energy 2 capture applying separation process 2 methyl 1 ...€¦ · 2 capture system applying phase...

Download Energy 2 Capture Applying Separation Process 2 methyl 1 ...€¦ · 2 Capture System Applying Phase Separation Process ... • Lower reaction rate ... . ump up heated =0.54

If you can't read please download the document

Upload: doantu

Post on 06-May-2018

221 views

Category:

Documents


3 download

TRANSCRIPT

  • 8th Sep.,2015Regina CanadaRegina,Canada

    ExperimentalMeasurementofRegenerationEnergyinCO2 CaptureSystemApplyingPhaseSeparationProcessusinghighconcentration2Amino2methyl1propanolg g y p p

    TakaoNakagaki*a,ShunsukeSatoag ,HiroshiSatob andYasuro Yamanakab

    a WasedaUniversity,Japanb IHICorporationy, p p

    /13

  • RequirementsforPCCSandhowtoapproach(Operating condition)(Operatingcondition)

    SensibleheatHeatofvaporization

    Absorption fluxFlow rate AbsorptionfluxFlowrate

    Concentration&CO2 loadingMulti pressure stripping3)

    Temperatureswing

    H+ acceptor

    (pKa)

    RNH+RNH+Fast:RNCOO H+

    MultipressurestrippingRateofreactions

    Condensationprecipitateseparation

    Heat of reaction (depend on substance)

    pHHCO3(Lowtemp.stripping)

    4)

    Hr

    Nonidealmixing2)DissolutionofgasintoliquidChemicalreaction

    Heatofreaction (dependonsubstance)MEA1)

    NovelamineBlendamines

    TechnologiesQuantumchemistryOrganic synthesis

    Exploringsolvent

    0 1 2 3 4Regeneration energy (GJ/t)

    Target

    /13

    Organicsynthesis1)RITE,COURSE50NEDOProjectreport(2006),2)Kim,I.et.al.,Chem.Eng.Sci.64(2009)20272038,3)Jassim,M.,Rochelle,G.Ind.andEng.Chem.Res.48(8)(2006)24652472,4)Oexmann,J.,Kather,A.,Int.J.ofGHGCtrl.4(2010)3643

    2

    Regenerationenergy(GJ/t)

  • 2Amino2methyl1propanol(AMP) Moderately sterically hindered primary amineM.W. 89.14 g/mol Moderately,stericallyhinderedprimaryamine Lowerregenerationenergy Lowercorrosiveness Lower reaction rate (promoter: PZ etc )2) 3) Unstable

    M.W.89.14g/molB.P. 165.5CM.P. 25.5C

    Lowerreactionrate(promoter:PZetc.)2)3)

    CH3OH

    H3CO OH

    H3C

    NHCO

    CH3Unstable

    carbamate1)

    H

    :N HC

    O

    O

    CH3OHH2N

    : +NHC

    O + CH3OHH3N

    ProtonatedAMP

    O OHH3C2 OH

    H3C

    H3CCH3

    H C CH3 BicarbonateAMP

    pKa=8.8(40C)

    OHHN

    C

    :H

    OH :C

    O

    H

    OHH3C

    H2N

    CH3

    + Carbamatehydrolysis

    Bicarbonate

    Kc=[AMPCOO]/[AMP][HCO3]

  • Experimental:PrecipitationofAMPChemical structureAMP 50wt% (5 6M) at 40C Chemical structureby Raman spectroscopyCation: Protonated AMPAnion: Carbonate (1068 cm1)

    AMP 50wt% (5.6M) at 40 C getting whitely turbid by precipitation of salt

    (AMPH)2(CO3)

    CO32 +2AMPH+ (AMPH)2(CO3)

    AMPH+ + H2O AMP +H3O+

    2H O H O+ + OH

    Reaction model in AMPREA (ASPEN PLUS)*

    ( Equilibrium)2H2O H3O+ + OHHCO3 + H2O H3O+ + CO32

    CO2 + OH HCO3

    ( Equilibrium)

    2 3

    HCO3 CO2 + OH

    AMP + CO2 + H2O AMPCOO + H3O+

    COO O+ CO O

    ( Kinetic)

    /134Barzagli,F., ChemSusChem,5,(2012)17241731

    AMPCOO + H3O+ AMP + CO2 + H2O*Jamal, A., et al., Chem. Eng. Sci. 61 (2006) 65716603

  • VLEandabsorptionrate:AMPandMEAVapor Liquid Equilibrium CO absorption rate

    200

    250

    ol/m

    2 /s) 10

    7

    AMP50wt%+PZ5wt%1000

    )VaporLiquidEquilibrium

    40 C 1atm

    CO2 absorptionrate

    (wt%)

    100

    150

    nrate(kmo

    Precipitation100

    ssure(kPa) 40 C,1atm

    10%CO2 /N2Bal.

