energy & exergy efficiency of manufacturing processes...st d st tsteady state mat mf res mf ......

45
GCEP – Stanford April 16, 2008 Energy & Exergy Efficiency of Manufacturing Processes Tim Gutowski Department of Mechanical Engineering Massachusetts Institute of Technology [email protected] 1

Upload: others

Post on 23-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

GCEP – StanfordApril 16, 2008

Energy & Exergy Efficiency of Manufacturing Processes

Tim GutowskiDepartment of Mechanical EngineeringMassachusetts Institute of Technology

[email protected] 1

Page 2: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Mfg Processes in Thermodynamic F kFramework

1. Machining g2. Grinding3. Casting

CO2

4. Injection Molding5. Abrasive Waterjet6. EDM7. Laser DMD8 CVD

CO28. CVD9. Sputtering10. Thermal Oxidation

[email protected] 2

10. Thermal OxidationFigure from Gyftopoulos & Berreta

Page 3: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

IssuesIssues

1. Resource Accounting

• Work heat materials transformations• Work, heat, materials transformations

2 Process Improvement2. Process Improvement

• Minimum work or reversible work: exergygy

[email protected] 3

Page 5: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Balances for Mfg ProcessBalances for Mfg Process

d

MFiiouti

MFiiini

MF MNMNdt

dm ∑∑==

−=1

,1

, )()(Mass

MFECMF

MFMFECMF

i

MF WQQdt

dE+−∑= ←→←

0Energy

resMF

prodMF

matMF HHH −−+

MFirrresMF

prodMF

matMF

MF

i

MFECMF

i

MF SSSST

QT

Qdt

dS,

0

0 +−−+−∑=→←

Entropy

[email protected] 5

Page 6: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Work Rate for Mfg Process in St d St tSteady State

matMF

resMF

prodMF

MFECMF HHHW ))(( −+=←

matMF

resMF

prodMF

T

SSST0 ))((

⎟⎞

⎜⎛

−+−

∑ MFirrMFECMF

i i

STQTT

,00

01 +⎟⎟⎠

⎞⎜⎜⎝

⎛−− ←

>∑

[email protected] 6

Page 7: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Exergy and WorkExergy and Work

ooo STHSTHB )()( −−−=

matMF

resMF

prodMF

MFECMF BBBW ))(( −+=←

MFirrMFECMF

i i

STQTT

,00

01 +⎟⎟⎠

⎞⎜⎜⎝

⎛−− ←

>∑i iT0 ⎠⎝>

[email protected] 7

Branham et al IEEE ISEE 2008

Page 8: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Mfg Process Use of ElectricityMfg Process Use of Electricity1. Machining g2. Grinding3. Casting4. Injection Molding5. Abrasive Waterjet6. EDM7. Laser DMD8 CVD8. CVD9. Sputtering10. Thermal Oxidation

[email protected] 8

10. Thermal Oxidation

Page 9: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Figure from Gyftopoulos & Berreta

Energy Intensity (MJ/kg)

[email protected] 9

Page 10: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Energy Requirements at the M hi T lMachine Tool

Variable (65.8%)Variable (65.8%)

Machining (65.8%)

Constant (run time)

Spindle (9.9%)

Carousel (0.4%)

Machining (65.8%)

Constant (run time)

Spindle (9.9%)

Carousel (0.4%)

Jog (x/y/z) (6.6%)

Computer and Fans (5.9%)

Load

(run time) (20.2%)Tool Change (3.3%)

Constant (startup) (13.2%)

Unloaded Motors (2.0%)Spindle Key (2.0%)

Coolant Pump (2.0%)Servos (1.3%)

Jog (x/y/z) (6.6%)

Computer and Fans (5.9%)

Load

(run time) (20.2%)Tool Change (3.3%)

Constant (startup) (13.2%)

Unloaded Motors (2.0%)Spindle Key (2.0%)

Coolant Pump (2.0%)Servos (1.3%)

Production Machining Center Automated Milling Machine

[email protected] 10

g g

From Toyota 1999, and Kordonowy 2002.

