energia dalle biomasse - ciriaf · energia dalle biomasse. biomasse . con ... − necessarie grandi...

44
Università degli Studi di Perugia Facoltà di Ingegneria Corsi di laurea specialistica in Ingegneria Meccanica Corso di Impatto ambientale Modulo Pianificazione Energetica prof. ing. Francesco Asdrubali a.a. 2013/14 Energia dalle Biomasse

Upload: lydien

Post on 17-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Università degli Studi di Perugia Facoltà di Ingegneria

Corsi di laurea specialistica in Ingegneria Meccanica

Corso di Impatto ambientale Modulo Pianificazione Energetica

prof. ing. Francesco Asdrubali a.a. 2013/14

Energia dalle

Biomasse

Biomasse Con il termine “biomasse” si intendono sostanze di origine biologica in forma non

fossile:

materiali e residui di origine agricola e forestale; prodotti secondari e scarti dell’industria agroalimentare; reflui di origine zootecnica; rifiuti urbani (in cui la frazione organica raggiunge, mediamente, il 40 % in

peso).

Tra le biomasse vengono inoltre considerate: • alghe e molte specie vegetali che vengono espressamente coltivate per

essere destinate alla conversione energetica; • altre specie vegetali utilizzate per la depurazione di liquami organici. Sono da escludere: • le plastiche e i materiali fossili, che, pur rientrando nella chimica del

carbonio, non hanno nulla a che vedere con la caratterizzazione che qui interessa dei materiali organici.

Fotosintesi clorofilliana Tramite il processo di fotosintesi clorofilliana, i vegetali utilizzano l’apporto

energetico dell’irraggiamento solare per convertire l’anidride carbonica atmosferica e l’acqua nelle complesse molecole di cui sono costituiti o che

compaiono nei loro processi vitali: carboidrati, lignina, proteine, lipidi, oltre a un numero praticamente illimitato

di prodotti secondari di ogni tipo, secondo la reazione

( ) 2222 OOHCsolareenergiaOHCO mn +⇒++

Solo la parte visibile dello spettro solare (circa il 45% del totale) interviene nella fotosintesi;

un ulteriore 20% dell’energia si perde per fenomeni di riflessione o cattivo assorbimento dovuto alla densità del fogliame.

Attraverso il processo di fotosintesi vengono fissate complessivamente circa 2×1011 tonnellate di carbonio all’anno, con un contenuto energetico equivalente

a 70 miliardi di tonnellate di petrolio, circa 10 volte l’attuale fabbisogno energetico mondiale

Tipologie di Biomasse

Biomasse

Residui organici Colture energetiche

forestali Trasformazione tecnologica di prodotti e consumi

agricoli acquatiche terrestri

• vegetali •Alimentari •Non alimentari

•Animali •Vegetali

Principali colture utilizzabili per la produzione di energia

Le colture energetiche sono coltivazioni specializzate per la produzione di biomassa e possono riguardare sia specie legnose sia erbacee.

Coltivazioni energetiche erbacee: • annuali (il girasole, la colza, il sorgo da fibra, il kenaf); • perenni (la canna comune ed il miscanto). Coltivazioni energetiche legnose sono costituite da specie selezionate per

l’elevata resa in biomassa e per la capacità di ricrescita dopo il taglio: • boschi cedui tradizionali; • siepi alberate. Caratteristiche qualitative della biomassa: • colture oleaginose (ad es. girasole, colza); • alcooligene (sorgo zuccherino, barbabietola da zucchero, cereali); • lignocellulosiche.

