiiiiiiiiiiiiiHiiiiiiiiiiiiiaiiiiiMiiii iiliaaiaain

<■••• •■•• ■»■iiliialitiuaiiiiaiiliitiiaiilillliiiiiaiaiiiiii ■•••••■i 1 ia> aaaa-aaakaaaalaaia ataaaaaaaaaaallliaiaaaiaaa laaimaaiaaaaai

ti"*aja '■aiaaaaalaaaaaaiillillaliililtlllllllllllltJiiillllllMlaaiMaalaalllllliiaiiai n ■ a a aaiaaa aaaaialilillliaiaiiaii»il>aaitiii|iiaa(iaii»i> iiiaiiiiiiiiini

M)iaaaaaiaai,iiaaaiiaaaiaaa|aaaaalaaaaaaaaaliiiiiaiaiaaaaii>i.aiHiiia>a>a>'aai

ij»t, ••■•••••aaaabJiaiaaaaaaaaa'aitM ••■■■■>••■■■■■■■■•■■■■■■■• u, .*•■•••■••■■•■•••• i' ■•' ••laiiiiiiaiiiiiiaiaiiiailj •■•illiitiiiiiiiiiiinlialiaiaiaaiaailiii !>>>>i>ii>ii>ai>aBaiii>iaii>aaiiaiaiia>ia«aiti>iMiiiaaatiatiiaMiiFi>aiiiiiiaiiit>ii !--■•• ■liaaiiliariaiiiMitaiia •■■•■••■•■•(■•iiaaiaiaiaiiia-l^iiaiiliiaiatlaaaar i' -■■ ■■■••■■••■, Diaan aa •••aaiaHaiaiiiiiliii|ii«.i ,■•■••■•■■>■•■••■■ iaaaa* aaiaiiiiaiaiiiiiiiiiiiiiiiiiiaMiiaiiiikiaiiiiifiiiaiiaiailaiaiititiiiitiliiii ji.aiiniattaaaaaaimlllM ■Ililltllilllllllliiaif ■■•■tilllllaalMllllliaitllli' in ■■ « '•■•! aiiiiiiiiiiiiaaililaaiaiaiiiaaiiaiiaMi-r'UMtiiiiiliaiiiilil Uall i' ■•■■■■■■■■1 laaaiia ■•••■■••aaiiaallijitiifiiati.tiaaMiiiitiiaaaaaiii

■ • 11 ••••<•• ••iaiiia(iiiiiiiiiiii«iiitii«MMiH ..iiiiiiniiiiiaiiiiiiiiiiaiiiiiiiiHiaiia iiiitaiiaiaMiaini MUaiaiim

>•••■■•■• ■■>.. ■■■■•■■•■ii ••iaiiitaiitaaaatiianai.il .iiaiiiiaainaaiaiaii iaaaaaiiiiaa>>aiiaaiiaiii|aiaiiiitaaaiiiiiaifta lailllllllllllltlllllllllllllllll •■• •IMlllllllltMlM > Illllll mil 1 .■•.iiaiiia laaaaaaaaaaaataaaa«' ■allllllliaillllllliaailiaaillMl< !• ■■■•■ aittaiiaiaiaita aiataiittaaaitaaaaa-ii'it taiaaantiat

■ '•■■nil i, ■ iaaaiaiiaaiiaaaaat*aiiaa.aL<aaaialaaii|iia»aaia»< iltliaaaaaiaMaaiiitaaiiaaaiaaaaaaaaliaiiaailllilliiiiiiiliililiilillltllllllllllliii iiliiiiilliaaaaiaiaaaaaaaaaaaa >a»>llllllliilliillaaiiaill •■lllliallllli '••••■•M • •••••• ••••■•■••••••••••••••■••a lia •>• ••< ■ mimaa 11 •■ ai •■•■•■••■■•ataalai •■• •• aiaaaaaaitaaataai laaaaaalaaaaaaaai.aaa aaliaaaaaaiaaiiiilliiiiai.iii.iiiiiiaaaalaaaaaiaiiaaiai ' tiMii • •••••••••■■■•■■■••■••• aaaaaaaaaa ai '•••••aaiai 1 • a 1 aaaaiiaaaaiaant :::::::::v.::::::r::::::::::::::::::::::::::::::::::-::-:::::::::::::::::::::::::::

iaaaa ■■*■■■■■■■ aai .aaaatalMaataiatipaaniaaiif •■■■•■.at.■••■■•••■••■•■•■••■■•••a«i*a ' • iiaitMio • a • !!*!i!"!it«*((*ai!i(a!!iiian!iäaSa!aaIaa»äa«i^ iMMl •••• IliMul •■aaaaiaaaiaa-aaa-a>aia>iaa<aaiaaiai)aaaaila««a>