Page 11: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Electric Energy Intensity for Manufacturing Processes

processedvo VkPP +=

ower

(kW

)

physics

auxiliary equipment & infrastructure

Po

Process Rate (cm3/sec)

y q p

cm3)

ergy

(MJ/

c

VEk

VP

VP

vo =+=

Process Rate (cm3/sec)peci

fic E

ne VVV

[email protected] 11

Process Rate (cm3/sec)Sp

Page 12: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

All-electric vs hybridAll electric vs. hybrid

100

120Cool

Ton Buildup

60

80

100

quire

d (k

W)

Plasticize Inject highClamp open-close

t

20

40

60

Pow

er R

eq

Inject low

0

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Time (seconds)( )

MM 550 Hybrid NT 440 All-Electric

Source: [Thiriez]

[email protected] 12

The hydraulic machine would be even higher than the hybrid curve

Page 13: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

All-electric vs hybridAll electric vs. hybrid

100

120Cool

Ton Buildup

60

80

100

quire

d (k

W)

Plasticize Inject highClamp open-close

t

20

40

60

Pow

er R

eq

Inject low

0

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Time (seconds)( )

MM 550 Hybrid NT 440 All-Electric

Source: [Thiriez]

[email protected] 13The hydraulic plot would be even higher than the hybrid curve

Page 14: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Injection Molding MachinesInjection Molding Machines8 Variable Pump Hydraulic Injection Molding Machines.

5

6

7

8

kg)

HP 25HP 50HP 60HP 75HP 100

p y j g

‘06]

2

3

4

5

SEC

(MJ/

k

Low Enthalpy - Raise Resin to Inj. Temp - PVCHigh Enthalpy - Raise Resin to Inj. Temp - HDPE

ce: [

Thiri

ez

0

1

2

0 50 100 150 200

Sour

c

0 50 100 150 200Throughput (kg/hr)

Does not account for the electric grid. EkPP o [email protected] 14

mk

mm m =+=

Page 15: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Thermal Oxidation SiO2Thermal Oxidation, SiO2

Ref: Murphy et ales&t 2003

[email protected] 15

Page 16: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Power RequirementsPower Requirements

[email protected] 16

Ref: Murphy et ales&t 2003

Page 17: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Process Name ReferencesPower Required

kW

Electricity Required

J/cm3

Process Rate

cm3/sInjection Molding 10.76 - 71.40 3.76 - 50.45 of polymer

processed 1.75E+03 - 3.41E+03 [Thiriez 2006]

Machining 2.80 - 194.80 0.35 - 20.00of material removed 3.50E+03 - 1.87E+05

[Dahmus 2004], [Morrow, Qi & Skerlos 2004] & [Time

Estimation Booklet 1996] [M Qi & Sk l 2004] &

Finish Machining of material removed

[Morrow, Qi & Skerlos 2004] & [Time Estimation Booklet

1996]

CVD 14 78 25 00 6 54E 05 3 24E 03of material

deposited on 4 63E+06 2 44E+08

[Murphy et al. 2003], [Wolf & Tauber 1986, p.170], [Novellus

Concept One 1995b] &

9.59 2.05E-03 4.68E+06

CVD 14.78 - 25.00 6.54E-05 - 3.24E-03 deposited on wafer area

4.63E+06 - 2.44E+08 Concept One 1995b] & [Krishnan Communication

2005]

Sputtering 5.04 - 19.50 1.05E-05 - 6.70E-04of material

deposited on wafer area

7.52E+06 - 6.45E+08[Wolf & Tauber 1986] &

[Holland Interview] wafer area

Grinding 7.50 - 0.03 1.66E-02 - 2.85E-02 of material removed

6.92E+04 - 3.08E+05 [Baniszewski 2005] & [Chryssolouris 1991]

Waterjet 8.16 - 16.00 5.15E-03 - 8.01E-02 of material removed

2.06E+05 - 3.66E+06 [Kurd 2004]

of material [Sodick], [Kalpakjian & Wire EDM 6.60 - 14.25 2.23E-03 - 2.71E-03

of material removed 2.44E+06 - 6.39E+06 Schmid 2001], & [AccuteX

2005]

Drill EDM of material removed

[King Edm 2005] & [McGeough, J.A. 1988]

Laser DMD of material [Morrow, Qi & Skerlos 2004]

2.63 1.70E-07 1.54E+10

80.00 1.28E-03 6.24E+07

[email protected] 17

Laser DMD removed[Morrow, Qi & Skerlos 2004]

Thermal Oxidation 21.00 - 48.00 4.36E-07 - 8.18E-07of material

deposited on wafer area

2.57E+10 - 1.10E+11 [Murphy et al. 2003]