Principali colture utilizzabili per la produzione di energia

COLTURE AREA PROBLEMATICHE

Sorgo granella Collina

Grano Pianura/collina asciutta

Sorgo zuccherino Pianura irrigua Breve periodo di raccolta

Bietola Pianura irrigua Breve periodo di raccolta Costi

Topinambur Collina asciutta Rotazione difficile

Elenco colture per etanolo

Principali colture utilizzabili per la produzione di energia Elenco colture per oli esterificati

COLTURE AREA PROBLEMATICHE

Girasole Pianura/collina Scelte varietali

Colza Varie Adattamento Scelte varietali

Brassica Carinata Varie Scarsa sperimentazione

Cartamo Asciutto Tecniche agronomiche non consolidate

Ricino Varie Tecniche agronomiche non consolidate

Cynara Card. Asciutto Rese variabili

Crambe ab. Tecniche agronomiche non consolidate

Principali colture utilizzabili per la produzione di energia

Elenco colture ligno-cellulosiche per processi termochimici

COLTURE PROBLEMATICHE

ANNUALI

Sorgo fibra Sfruttamento terreno

POLIENNALI

Arundo donax Sperimentazioni limitate Miscanthus Sperimentazioni limitate

Ginestra Raccolta Cynara Card. Rese variabili

S.R.F. Tecniche da mettere a punto, Costo trapianto

Impieghi della materia organica fotosintetica trasformata

• Conversione in energia termica e/o elettrica e produzione di biocombustibili solidi (ad es. pellets) o liquidi (es. biodiesel, bioetanolo, ecc.);

• Biomateriali per l’industria edilizia ed abitativa e per la produzione di compositi; • Fibre tessili; • Cellulosa, carta ed assimilati; • Fertilizzanti o ammendanti per i terreni agrari; • Prodotti per l’industria (lubrificanti, solventi, plastiche biodegradabili, additivi vari,

ecc.).

Le biomasse utilizzabili ai fini di conversione energetica possono essere considerate, allo stato attuale, le seguenti:

• Sottoprodotti (agricoli, forestali e zootecnici) e scarti (urbani e industriali), attraverso combustione, conversione chimica o biologica in biogas, alcool o altre sostanze;

• Produzioni vegetali su territori non adatti a colture alimentari. (zone marginali, aride e semiaride);

• Specie vegetali “energetiche” da coltivare in condizioni di eccedenze delle produzioni alimentari rispetto alla domanda, su terreni sinora a destinazione agricola classica.

Le biomasse si possono considerare risorse primarie rinnovabili e, quindi,

inesauribili nel tempo, purché vengano impiegate ad un ritmo

complessivamente non superiore alle capacità di rinnovamento biologico.

Vincoli all’uso energetico delle Biomasse

Stagionalità

La raccolta si concentra normalmente in periodi temporali di poche settimane (la paglia dei cereali tipo frumento in luglio; gli stocchi di mais in ottobre-novembre; i residui di potatura nei mesi invernali). La domanda dei prodotti di trasformazione si prolunga lungo l’intero arco dell’anno. I calcoli economici debbono tener conto degli investimenti aggiuntivi relativi allo stoccaggio delle scorte, nonché di quelli della loro eventuale essiccazione

Raccolta e trasporto

Gli impianti di trasformazione delle materie prime agricole sono soggetti ad effetto scala. Ad ogni impianto deve errere asservita una superficie agricola in grado di approvvigionare la materia prima sufficiente per il funzionamento. L’economicità di un impianto dipende dalla minore distanza esistente tra l’impianto ed il baricentro massico delle biomasse.

Aspetti positivi e negativi dell’impiego delle biomasse

VANTAGGI SVANTAGGI − Abbondante: si trova in quasi ogni

parte della terra, dove siano presenti alghe, alberi, letame;

− Fonte di energia rinnovabile: grazie alla possibilità del rimboschimento;

− Immagazzinabile-Stoccabile − Convertibile in combustibili solidi-

liquidi-gassosi con buoni poteri calorifici;

− Sfruttamento di zone inutilizzate dall’agricoltura e conseguente occupazione nelle zone rurali;

− Ciclo di emissioni di CO2: le piante la riassorbono durante la loro crescita (fotosintesi)

− Necessarie grandi aree a causa della bassa densità energetica: superficie minima 12.000 ha, produzione superiore a 17-25 t per ha