:::::::::::::: ::::::■::::::: ::::::::::::::

iiliiiitlii

••■•■••■■■■•* Uaiii.iaiMt'ii» >aa■■■•■■■•••••■■■■•■■ *•*■■••• ••■■■■•••• ••••aaaaiaaaaa••••••■••••••••••■••••••••••••••i««IC%aa!••••••• ••■•••uaaaaaaaaa ■ aaiMaialaiaailailaaa ••••■■•■■■•■■fiillltlHI •••■«• • ••••••a at •••••!••• «naaaiaaaaia aaaa aaiiaiiai aar uaiiii|i|iaaaaaiaaaa aaaaMMiaaa Baa Baala aaaaiaaaaalaaamaaalaiiiaaa :ll*HL.iii.'aaaaaaa .aaaaaiaaaMaaiaiiiamiaiaaiaaaiiaiaaaaaaliaaiiaaiallaaiaata

• • laaaattaHi IMI aaaaMMMla iHallHIiiiaiaiMaiaaiiiii iiaf»illllllnnMIMHIilaJ*«Hilii*m"»U • ••••■{••••■■a iBaaaaaaBatr it ■aiiaaaf ••••!■•■•■ ■■•■••■■•1 ••■••»>•■• ■•■■■••• •■«•••■•aaaaaa>aaaai(*aaaaaa ■■•■••■••aaaiaiJ ■»■laaaaaaaaaaalilaaaaaataa» ■ ••■«••••{••••••■•aaaaaaHiaiiaaaiaaiaflaia •■•••■•aaaia«|aia>aaaiaaa*l • • •a a a a •« laM aaanaaaa HMMMf • «IMMl • MM aaaa is aia aaaaa iaaaa a aaaa iaaaa aaaaa aaa BBMaaaBaBaaiaB«« IUIIIMMM ■ ■a ••■■•laaaaiaaaaiaaaaMaatMaaaaaaMiaaaJaaiiaaMaaaMMiaaaaaaaaiaaaMaai a aaaa t ••■••••»•••••••MMaa|aaaMiMM*Maa>aaaaiaaaMMa«M< MM MMMIMI MMlhMM ailtMMMt ai

1 BBBBiaaaaaiaaaaaaaaaa IMMIM a ■■«?■■••• •itiin BBEBBBBB SSBBBaaaaa aaaa ■■■■■■ •■•••■«•' • an IJMI'M"! I MMMJla MI a •••••■•■ • »■■•■•■■■■■i«E«MMMH«M«MMMM».MIMa«aM«MIWaMMM»a««»Sa>M»MMMMMM aaiiiattl tiaiitaita uia atliiaiNiiaaaaiti >■ iti • ■MllMIIMMIMMatM'rMMIMI*EialMlllljtlllMll|ailMII ■•■■a >ea aaiaaa 1 aaaa aaa a -laaMBBB ,:■■•■■•■■■ 'iliaaaaa "1 iaaaaaaar .■■■aaaa. • Mr ' . asaaaaai- , •aaaaaal>'(>aaaiaBaa>"\aaaa■■■■' iiia'MMMi iaaa- ■■••• aaaaaaa.,aaaaaiaa,' BBBBBBaa. .liiniii. 1IIMMIIL - 1 ■■»•iaa ■ •■..•■■•••■■ iMiiiiM.. iaai ■•■■',. iaaa aaaa'. •■■■••■■ -,, aaaa aaaa 1, MM •■■■' aa««M« iill»d|ailiaiia>liiiiiii.aiaiii*aak.tiiili«iv4Mailallk^ii aiilaiiart .l(MM> • ••• ••••••• - a a .aaalaiaai.aa aa. •• aaa aaa ■•••••••• .aaaaaaaa •laiiaaa .aiaaaaaa aaaaaaa* ••••••• <•■>. •■■■■■■■■•■anaaaaaaaatoaaaaaaai •«■■•■akitalaaaiaaM aaaaaaaaak.aaaaaia

a «aaa

::::::::::: ■ aaaBBBaaar •■aaaaaaa «a aaailioa

■ aaaaaaaaa Xaaiaaaa

:::::::::: ::::::::>:

:>:::::::::::::::::

Figure 2 - Amplitude of Element Voltage 11 NOT REPRODUCIBLE

Page 19: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

■ ■•«»«•■••••■••■(•IltltllallailiaaiiitaKlaia'ai'a! aaaasaaaBaBBBBBBaaaaaaaaaBaaat«BBBasaaaiaaaaaaaaaaa l> • ••••■ ■■<IH">1M" Mill iitiaiiifiaaitiitMiiatliiitijiliiiiii ■!■■■■■ laMalalaliaaiataMatlillMailaiaaaulOitiaainaai aaaaaaaaaB•aaaaaaaaaaaaaaBaaai«aaaaliaaaaaaaaaaaaaa a aaaa aaaa a aaaai* «Baa* aaaaa aa«aii aaaa a aaaai a aaaa aaa BBB • •••<•■ ■•■.■••■■••■■■■■■••■••■(••■•I t<ii ■ •aaiallalliiilaiaiiitiaiaataaiaaaat • i laaooaiiiiiiaiiiiiiMiiiiMinuiiiiii aaaaaaaaaaa ■ ••aiaaiiiaiiaaaaaatiiHtiMilialaiiiaiitaaapaaitai

aaaa aaaa a a aaaaa ••••aiaaiaiaaiiMaiaanai atfaaa «aaaaa aaaaiaaaaaaaaaaaaaaa aaaBB BBBBB aaaaBaaaaalaaaaaaaaa a

■•••«••••■ aaiaiaaaaa■aaa»aaaaataaa■aaaaa «aaaaIaaaaa • •aiMiiiilliiiliiiii ■■■iniiiiKiilllllliiiii ■ ■iii>ii«iiiita uiitiiiiiiiniiiiiiiiiiiii tataaaitaliaaaaa)aiaiaaiaiaiiaiaaai[a*alM>liit«iii

iiaaliiaaiaaaaaaaaaaaaaaaaaBBB■•«■■■■«■•■•■■tiiiiii laaaiiiiMiitmaaiatKliMaiiMiititaauaaaiiaaaii

llllllllliiaiilaliMIII'

:::::::

•I**!!*!!.!!!".«."!!!"!!!!!!!??

:::.:.::3]..:::::::::.::..,::.:;... :::;:::::;;.::;;;:::::::::::::::::: i::::::;::::::::::::::;:::::::;::::

iiiiliii»:::»:"»:;::::::!;::!::

i:::::!H::::::::; :l

'■■■"'»in llilluiliiliilliliiiiiiMiliiiiilliiaiii

aBBB*BBBBB.aaaaaaaaaiaaaaaaaaaaaaaaXiBBBilaaeBBiaaii < ><MiM»iii>iiilaaiaaaiiliiaaii*aitaaii>iii>i

■ ■aaaaaaaa ■■iiiiaaia ■■ditiiiii ilamaaai iiaaiianii

::::::: :::::::

aaBaaaaaaa <•■■■■«■■■■ ■■■■■ la aai •••iiiaaai naiiniii a aaaa«iiaaiaaaiaaaaaa••••«•••••■•■•■■■■•i■••aaaaaaaa

• aa Miiiiifi.mia.i aaaa a,a aaaa aijiaiainiti

laaSaCa«*■■■*■«■■••iiilil

laaaiaa aaaaaaa

■■•••■I

taaaa aixaiam aaaaa aaaa a aaa ■■■■., •<•., n

Hin laainM-ii- ■■■■■•■■•■■liiiiiS

f im.aaiail-a" ' aiiaaaaiaaiaaaaaar

IM'. ia ■■4iaaiaaaiii.ii|i>aiiiM|italillaiaiiiiai • mi ■ ia "ti'.aa aaaaaaaaaB •«•••■■•aaa aaa*.••■•••*aaaaaa•■äa*' aä-raaaaaiaiaaitaaaaiaiaaaa ■ ■■ . ii..iii>iikii ■■iiiiiiiiiiiiiiiiiiiiii ■ •! BB ..iMiMiiio ■■ laai laaaaaaaaiaaaiiataaiiHM ■ BB . • • ■ •• a ■•->■•■■• i ■ ■•■■■■■ailliaaiiiaiiaaaaaiiiai ■ iti>-aa>iia..aiaaliiii aai > iianniiiiiiaiii ■ ■ . .taaaallia.i •■- ••■■•■ naaiiuni