80.00 1.28E 03 6.24E 07

Page 18: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

In General, over manyf t imanufacturing processes,

PowerIdle505

PowerIdle ≤≤ kWPkW o

and o

/seccm1/seccm10RatesProcessMaterial

337 ≤≤− V /seccm 1/seccm 10 ≤≤V

[email protected] 18

Page 19: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

1.E+11

1.E+12

m3

1.E+09

1.E+10

ts [J

/cm3 ]

ents

J/c

mes

ses

1 E+06

1.E+07

1.E+08

Req

uire

men

t

quire

me

g Pr

oce

1.E+04

1.E+05

1.E+06

Ele

ctric

ity R

ergy

Req

ious

Mfg

1.E+02

1.E+03

E

ific

Ene

for V

ari

l 007

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03

Process Rate [cm3/s]Injection Molding Machining Finish MachiningCVD S tt i G i di

Spec

owsk

i et a

lE

, IS

EE

20

[email protected] 19

CVD Sputtering GrindingAbrasive Waterjet Wire EDM Drill EDMLaser DMD Oxidation Upper BoundLower Bound

Gut

oIE

EE

Page 20: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

1.E+11

1.E+12

m3

Mi /N

1.E+09

1.E+10

ts [J

/cm3 ]

ents

J/c

mes

ses Advanced

Processes

Micro/Nano

gnitu

de

1 E+06

1.E+07

1.E+08

Req

uire

men

t

quire

me

g Pr

oce

s of

mag

1.E+04

1.E+05

1.E+06

Ele

ctric

ity R

ergy

Req

ious

Mfg

ConventionalProcesses

8 or

ders

1.E+02

1.E+03

E

ific

Ene

for V

ari 8

l 007

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03

Process Rate [cm3/s]Injection Molding Machining Finish MachiningCVD S tt i G i di

Spec

owsk

i et a

lE

, IS

EE

20

[email protected] 20

CVD Sputtering GrindingAbrasive Waterjet Wire EDM Drill EDMLaser DMD Oxidation Upper BoundLower Bound

Gut

oIE

EE

Page 21: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

1.E+13

1.E+14

1.E+11

1.E+12/k

g]

1 E+09

1.E+10

1.E 11

emen

ts [J

1 E 07

1.E+08

1.E+09

ity R

equi

re

1.E+06

1.E+07

Ele

ctric

i

7

1.E+051.E-06 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04

Process Rate [kg/hr] ski e

t al

ISE

E 2

007

[email protected] 21

Process Rate [kg/hr]Injection Molding Machining Finish MachiningCVD Sputtering GrindingAbrasive Waterjet Wire EDM Drill EDMLaser DMD Oxidation Melters

Gut

ows

IEE

E, I

Page 22: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Keep in MindKeep in Mind

• This is intensity not total used• This is intensity not total used

• This is at the device

– loses at energy conversion not included

– investment into materials not included

– infrastructure not includedinfrastructure not included

• Suggestive of efficiency

[email protected] 22

Page 23: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Why are these energy intensities hi h?so high?

• stable and declining energy pricesstable and declining energy prices• demand for small devices

h ith l• vapor phase processes with slow deposition rates

• efficiency used to enhance performance• never the less, the trajectory of individual , j y

processes is toward faster rates and lower energy intensities

[email protected] 23

gy

Page 24: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

All Electric Vs Hydraulic Injection M ldi M hiMolding Machines

9

6

7

8

All-Electric - 85 tons

4

5

6

Hydraulic - 85 tons

EC (M

J/kg

)

Material: PP

1

2

3SE

0

1

0 5 10 15 20Throughput (kg/hr)

[email protected] 24Source: [Thiriez 2006]

Page 25: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Exergy Analysis including Chemical C itiComposition

STHSTHB )()( −−−= ooo STHSTHB )()(=

• B = Bph + Bch

• Bph(T=To, P=Po) =0( o o)– this is the “restricted dead state*”

• when B = Bph = 0 andwhen B B 0, and • Bch(μ∗=μo) = 0

this is the “dead state”[email protected] 25

– this is the “dead state”