− La produzione può richiedere elevati volumi di fertilizzanti ed irrigazione;

− Sistema di risorse (logistica) complesso per assicurare la costante fornitura della risorsa;

− Problemi di trasporto, stoccaggio e movimentazione a causa della bassa densità(bulk density): la convenienza economica c’è se la distanza tra approvvigionamento ed impianto non supera i 160 Km;

− Produzione soggetta a variazioni legate alle condizioni ambientali-meteo

− Produzione non costante durante l’anno − Contenuto di umidità variabile

Tecnologie per l’impiego energetico delle Biomasse

Combustione; Gassificazione; Pirolisi

Teleriscaldamento e biomasse Affinché si possa ipotizzare di costruire un impianto di

teleriscaldamento a biomassa, occorre che siano soddisfatti i punti seguenti.

Aggregato di case e/o attività che richiedano energia termica; Disponibilità di una o preferibilmente più fonti di approvvigionamento o creazione

di una filiera di biomassa, come conseguenza della domanda da parte dell'impianto di teleriscaldamento;

La distanza dalla fonte di approvvigionamento non deve essere eccessiva; Presenza di un'area adeguata dove poter costruire l'impianto ed i magazzini di

stoccaggio.

Punti critici del teleriscaldamento a biomasse Accettabilità sociale; Vicinanza alle vie di trasporto e cura per non appesantire l'abitato con un

eccessivo traffico di mezzi pesanti; Stoccaggio: i volumi necessari non permettono uno stoccaggio stagionale -

notevoli superfici per creare magazzini che consentano una certa autonomia; Condizioni di lavoro (sicurezza) degli addetti alla raccolta-selezione-trasporto; Sostenibilità economica; Rapporto tra prime e seconde case per il corretto dimensionamento

dell'impianto - spesso la località servita è turistica.

Biocombustibili

• Impatto ambientale più contenuto rispetto ai combustibili di origine fossile; • utilizzare materiali di scarto che solitamente non vengono utilizzati. • L’uso di carburanti per autotrazione di origine vegetale risale ai primi del ‘900

(Henry Ford); nel 1938 gli impiani del Kansas producevano già 54.000 t/anno di bioetanolo.

• l’interesse americano per i biocombustibili decadde dopo la Seconda Guerra Mondiale in conseguenza dell’enorme disponibilità di olio e gas;

• negli anni ’70, a seguito della prima crisi petrolifera, apparvero in commercio benzine contenenti il 10% di etanolo, il cosiddetto gasohol, (grazie al sussidio fiscale concesso per l’utilizzo dell’etanolo).

• Clean Air ACT (1990): restrizioni sulle benzine, per migliorare la qualità dell’aria nelle aree metropolitane più inquinate. Ma all’etanolo fu preferita l’adozione dell’MTBE (metil-ter-butil-etanolo) come sostitutivo del piombo tetrametiletile (per migliorare le proprietà antidetonanti delle benzine). Solo dopo il progressivo inquinamento delle falde acquifere il governo americano sta cercando di mettere fuori legge gli MTBE promuovendo una politica di incentivo per i biocombustibili.

Prodotti derivati dalla biomassa, miscelati con carburanti ottenuti da combustibili fossili o utilizzati puri, usati per autotrazione e riscaldamento.

Bio-etanolo • E’ un alcool (etanolo o alcool etilico) ottenuto mediante fermentazione di diversi

prodotti ricchi di carboidrati e zuccheri; • Il bio-etanolo è tra i combustibili quello che mostra il miglior compromesso tra

prezzo, disponibilità e prestazioni; • L’etanolo può essere prodotto seguendo due vie: quella chimica e quella biologica; • Il bioetanolo ha origine dalla seconda via; • Il processo si basa sulla trasformazione biochimica dei carboidrati (zuccheri) in

alcool, operata da microrganismi (lieviti); • La produzione di etanolo adatto all’uso combustibile (puro almeno al 95%), richiede

un ulteriore processo di distillazione; • Nel processo di fermentazione vengono utilizzati dei catalizzatori naturali come i

lieviti ed i batteri.