aai aaiaia' • ■ aaa a>« ••'. at •-i ••••••••■•■•■••«■ aa««a a

'•■•!■■ aiiii laaaaali

■■•••«Ml aaaaaaaaaiaa.ta

im»««" .aiiiaauaaa.i

■■■■■ft

■•■■■■I

■•••••1

••■•aaa

■•••■■a

■ aill'i ■■••aaa

■ •«M«i

!i:::;;i:;:ii::::i:::ii::i:i:n:!i; i:l««||Jii::Si::::::J:-:hK:::: • iiiiaiuaaaiaaaa ■•••■•■•■•••■•••aa

maaauai •■•■•*•*•••■■■.• aaa

ii!iH:!::i!i:!:i::!!:::::::i::!!;i

■ii-iSii-iiiliiiHiii

.■an..! iiiMKi. lia.tSa.aiaa !•■•■■••aia#«||a«a*Bi

laaaaii'-i aaaaiaaiaaaaaiaaiauafaaiaiaaaaaaii iiaaaiaaaiiiaaaiaaaii'Ma--aaaaiaiaaa<aaiii|iiliil

iiaaaiaiaiuaaiiaaiiiiaaaaaa aiaiaaialaaaalaai

■ taaaaaaaaaaaaaaaaaaiataaaaaaaaaaaaaataaaaiaataMti iiaaiiaiaii a Itiaai aiiiiiaaaitaii

laaaiaiaaaaaaaaaa aaiaaaiaaaaaiaaaaiaaau aasaaaaaaa aaaaa■•••■■••aaaaaaa aaaaaaaaaa•■•■•■••••■

■ aaaaaaaaaaaiaaaaauiaajaaaaaaaaaaaiaiaaaaaaaaaaaai laaaaitiDMiMaiii« aaaaaaaaaaaaaa ■*••••■••*•*■••■■ • •« aa aai««aa aaaaataaitaaaaaiiaiaa •■••■■•«■•••«■•••••■••••••■•■■a»«aiiaa*ii«aa*iaa**i • aaaaaaaaiaaaiaiaaiiiaaaaa ia aaaaiaaaai laaaa^aaaiaaaaaiaaaaaiaaiaaiaaaaaaaaaaaiaiaaaiaam •■■{••■■■■■•■■•■••aaiaa«aaaaaapBBaaaBaaiiaaa«aaiaai • aaaaa«* tiiiii|Mttiiaaii«aaa aaaa iianiaaaiiiaiiaaaaiiaaiaaaiaaiaaaaiaitiiiaaiiiati

iiiiiiaiiiiiiliiaiiiaaaaataaaaiiaaaaaaaiiaaaaiiai«

■aaaaaaa«••«•■•■•■■Baaaa* •■■••■■•■■•••■■■■aa■aaaia

• aaaiaaaanaaiaaa.aaaaaai

•aaaaaaaa■«■•■■BBBB■•■aai

■ aaiBii

aiaaiai

•■■■■•i

■■•■■■i

■■•■aaa •••■••a aaaaaaa

aaiiiaiiiiitiiioiiM«! ■>■■■ aaaiaaiaaBaiBaaa'a *■■■■■■■■• ■■ aaa ■•■

• •laailiiiaiiiaaaia im

* ■■•■«••■•■ a ■■■■a mi

laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiaaaaaaaaaaaaaiaaaai

iiaaaaaatiiiiaiaaaiiiaaaaiaaaaaiaaaaaaaiaaaaaMaaai laaaaiiaaiiiaiataaaiiMniiaiiiaiiaiiMiiiaaaiiaaii iaaaaMa)aMiaaaaaaaM»aai<ai aauaalliaaii <■•■■■••■•••■«■■••••••••■•■■■•••••••••••••••••••••I •aaaaaaaaaaaaaaaaaaaaaaaaiaaaiaaaaaaaaaaaaaaat ■ aaaaiiioiaiaaaiaaaiiaf naiiaaiaaaaaaiaai ■■■■••••■••«■••■••■••••••••••••■••■■••«••••••■•■•ti «••••••••aaaaa*«*aaa•••••••■•••••••••••■••••••■•••• laaaaaaaai aaaaBaaaaa lliillaaaallaliailMiiMaaaiiti laaaaiiaiiliiaaiaailaaaaiiiaai ■ aaaii