    0

    50

    100

    absorptio

    n

    MEAAMP30wt%

    AMP50wt%10

    partialpres

    10kPa,40 C1.5kPa120C 0

    0 0.2 0.4 0.6CO2 loading (molCO2/molamine)

    CO2

    0 1

    1

    CO2p

    CyclecapacityAMP >MEA

    0 4

    1) Tong D et al Int J GHG Ctrl 6 (2012)37 47

    0.10 0.2 0.4 0.6 0.8 1CO2 loading (molCO2/molamine) 0.3

    0.4

    ding

    olamine)

    HCO3,CO3AMPorAMPH+ carbonateAMPorAMPH+ carbamate

    K < 0.01

    13CNMR

    1)Tong,D.et.al.,Int.J.GHGCtrl,6(2012)37472)Jou,F.Y.et.al.,CanadianJ.Chem.Eng.73(1995)1401473)Kundu,M.et.al.,J.Chem.Eng.Data48(2003)7897964)Roberts,B.E.et.al.,Chem.Eng.Comm.64(1988)105111 0.1

    0.2CO

    2load

    molCO2/mo Kc

  • ConceptualPFDandoperatingline(AMP50%)Flue gasoutlet

    Liquid phaseSolid phase

    g

    Waterwash

    Topinlet

    Middle inlet

    120

    CO rich

    milean

    d

    Flue gasinlet

    Middleinlet

    40C

    80

    100

    C)

    RichHEX

    CO2richliquid

    Absorber

    CO2se

    liquidinlet

    CO2 recoveryCooler

    C d

    QV

    60C60

    80

    perature(

    50wt%

    Richoutlet

    HEX

    CondenserSolidliquidseparator

    40 C

    40Tem

    p

    Topinlet

    Middle inlet(Semilean)

    Phase

    10kPaEquil.(40wt%)

    Stripper

    CO2 richslurry40C

    50 C

    20inlet(Lean)

    CO2 richslurry

    separation

    =Cycle capacityHypothetical

    +

    ( )

    HEX CO2richliquidReboiler

    90C

    50C 00.1 0.2 0.3 0.4 0.5 0.6CO2 loading (molCO2/molamine)

    =Cyclecapacity

    /136

    CO2lean liquidQF 110C2 g ( 2 )

  • CO2 recoverybybatch operationFlue gasoutlet

    Weight

    Batchoperationresult

    0 20 40 60 80 100 120

    Liquid phaseSolid phase

    g

    Waterwash

    Topinlet

    Middle inlet

    AMP H2O

    AMP=50wt%100gg

    milean

    d

    Flue gasinlet

    Middleinlet

    Freshsolution 2

    CO

    11.3g=0.46*

    Equilibriumliquid:T=60C,pCO2=10kPaCO2se

    liquidinlet

    Cooler

    (From Stripper

    solution

    After CO2

    49%

    LiquidSolidseparation:T=40oC,p=0.8atm

    Solidliquidseparator

    AMPcarbonatesalt

    (FromStripperviaHEX)

    Afterabsorption

    Liquid Solid49%

    61%

    51%

    39%Suctionfiltration

    (CO2 richslurry) Aftercooling

    (35%)(54%)=0.49*=0.43*Vacuumpump

    Buchner funnel &filterSolid

    /137

    *AnalyzedbyTOCLiquid

    7

  • 140

    MeasurementofheatoffusionH t f CO b ti b DRC

    80100120

    (kJ/mol)HeatofCO2 absorptionbyDRC Precipitation

    MassFlowControllers

    Gas

    +25~30kJ/mol40C

    204060 AMP25wt%(Kim,2011)

    AMP30wt%AMP50wt%Syringe

    GasCollectionBufferTank

    00 0.1 0.2 0.3 0.4 0.5 0.6

    CO2 loading (molCO2/molamine)000023.4

    CO2 N2

    TC HeaterDummyHeater

    BallFilter

    DCPower

    80

    100

    0.5

    0.0

    %/g)

    Stirrer PC

    Thermostat

    R1R2 40

    60

    1.5

    1.0

    tiveweight

    tflow(W/ TGDSC

    =0.00=0.51

    ThermostatTemperatureMeasurement

    0

    20

    2.5

    2.0 Relat

    Heat

    6mgsampleonopenAlpan

    Meltingpoint

    peak=224J/g

    /138

    0 20 40 60 80 100 120TemperatureC(5C/min.)