Caratteristiche chimico-fisiche dell’etanolo e della benzina

• gli alcoli presentano una minore temperatura e luminosità di fiamma cosicché minor calore è perso per conduzione e per irraggiamento dalla camera di combustione al sistema di raffreddamento del motore;

• gli alcoli, bruciando più rapidamente, permettono una coppia più elevata al motore.

Nonostante la differenza di potere calorifico tra l’alcool etilico e la benzina, le potenze esprimibili nei motori sono all’incirca equivalenti, per le diverse caratteristiche di

combustione degli alcoli rispetto alla benzina:

Caratteristiche Unità di misura Etanolo Benzina

Formula CH3-CH2-CH Miscela idrocarburi - additivi

Densità g/cm3 0,789 (a 20°C) 0,740 (a 15°C)

Potere Calorifico Inferiore Kcal/kg 6.400 10.000

Temperatura di ebollizione °C 78,3 30 ÷ 200

Temperatura di congelamento °C -11,4 Sotto i -50

Calore di evaporazione Kcal/kg 200,6 85

Punto di infiammabilità °C 21 Da -40 a 40

Numero di ottano 106 98 – 102 (super)

Risvolti energetici, ambientali ed economici

Consumi o Il potere calorifico dell’etanolo è inferiore a quello della benzina, la miscelazione di

questi determina a parità di altre condizioni un peggioramento del consumo calcolato (Km/Litro).

o L’addizione dell’ossigeno, assente del tutto nella benzina, reca un miglioramento alla combustione in termini di consumo termico (Km/caloria): smagrimento della miscela aria/benzina e miglioramento della combustione.

Emissioni o Il bioetanolo, essendo un prodotto derivato da biomassa, non comporta alcuna emissione di anidride carbonica netta in ambiente: le biomasse, catturano, durante il processo di fotosintesi”, il carbonio in atmosfera (sotto forma di CO2); la CO2 verrà assorbita dalle nuove biomasse coltivate per produrre altro biocombustibile o Eliminazione degli ossidi di zolfo, dei composti aromatici e in particolare del benzene; Riduzione delle emissioni di monossido di carbonio e di idrocarburi incombusti; o Aumento delle emissioni di formaldeide e quelle di acetaldeide.

Vantaggi dell’impiego di ETBE come additivo antidetonante o Elevato rapporto quantitativo tra carbonio e idrogeno; o Contenuto di ossigeno legato pari al 15%.

Produzione di Bio-etanolo Principale materia prima per la produzione di bioetanolo: o Canna da zucchero - la cui produzione ammonta a 1,1 miliardi di tonnellate all’anno (provenienti da 17,6 milioni di ettari coltivati); o Barbabietola da zucchero - 0,26 miliardi di tonnellate all’anno. Quando sarà disponibile la produzione commerciale di bioetanolo da biomassa lignocellulosica (cioè da processi enzimatici), la potenziale produzione di questo prodotto aumenterà notevolmente: la produzione mondiale di biomassa lignocellulosica è dieci volte superiore a quella di altri tipi di biomassa. o Il costo marginale per il bioetanolo è di $180/m3; o Il potenziale produttivo mondiale di bioetanolo, è stimato intorno ai due miliardi di tonnellate all’anno (0,5 miliardi di tonnellate all’anno dallo zucchero e 1,5 miliardi di tonnellate all’anno da biomassa lignocellulosica); o L’uso del bioetanolo nel settore dei trasporti (20% del consumo attuale) raggiungerà 550 milioni di tonnellate all’anno.

Altri possibili impieghi che comporteranno una maggiore penetrazione di bioetanolo: o miscele gasolio-etanolo puro; o gasolio riformulato con ETBE; o uso di bioetanolo per macchine agricole.