■■■**■•*■ ■••■■■■•■■ «■■■■! laaalli

■ •■•■Bl

■ BBIIBI

■■■■•■1 ■ ■■•i»

■ ■■■I maun •iiiiiiiiii

•■aaaaaaaaaa■■•••■aaaaaaaa■aaaa*■■■

laaaaaaaaaaaaaaai■*■■•aaaaaaaa■■ ■•■ • •■aiiiauaia iaaaaaaiimaaaa iliniMiuiiii» in

^BBBBBBBBBBBBBBBBBBBBBaaaaaBBBaaaaa

r'liaiilliailaiaiiaMiiiMii i aaiaaaiiaainaajaiiaaaiaaaiiaaaMai

aMaaai aaiiaaaaai aaailiaai' aaaaaaaa

aaaailnaaa ■■ aaaaaa■■ aaaaa aaa aaaaa aaaaaaaaaaaaaaaaaaa^Mai ■ ■•■•■■••a aaia aaOai ■ iiaiiiaaaaoaaiiaiiiaii • Saaaaaaa aaaiaaaaaam

Ham -•■»■■■■■.■■■aaaaa r ■■■••■•

aaaaaaaaaaaaaaa■••*•••••••••••*••••••• • aaaaauaa ■■•■■■ aaaa aaaaalliii ••••■aaa laäaSaaaaa ISZäällaäaaaäaäaSäaää aAaaaaaa ■ aaaaaaaiiaaiaaiyaaiaaaaaaaaaaaa

iiäiaaaaaiaiaaiiaaaiaaaaaaaaaaaaMaaaa •aaaaaaaaiiaiaat taataaaaaaaaaaiH •aaaa• •••••■aaa•■■•«••■•aaaaaaaaaa■■■■ aailliitiaai aaanaiaaiaa aaiaaaiaaa■■••■aaaa■•••■■«aaa«a••••■■a ••••■■••■■«••■■•■•■■■•••■■•■••■••••••a ■•aaaaaaaaaaaaaaaaaaaaaa«••■•••••aaaaa laaaaaiaaiaaaaMtaatiaaa aaaaiiaa

■•••aaaaaaäaäääääääääSäääääääfäääääaaa aaaaaaaaaaaaaa«aaaaa*••••••■•■•••aaaaa ••aaaaaa--aaaaaaaaaaaaaaaa«««'.aaiaiaa •aasaaaaaaaaaaBaaaaaaaaaaaaBaa.«aaaaa«

■•■••■alaaaai

laaaaaaaaala

ililimiia aaaaaa • ■••■■••••■•a« ••■••■ ■,■•••

|aaaaaaa«-.aaaaa««aaaa«aaaaaaa. •••••••• '•■•■aaa« ■• 1 aaaaaaaa-" •■•■•••■■■ ■•••■•■•••«■■•■aBajaa aaaaaoaaa a [■■•■•■■•••«•••••i«»«i««a«■••••••■••■••■••••••■■•■■• |iaia|illll liaai iiniiiaiMiaaiaiai

aa« ■■• aaaaa'' aaaaaaa«•■■■■■aaaa- ■■■■•■■

Figure 3 - Amplitude of Element Reflection Coefficient

12 NOT REPRODUCIBLE

Page 20: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

MUHIMIHnmfflHHIMIH i 111: li li i i!l Hl R II ill III i ;l Uiii li! ::li iil I! i I !

§ MfflillMliMllIlllilliliSM^ fflNi«lir!lll»IU Mull!«!« iMfflMililllllliiillliilHIW if|ifil!i!il«

KTHiT^mrrriij wnif!MDJ«iH*Hir^uhyiiiUHiinimiMtiriiHHimun^K(i: MfiÄ'ii irrHiyiMt; -y {«^ tuiJBfjjB+HfutmiMiH^HiiHffiiiwiWJnmiöiiiüHimii^iHin^Hf^miißifnitf sans« n=;nh.«i;nH, ifUiöH:,'!M'!miin:rffi:rn!:j!»p(HHp*iii*H.?Ui<-^"M?: ;* )f JHn-*f!ffijat«!^ .&i; r:.r-. jjiPrarfhniii>*w:£üiNmmfliiiHiWjr»*iirn(nnHimf.uintHni'tifi;yiriJiü4J tf:lIl^lIJfII*fsifHflllzMffjIilll^itljnilIi:IlEiillfilillHillAlillIJlfTlMllJfllf«»«illitilllltilSilif^K■ I:r-iilriKti9*fHISttiJl'ltfS'f.S'r^EtfttflM*Ifffilli-rflJfJETtll1-l'T-:|' Ji:<il9MJ<llHTSi!l4iiuillli=l*f■ •