Page 26: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Work Rate for Mfg ProcessWork Rate for Mfg Process

nhd

nh

phmatMF

resMF

prodMF

MFECMF BBBW ))(( −+=←

∑∑n

resMFi

i

chi

prodMFi

i

chi

T

NbNb11

)()(

⎞⎛

−++==∑∑

MFirrMFECMF

i i

matMFi

n

i

chi STQ

TTNb ,0

0

0

11)( +⎟⎟

⎞⎜⎜⎝

⎛−− ←

>=∑∑

Here all chemical exergy terms (bch) are at To, Po

[email protected] 26Branham et al IEEE ISEE 2008

Page 27: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Definition of Exergy “B”Definition of Exergy B“Exergy is the amount of work obtainableExergy is the amount of work obtainable

when some matter is brought to a state of thermodynamic equilibrium with thethermodynamic equilibrium with the common components of the natural surroundings by means of reversiblesurroundings by means of reversible processes, involving interaction only with the above mentioned components ofthe above mentioned components of nature” [Szargut et al 1988].

[email protected] 27

Page 28: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

ExergyExergy

System State

Maximum work obtainablebetween System and ReferenceStates.

Reference State

[email protected] 28

Page 29: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

ExergyExergy

System State

Maximum work obtainablebetween System and ReferenceStates; or minimum work neededto raise System from the referencestate to the System State

Reference State

[email protected] 29

Page 30: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Chemical Properties referenced to th “ i t”the “environment”

CrustCrust

OOceans

Atmosphere

[email protected] 30To = 298.2 K, Po = 101.3 kPA

Page 31: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Exergy Reference SystemExergy Reference System

pure metal, element

oxides sulfides

chemical reactions

oxides, sulfides…

crustal component extractionpearth’s crust (ground state)

extraction

[email protected] 31

Page 32: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Example; making pure iron from th tthe crust

Fe (c = 1) 376.4 kJ/mole

reduction

Fe2O3 (c=1) 16.5 kJ/moleextraction

Fe2O3 (c = 1.3 x 10-3) 0 kJ/mole (ground)

[email protected] 32

Page 33: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Exergy Reference SystemExergy Reference System

Aluminum (c=1) 888.4 kJ/mole

Al O (c=1) 200 4 kJ/moleAl2O3 (c=1) 200.4 kJ/mole

Al2SiO5 (c=1) 15.4kJ/mole2 5 ( )Al2SiO5 (c = 2 x 10-3) 0 kJ/mole (ground)

[email protected] 33

Page 34: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Exergy AccountingExergy Accounting

B BoutBinBlost

BBB lostoutin BBB =−[email protected] 34

Page 35: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Chemical ReactionsChemical Reactions

balancemasstricstoichiome.......

balancemasstricstoichiome

kkjjbbaa vvRvRv +Π+Π→++

balance""exergy....

balanceexergy

lostkjRbRa Bbvbvbvbvkjba=−−++ ΠΠ

k / liiibh

j kjba

[email protected] 35kJ/molein given isbexergy where

Page 36: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Efficiency Measures:D f P f tiDegree of Perfection

B outputusefulp B

B =ηin

p B

[email protected] 36

Page 37: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Batch Induction Melter Inputs and OutputsD til I B t h El t i I d ti E A l iDuctile Iron – Batch Electric Induction Exergy Analysis

Ductile Iron Melt1000 kg

Metallic Input Materialsand Alloys1024 kg

Slag40 kgInput Electricity

5,393 MJ

Dust0.26 kgNatural Gas Preheater

0 025 kg

Boundaries are drawn around the entire facility so that

0.025 kg

[email protected] 37

yall components are at standard pressure and temperature

Page 38: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Batch Induction Melter Exergy Analysis*Batch Induction Melter Exergy Analysis

Material Amount (kg) Weight PercentStandard Chemical

Exergy (MJ/kg) Exergy (MJ)Percent Total

Exergy

Ductile Iron Batch Electric Induction Melting

( g) g gy ( g) gy ( ) gy

Steel Scrap 439 42.85% 6.89 3022.25 15.39%Pig Iron 1.6 0.16% 8.18 13.43 0.07%Ductile Iron Remelt 535 52.25% 8.44 4513.98 22.99%65% Silicon Carbide Briquettes 4 3 0 42% 31 73 137 62 0 70%

Input Materials

65% Silicon Carbide Briquettes 4.3 0.42% 31.73 137.62 0.70%75% Ferrosilicon 3.0 0.29% 24.51 72.46 0.37%5% MgFeSi 14.8 1.44% 19.09 282.30 1.44%Copper 1.7 0.17% 2.11 3.69 0.02%Tin 0.005 0.00% 1.13 0.01 0.00%62% Fe-Molybdenum 6.2 0.61% 7.28 45.35 0.23%Carbon 9012 18 1.80% 34.16 628.45 3.20%Natural Gas Preheater 0.02 0.00% 51.84 1.27 0.01%Electricity 5418.00 55.59%