Bio-diesel Si ottiene dagli oli vegetali, dai grassi di cucina riciclati,dalla spremitura di semi

oleaginosi di colza, soia, girasole attraverso una reazione detta di transesterificazione.

Il glicerolo o più comunemente glicerina che si ottiene come prodotto

secondario può essere usata per la produzione di creme ad uso cosmetico.

I prodotti e gli oli utilizzati per la produzione del biodiesel devono subire vari processi prima di essere convertiti:

Estrazione Meccanica (normalmente a pressione); Chimica (solvente, normalmente esano in rapporto 1:18); Combinata (Girasole-colza: circa 1 ha produce 1 t di olio);

Raffinazione: Depurazione (sedimentazione, filtrazione, demucillaginazione, centrifugazione);

Raffinazione (neutralizzazione o deacidificazione, decolorazione, deodorazione, demargarinazione).

Il bilancio di massa semplificato dell’intero processo è il seguente:

1000 kg di olio raffinato + 100 kg di metanolo

=

1000 kg di biodiesel + 100 kg di glicerolo

Impiego del bio-diesel nei motori o Il biodiesel è stato testato in varie percentuali di miscelazione con gasolio, a

partire dal 5% passando per il 20 ed il 30% fino ad arrivare al biodiesel puro; o Le miscele con gasolio, sino al 30% in volume, possono essere utilizzate senza

significative modifiche al motore (verificare la compatibilità dei materiali costitutivi dell’impianto di iniezione, con particolare riferimento alle gomme butiliche);

o L’olio lubrificante è diluito dal biodiesel, per cui si deve avere l’accortezza di sostituire l’olio con maggiore frequenza (in particolare con sistemi di iniezione con pompe in linea);

o Problemi nel funzionamento del motore alle basse temperature (punto di otturamento a freddo del biodiesel è di –9°C, contro i – 22°C del gasolio);

o Elevato potere detergente dei biodiesel: precoce ostruzione dei filtri carburante; o Il potere calorifico inferiore del biodiesel è inferiore di circa il 13% rispetto a

quello del gasolio (32,8 MJ/dm3 contro 35,6 MJ/dm3), ma ciò è parzialmente compensato dalla maggiore densità (0,88-0,89 kg/m3 contro 0,83-0,85 kg/m3 a 15°C).

o Il potere calorifico inferiore del biodiesel comporta un lieve aumento dei consumi, (circa il 2-3%), difficilmente percepibile a causa dell'elevata oscillazione dei consumi riscontrabili in campo, relativi al tipo di guida e percorso.

Risvolti energetici, ambientali ed economici

Consumi - 2-3%, non è comunque percepibile. Emissioni (biodiesel quale combustibile puro): o SO2 : è presente il contributo di SO2 da parte dell’ olio lubrificante che viene bruciato; o CO: apprezzabile riduzione delle emissioni di CO (5-8%); o HC: le emissioni sono equivalenti, è drasticamente minore (da uno a due ordini di grandezza) il contenuto dei composti policiclici aromatici PAH, corresponsabili di molte forme di cancro; o NOx : incremento delle emissioni di NOx (15% circa); o Opacità (FSN): drasticamente inferiore a quella prodotta dal gasolio (30% al 70%); o Particolato: emissioni in massa di particolato risultano molto prossime (talvolta appena superiori) a quelle generate dalla combustione di gasolio; la granulometria media del particolato prodotto dal biodiesel è superiore di un ordine di grandezza (circa 0,1 mm per il fossile, 1,5 mm per il biodiesel). minore la pericolosità del particolato generato dal biodiesel; o CO2: non comporta alcuna emissione netta in atmosfera; o Biodegradabilità : elevata (99,6% in 21 gg.), in caso di dispersione accidentale, il biodiesel non inquina né il suolo né le acque.