iiiffliisiiffltiiiiiiiiHBiiiiiiiiiiif';!!,™1! iii limni iiuiiHuiiiiiiuifti!iiiiKiiWMnHiiBHaieiiiuMi mmmmvümmm^mmmwwM i .ffiBiriini m mmMmmmmmmmmMim\\\\\m\wm\[Ä\

::f!fliaiii;!i!!IW.!l iiiiiiiiyiiiyiifiiii

«IK iBMlIIHnlFli Itsii Ji:iw :VXSinUflf,,I iiln liV '"JPrWil i liiiiinii^iiOHiiiiiiiisiiiiaiiyBsiiiiiiiiSHi siifiiiy.jifliiiiitüfi.fiiiiii.fffliiifliiiijii'ji

SO 80 100 120 140 160 100 THETR (DEGREES)

Figure 4 - Array Pattern, Broadside Match, Broadside Scan

pfflipyiifflilfflllByiBllffliiiiiiiffliliiiBWI

liiltii illi! ritil iiniBfti rflilHm llfii inii liiü üilHinf 1H» HlfJillif IHIUUfl pm mm ii!iii!l!iiiiSiiaiiilliiii!iilli!lieL^!liliiiiii!iililIlti!llli^ iliii!!iiliiIl!iKiCliiii!ii!!Hlli8i!!i!!iHi!!RllilliiiiiI!lllllili

60 00 100 12 THETfl (DEGREES)

Figure 5 - Array Pattern, Broadside Match, Endfire Scan

13 N0T REPRODUCIBLE

Page 21: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

Figure 6 - Amplitude of Element Voltage

14

HOT REPRODUCIBLE

Page 22: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

..... : . . agaJES^yj rwvf**w

-'-,f,> -■.,.:.--,-.r.J.

UNCLASSIFIED

Figure 7 - Amplitude of Element Reflection Coefficient

15 NOT REPRODUCIBLE

Page 23: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

w m if It mm

m IB iyui!

w ail !:;■'-!l'!:!!!)H|f!ll1i!!:!!;!:i!!|!!ii 1 Inn li ;l' üm MIt I till unit?! ail

Hli!ii«;!iwiiiiiiiiiiBa»aiiffli mm mwmmwMwmmwiiWMm nw iw. ■ i,• «fflffleliliMIli!» HUMftwHiiH mmmmmmmwmMmmmmmmmmmm^ a-s «BSIHIII <i"-ra^w>iHidS£Myai«'iBii!iisSiiisrt!i mm mm H; . !• <:. -1

. hi: >::' '" : :Ur l!i ■. •'•: :;:;l . r:if:.i r::::: ; ;f':': J-i'lh lli'iiiit III '.•T! i llHtrat!li:»ii;'i-ii'-i ■.'lifl'i'l n rwlMlliliiMiHiHnBiiuBuilimluiffiltffinJi ■MlifiiMHiimHHIINGiJIHM^ ilili ^Hiltllllit^.i)«^^:!!»!!«',-:"^^ (HIM Jnffl ?Ki. ^\i:sSBSili«:Jl-liIUI!!»lHlllilintttn^IU=i».l^iff|iiuat!ib^hfifi*»iii6i

iiMii!

AO Bli.«i; HP! ifili NH OBMBiM iffiiälBiini

^in9e^^^9flaHaHBiiwinysge!^iKiffiHiH»iiiiiüHy^tHeHfHBiiiBB.i£fi^^:i^ii^ 60 BO 100 120

THETfl (DEGREES) 1«0 ISO 110

Figure 8 - Arrs Pattern, Match at 80 Degrees from Broadside, Broadside Scan

gfgfüniEgj l.^klii^Jhilt1 u\'., I IIEiIlIlIiM:inEI-E^^ eiHium^fliirtfi^

iB'!iH!!i!iijii!i!liiiiilUIIl!'Ililliliiiil!i!l!!!!li!iI!!ill!lll m i 1 ffl ill HHHJiiyfiPlijiS^ IIH

if IRS TO rm m

m mm II I mi ii, :ym i i igap I HKiMHiTiilflUHiiiHHHMIW^ HI? ü! !!IH! tJlllffi niüiiyiüHÜÜiilBli'iillffliliSiaHl

Sl!l^!tirii!Öll:iP;;ii;i!!IPlJlt.