  • 1000

    Operatingconditionofstripper(CO i h li ) CO

    100

    e(kPa)

    (CO2 richliq.) CO2 recovery

    CondenserQ

    10

    ialpressure

    Stripper60C

    1

    CO2part

    Plots:VLEexperimental HEX

    CO lean liquid

    CO2richliquid

    0.10 0.2 0.4 0.6 0.8 1

    CO2 loading (molCO2/molamine)

    CO2lean liquidReboiler

    /139

  • BenchscaleCO2 separationapparatusl d T 90 4 C

    Backpressurevalve

    Insulated andheated tubing

    TIC1110C 0 54

    PT 200kPa

    Experimentalprocedure:1.Startupwithfilledwater

    2 P h t d AMP

    T3 90.4C

    Packing(Inside)

    EF

    p

    (Returnto top ofabsorber) Gas meter3.1L/min

    (Chilled brine)=0.542.PumpupheatedAMP

    carbonateslurrytotopofstripperatconstantrate of 30 ml/min

    SamplingforTOCanalysis=0.09

    RecoveredCOventilation

    rateof30ml/min.3.Controlleanliquidpump&electricheater to keep water

    0.000 g

    Weight scaleforcondensedwater 1.36g/min

    Slurry / liquidpump(30ml/min)

    heatertokeepwaterlevel&T2 constant

    El t i h t

    (Datalogger)AMPcarbonateslurryreservoir tank

    (3 Liter) Electric heater

    Leanliquidpump

    000023.4

    Power meter

    (3Liter)

    Thermostatic

    /13

    p p PowermeterThermostaticwater bath(70C)

    TIC2120C

    10

  • Regenerationenergyestimation30% MEA 30% AMP 50% AMP 50% AMP (E)

    2

    30%MEA 30%AMP 50%AMP 50%AMP(E)M 4.91 3.37 6.62* 6.62*

    PT kPa 200 200 300 200T1 C 90 90 90 110

    GJ/tCO

    T1 C 90 90 90 110T2 C 120 120 110 120T3 C 120 120 110 90.4PH2O_2 kPa 198.5 198.5 143.3 198.5

    PCO2_2 kPa 1.5 1.5 156.7 1.5m1 molCO2/molamine 0.52 0.6 0.5 0.54m2 0.2 0.18 0.15 0.09

    H kJ/ l CO 85 80 80 80

    HR kJ/molCO2 85 80 80 80

    Hv kJ/kg 2202 2202 2230 2202Cp kJ/kgK 3.60 3.75 3.50 3.50 kg/L 1.08 1.08 1.06 1.06

    CO2 kg/L 1.08 1.08 1.06 1.06WCO2/Wsol kgCO2/kgamine 64.0 81.8 96.2 123.7

    Wv/WCO2 kgH2O/kgCO2 0.22 0.22 0.12 0.23QR 1.93 1.82 1.82 1.82

    GJ/tCO2QH 1.69 1.90 0.73 0.28QV 0.49 0.49 0.28 0.50QF (0.00) (0.00) (0.57) (0.57)Q 4 10 4 20 2 82 2 59

    /1311

    Qtotal 4.10 4.20 2.82 2.59

  • 4 5

    Experimentalresult:regenerationenergy

    4.0

    4.5CO2

    QV Liquid phaseSolid phase

    Flue gasoutlet

    Water Topinlet

    3.0

    3.5

    yG

    J/t

    Est. Exp.QF

    Solid phase

    milean

    Flue gas

    Waterwash

    Middleinlet

    40C

    2.0

    2.5

    nen

    ergy QH

    CO2sem

    liquid

    ginlet

    CO2 recoveryCooler

    d

    Qv

    60C

    1.0

    1.5

    eneratio

    St i

    CondenserSolidliquidseparator

    40C

    0 0

    0.5Reg

    QRStripper

    HEX CO rich liquid

    CO2 richslurry

    50C0.0

    MEA AMP AMP 50%

    300 kPa90/110 C

    200 kPa110/120 C

    200 kPa90/120 C

    HEX

    CO2lean liquid

    CO2richliquidReboiler

    QF90C

    110C

    /1312

    MEA30%

    AMP30%

    AMP 50%(Phase separation)

  • Conclusions

    We proposed a precipitating 2Amino2methyl1propanol (AMP) carbonatesolvent process for CO2 capture and estimated regeneration energy by theequilibriumbased method using properties obtained by VLE and calorimetry.Also, a regeneration test using a benchscale CO2 separation apparatus was

    conducted to empirically confirm the estimated regeneration energy of the stripper.

    In order to avoid precipitating in absorber, the absorbing solution should bekept at temperatures of higher than 60 C while CO loading capacity decreaseskept at temperatures of higher than 60 C, while CO2 loading capacity decreasescompared to 40 C.

    The precipitated solid obtained by simple suction filtration contained 35%p p y pmoisture and 61% of total absorbed CO2, which was equivalent to 0.49 of CO2loading.

    The regeneration energy using the precipitating AMP carbonate solvent processwas estimated at 2.82 GJ/tCO2 by equilibriumbased calculation methodvalidated experimentally by a benchscale test.

    /1313