Consumo specifico di legna da ardere per alcune industrie rurali (America Latina 1991)

Quadro internazionale: evoluzione storica

Industrie Legname consumato

Panifici 0.13 – 0.22 m3/sacco (50kg.) di farina

Caseifici 0.025 – 0.112 m3 / 1000 l di latte

Mattoni 0.4 - 0.8 m3/1000 mattoni

Calce 1.1 – 4.0 m3/ t di calce

Essiccazione tabacco 1.5 – 2.0 m3 /100 kg di tabacco essiccato

Impianti dimostrativi per la produzione di elettricità da colture energetiche negli USA

Quadro internazionale: evoluzione storica

Localizzazione Potenzialità (MWe) Superficie coltivata (ha) Biomassa utilizzata

Arkansas/Mississipi 25 10.000 Legno da short rotation

California 25 10.000

Georgia/Alabama 25 10.000 Legno da short rotation

Hawaii 25 10.000 Colture erbacee

Iowa 25 10.000

Tennessee 25 10.000 Colture erbacee

Texas 25 10.000

Washington 25 10.000 Legno da short rotation

Wisconsin/Minnesota 100 40.000 Legno “whole tree”

Quadro internazionale: recenti tendenze

Dislocazione mondiale di impianti con una potenza maggiore di 5 GW

Situazione italiana Situazione della produzione di energia elettrica da fonti rinnovabili al 1997 e previsioni di sviluppo al

2008-2012

(fonte: libro bianco per la valorizzazione energetica delle fonti rinnovabili, 1999)

Tecnologia 1997 2002 2006 2008-2012

MWe Mtep MWe Mtep MWe Mtep MWe Mtep Idro>10MW 13942 7,365 14300 7,550 14500 7,656 15000 7,920 Idro<10MW 2187 1,787 2400 1,954 2600 2,116 3000 2,442 Geotermia 559 0,859 650 1,051 700 1,132 800 1,294

Eolico 119 0,026 700 0,308 1400 0,616 2500 1,100 Fotovoltaico 16 0,003 25 0,006 100 0,024 300 0,073

Biomasse 192 0,125 380 0,502 800 1,056 2300 3,036 Rifiuti 89 0,055 350 0,385 500 0,550 800 0,880 Totale 17104 10,221 18805 11,756 20600 13,151 24700 16,744

Situazione italiana Situazione della produzione di energia termica da fonti

rinnovabili al 1997 e previsioni di sviluppo al 2008-2012 (fonte: libro bianco per la valorizzazione

energetica delle fonti rinnovabili, 1999.

Tecnologia 1997 2002 2006 2008-2012 Mtep Mtep ∆Mtep Mtep ∆Mtep Mtep ∆Mtep

Biocombustibili 0,060 0,280 0,220 0,544 0,484 0,940 0,880 Solare termico 0,008 0,056 0,048 0,111 0,103 0,222 0,214

Geotermia 0,213 0,250 0,037 0,300 0,087 0,400 0,187 Biomasse 1,070 1,400 0,330 1,600 0,530 1,750 0,680

Rifiuti 0,096 0,120 0,024 0,160 0,064 0,200 0,104 Totale 1,447 2,106 0,659 2,715 1,268 3,512 2,065

Situazione italiana 2011

Produzione da bioenergie per Regione nel 2010 (GWh)

Produzione da

BIOMASSE

Produzione da

BIOLIQUIDI

Produzione da RU

BIODEGRADABILI

Prospettive per l’energia dalle Biomasse in Italia

Sembra ragionevole ritenere che l’entità del contributo massimo a regime nei confronti del fabbisogno energetico italiano da parte delle biomasse, a medio termine, possa arrivare a superare i 5 Mtep/anno; In Italia esite un potenziale (prevalentemente da residui agro-industriali e urbani) tali da consentire l’installazione di circa 3000 MW di potenza elettrica Assenza di adeguate iniziative imprenditoriali, malgrado gli interessanti incentivi in conto capitale previsti dalla legge 10/91. Occorrono nuove figure professionali, imprenditori ed operatori, come, ad esempio, quella dell’ “agricoltore-esercente di impianto termico” (consorzi di operatori agricoli) con la partecipazione di operatori qualificati con esperienza specifica nel settore della produzione dell’energia. Biomasse più interessanti: o residui agro-industriali; o rifiuti solidi urbani; o coltivazioni energetiche di accertata economicità.