Total Inputs 1024 100.00% 14138.83 100.00%

Output MaterialsDuctile Iron Melt 1000.2 96.69% 8.44 8436.45 99.29%Slag 33.9 3.28% 1.14 60.05 0.71%Dust 0.3 0.02% 0.26 0.07 0.00%

Total Outputs 1034 100.00% 8497 100.00%

Mass Difference 1 05%

Output ate a s

[email protected] 38

Mass Difference -1.05%

*including losses at Utility

Page 39: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Batch Electric Degree of PerfectionBatch Electric Degree of PerfectionproductsusefulofExergy

Batch Electric

inputsofExergyP =η

Batch Electric

Induction Melting

of 1 kg of melt

Total Exergy In

(Bin) = 11,155,000 JUseful Exergy Out(Bout) = 8,250,000J

g

Component Exergy in (J)Metallics 8,700,000

79.0000,420,10000,250,8

==JJ

Degree of Perfection

[email protected] 39

Electricity* 2,455,000

*not including utility losses

Page 40: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Plasma Enhanced Chemical Vapor D i i (CVD)Deposition (CVD)

[email protected] 40

Page 41: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Input Deposition GasesSpecies Input mass

(g)Input moles or primary energy

Exergy (J) %Total Inputs

SiH4 0.95 0.029579mol 40928.6 0.749O2 0.49 0.015313mol 60.79

CVD

Ar 0.34 0.008511mol 99.5

N2 196.9 7.028779mol 4849.9

I t Cl i Gnced

C

Input Cleaning GasesCH4 69.41 4.326643mol 3598253 63.0NF3 31.06 0.437453mol 266931.6

Input Energyenha

n

p gyElectricity 2220000J 2220000 36.2

Outputsasm

a e

OutputsUndoped Silicate

Glass laye

0.0248 0.000414mol 3.2667

Plas

[email protected] 41

Page 42: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

CVD Degree of PerfectionCVD Degree of Perfection

Chemical Vapor Deposition (CVD)

of a 600nm Total Exergy In

of a 600nm Undoped Silicate Glass (USG) layer

(Bin) = 6,130,000JUseful Exergy Out (B t) 3 3J

( ) yat 400°C (Bout) = 3.3J

Degree of Perfection

710*33.5123,131,6

267.3 −==J

JPη

Component Exergy in (J)Input Gases 45,900Cleaning Gases 3,865,000

[email protected] 42Data from Sarah Boyd et. al. (2006)

Electricity* 2,220,000

*not including utility losses

Page 43: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Reasons for a Low EfficienciesReasons for a Low Efficiencies

• Inefficient use of materials• Inefficient use of materials

• Use of high exergy materials (ultra-pure)g gy ( )

• Use of high exergy Aux. mat’ls (CH4)

• Low yields

• Low processing rates• Low processing rates

[email protected] 43

Page 44: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Manufacturing’s Role in a Low C b F tCarbon Future

• Many small pieces• Many small pieces

• Contribution to solutions

• Materials management

• Strong rate effect…

• Process redesign issues• Process redesign issues

[email protected] 44

Page 45: Energy & Exergy Efficiency of Manufacturing Processes...St d St tSteady State mat MF res MF ... and Kordonowy 2002. Electric Energy Intensity for Manufacturing Processes P =P o +k

Most of these results can be foundMost of these results can be found• on our website:

http://web.mit.edu/ebm/www/index.html

• Branham, Matthew, Timothy Gutowski, Alissa Jones, Dusan Sekulic, "A Thermodynamic Framework for Analyzing and Improving Manufacturing Processes", IEEE, ISEE, San Francisco May 19-20, 20082008,

• Gutowski, T., J. Dahmus, A. Thiriez, M. Branham, and A. Jones. “A Thermodynamic Characterization of Manufacturing Processes”, IEEE ISEE Orlando FL May 7-10 2007IEEE, ISEE, Orlando, FL May 7-10, 2007

• Jones, Alissa, “The Industrial Ecology of the Iron Casting Industry” M.S. Thesis, Department of Mechanical Engineering, MIT 2007

[email protected] 45