,IIIIFlfiiinii'llli4 IM Mm M Hillli'iOill I Ü!b!.',m«ü!|i«!lllliliP

60 80 100 120 THETfl (DECREES)

Figure 9 - Array Pattern, Match at 80 Degrees from Broadside, Endfire Scan

NOT REPRODUCIBLE

16

Page 24: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

■—--._ 1111 IMfln |||illHffl||||||Hll||||||||||||||||||(I^^M Wgm Bftlra

IB Bill 1 ■! Ssnl ps

inilliil^ illf mlml STO Wm am m JiifflfsMfl^ili T Iff l&gHlpi« Bai MüffSiSfi ffl Bsra llll Rise 1 ill illiiil

Uli iiiin lIMwlSp sisi üH .: M m iit llliS ■ llii ü 11II1MI llll i IIHIH B IB ilII llll

1 Baus HU iin n m m m uuiuiuuu mm

1111 Biffin HI ajjlssil öiiiii si H1

llll B^^B 1 HH ill! ffiffliffl P 1 iiLiil1

.. ■ ,■

IMtfMllllfllf ™II!1 nimu ill liiil ÜS 2 ffiisSÄ!p%ü?S1

HI ^ffillll 1

Figure 10 - Gain versus Scan, Planar Array, Broadside Match

Figure 11 - Gain versus Scan, Planar Array, Match at 80 Degrees from Broadside

17

NOT REPRODUCIBLE

Page 25: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

Figure 12 - Gain versus Scan, Cylindrical Array R = 50X

Figure 13 - Gain versus Scan, Cylindrical Array R = 50X

18 N0T REPRODUCIBLE

Page 26: END-FIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL … · ENDFIRE RADIATION FROM PLANAR AND LARGE CYLINDRICAL ARRAYS 1. Background The analysis of planar and cylindrical periodic

UNCLASSIFIED

REFERENCES

[1] S. Edelberg and A. A. Oliner, "Mutual Coupling Effects in Large Antenna Arrays: Part 1 - Slot Arrays", IRE Trans, on Antennas and Propagation, Volume AP-8, pp. 286-2 97, May I960.

[2] L. Stark, "Radiation Impedance of a Dipole in an Infinite Planar Phased Array", Radio Science, Volume 1, pp. 361-377, March 1966.

[3] H.A. Wheeler, "The Grating-Lobe Series for the Impedance Variation in a Planar Phased Array Antenna", IEEE Trans, on Antennas and Propagation, Volume AP-14, pp. 707-714, November 1966.

[4] G. F. Farrell and D. H. Kuhn, "Mutual Coupling in Infinite Planar Arrays of Rectangular Waveguide Horns", IEEE Trans, on Antennas and Propagation, Volume AP-16, pp. 405-415, May 1968.

[5] V. Galindo, and C. P. Wu, "Numerical Solutions for an Infinite Phased Array of Rectangular Waveguides with Thick Walls", IEEE Trans, on Antennas and Propagation, Volume AP-14, pp. 149-158, March 1966.

[6] G. V. Borgiotti, "Modal Analysis of Periodic Planar Arrays of Apertures", IEEE Proceeding, Volume 5o, No. 11, pp. 1881-1892, November 1968.

[7] G. V. Borgiotti, "Edge Effects in Finite Arrays of Uniform Slits on a Ground Plane", IEEE Transactions on Antennas and Propagation, September 1971 (to be published).

[8] G. V. Borgiotti, "A Novel Expression for the Mutual Admittance of Planar Radiating Elements", IEEE Trans, on Antennas and Propagation, Volume AP-16, in 3, pp. 329-333, May 1968.

[9] G. V. Borgiotti and Q. Balzano, "Conformal Arrays on Surfaces with Rotational Symmetry" to be published in the Proceedings of the Symposium on Phased Arrays, Polytechnic Institute of Brooklyn, Farming dale, N. Y., June 1970.

[10]G. V. Borgiotti and Q. Balzano, "Analysis and Element Pattern Design of Periodic Arrays of Circular Apertures on Conducting Cylinders", submitted for publication to IEEE Transactions on Antennas and Propagation.

19