Benefici attribuibili all’impiego diffuso delle biomasse

riduzione della dipendenza energeticariconversione del settore agricolovalorizzazione economica deisottoprodotti e dei residui organicirisparmio nei costi di depurazionee smaltimentostimolo alle industrie del settore

BENEFICI ECONOMICI

apertura del mercato dell'energiaagli operatori agricolidiversificazione e integrazione dellefonti di reddito del settore agricolooccupazione in zone marginaliriduzione dell'esodo dalle campagne

BENEFICI SOCIALI

riduzione delle emissioni dianidride carbonica nell'atmosferariduzione delle emissioni nell'ariadei principali inquinanti di origine fossilepossiblità di smaltire notevoli quantitàdi rifiuti e residui organici in manieraambientalmente corretta recuperandoparte dell'energia in essi contenutacontrollo dell'erosione e del dissestoidrogeologico di zone collinari e montane

BENEFICI AMBIENTALI

BENEFICI ATTRIBUIBILI ALLADIFFUSIONE DELLE BIOENERGIE

Biocarburanti di seconda generazione

Prima generazione da materie prime alimentari (es.biodiesel da semi oleaginosi, bioetanolo da mais o da canna da zucchero)

Seconda generazione da materie organiche non alimentari (non hanno impatto sulla filiera agroalimentare)

Biocarburanti di seconda generazione

Biomassa lignocellulosica È abbondante Non è competitiva con le colture

alimentari Contiene emicellulosa e cellulosa

(polimeri di zuccheri) da cui produrre biogas o bioetanolo.

Biocarburanti di seconda generazione

Filiere di produzione dei biocarburanti

ENEA 2011

Biodiesel di II generazione Idrogenazione catalitica di oli e grassi vegetali o

animali (anche con caratteristiche chimico-fisiche che danno scarsa resa nella conversione in biodiesel convenzionale). Sono già attivi alcuni impianti industriali di grandi dimensioni (es. ENI)

Fast pirolisi di biomasse lignocellulosiche, e successivo reforming dell’olio ottenuto (bio-olio). È ancora in fase sperimanetale

Gassificazione della biomassa

Biodiesel di II generazione Biodiesel da microalghe Le alghe sono formate da lipidi,

proteine e carboidrati (come le piante)

Coltura Resa stimata (litri/ha*anno)

Soia 400 Girasole 800 Jatropa 2.000 Olio di palma 6.000 Microalghe 60.000

Scelta della specie idonea, crescita e raccolta

Estrazione frazionata: viene prima la componente lipidica con solventi (es. esano, cloroformio, metanolo) poi si convertono carboidrati e proteine

trasformazione con pirolisi, gassificazione

Bioetanolo di II generazione Processo biologico: idrolisi enzimatica di materiali

lignocellulosici e successiva (o contemporanea) fermentazione degli zuccheri provenienti da cellulosa ed emicellulose. Questa tecnologia è attualmente al centro di un rinnovato interesse da parte della comunità scientifica internazionale .

Processo termochimico: gassificazione della biomassa per produrre di syngas (H2 e CO) e successiva fermentazione del syngas.

Resa per 1 ettaro (ha) di terreno coltivato a mais e frumento

Bioetanolo

Prima Generazione 3 t/ha Seconda generazione 10 t/ha

BTL Fuels Dimetil-etere (DME) Bio-metanolo Miscele di alcoli ed altri composti organici ossigenati Sono ottenuti via gassificazione e sintesi catalitica

genericamente indicati come BTL (Biomass to liquids) Fuels.

Sono processi attualmente oggetto di sperimentazione a livello di laboratorio o impianti di piccola scala.

Stato di avanzamento delle tecnologie per la produzione di biocarburanti al 2011