energy dependence of the isotopic composition in nuclear fragmentation

16
Energy Dependence of the Isotopic Composition in Nuclear Fragmentation S. Yennello, D. Shetty, M. Veselsky, E. Martin, A. Keksis, G. Souliotis and D. Rowland Texas A&M University Cyclotron Institute

Upload: kelsey-hurley

Post on 03-Jan-2016

20 views

Category:

Documents


0 download

DESCRIPTION

Energy Dependence of the Isotopic Composition in Nuclear Fragmentation. S. Yennello, D. Shetty , M. Veselsky , E. Martin, A. Keksis, G. Souliotis and D. Rowland Texas A&M University Cyclotron Institute. Two component liquid. Single component liquid. Two component liquid. Free n/p ratio - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Energy Dependence of the Isotopic Composition in Nuclear

Fragmentation

S. Yennello, D. Shetty, M. Veselsky, E. Martin, A. Keksis, G. Souliotis and

D. Rowland

Texas A&M University

Cyclotron Institute

Page 2: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Single component liquid

Two component liquid

Possible signatures:Free n/p ratiot/3He ratioN/Zfragments

Two component liquid

Page 3: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

124Sn 124Sn

Veselsky, Phys. Rev. C 62, 064613 (2000).

Page 4: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

0 100 200

100

0 50 100 150 200 250

100

0 50 100 150 200 250

10

100

0 50 100 150 200 250

10

100

(50MeV/nuc)

E*

QP, MeV

Co

un

ts (

arb

. u

nits

)

Co

un

ts (

arb

. u

nits

)

E*

QP, MeV

(30MeV/nuc)

E*

QP, MeV

Veselsky, Phys. Rev. C 62, 064613 (2000).

Page 5: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

28Si + 112,124SnE*=2.5-3.5 E*=3.5-4.5 E*=4.5-5.5

E*=5.5-6.5 E*=6.5-7.5 E*=7.5-8.5

E*=8.5-9.5 E*=9.5-10.5 E*=10.5-12.5

Veselsky,Phys Lett B 497,1(2001)

QPZNaa

HeY

HY213

3

ln

Page 6: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Ratio of isotopic yields58Ni, 58Fe + 58Ni, 58Fe 30 Mev/nuc

ZNCeZNR ),(21

Page 7: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Scaling factor

ZeRS 21

Page 8: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Relative free neutron and proton densities

NiNinn

/

NiNipp

/

Page 9: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Scaling factor at 30,40,47 MeV/nuc

Page 10: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

neutron and proton densities at 30,40,47 MeV/nuc

NiNinn

/

NiNipp

/

Page 11: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Energy dependence of the scaling parameter

30 MeV 40 MeV 47 MeV

0.372 0.269 0.23

-0.395 -0.372 -0.32

0.15

0.2

0.25

0.3

0.35

0.4

25 30 35 40 45 50

Beam Energy ( MeV/nuc)

alp

ha

.

Tsang PRC64, 054615 (2002)

58Fe + 58Fe / 58Ni + 58Ni

Page 12: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Botvina IsoscalingR21 = C exp(’A + ’(N-Z)

30 MeV/nuc 50 MeV/nuc

’ = 0.237±0.038 ’ = 0.186±0.017

’ = (n + p)/2T

’ = (n - p)/2T

28Si + 112,124Sn

Page 13: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Botvina IsoscalingR21 = C exp(’A + ’(N-Z)

28Si + 112,124Sn ; 50 MeV/nuc

E*

(MeV)

3 0.31

4 0.20

5 0.19

6 0.18

7 0.17

Page 14: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Summary

• The enhancement in free neutrons of neutron-rich systems is greater at lower energies.– Isoscaling in 58Ni, 58Fe + 58Ni, 58Fe– 3H/3He in 28Si + 112Sn, 124Sn– Isoscaling in 28Si + 112Sn, 124Sn

Page 15: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Chomaz PLB 47, 221 (1999)

Baran Nucl Phys 1999

Bao An Li PRL 2000

Theory

Page 16: Energy Dependence of the Isotopic Composition in Nuclear Fragmentation

Summary

• The enhancement in free neutrons of neutron-rich systems is greater at lower energies.– Isoscaling in 58Ni, 58Fe + 58Ni, 58Fe– 3H/3He in 28Si + 112Sn, 124Sn– Isoscaling in 28Si + 112Sn, 124Sn

• Theoretical comparisons are in progress.

This work was supported in part by the Department of Energy and the Robert A Welch Foundation