energy value stream mappinglma.berkeley.edu/posters/201114saskia-poster.pdf · 2015-01-22 ·...

1
Berkeley UNIVERSITY OF CALIFORNIA / © 2011 LMAS contact email: Technology & System Organization & Management Human & Behavior Holistic consideration of all 3 system elements is necessary for sustainable improvement of energy efficiency Energy Value Stream Mapping Saskia Reinhardt [email protected] Analyze energy flows of a production site Identify the factory’s key energy consumers and where the greatest amount of energy is wasted Improve energy efficiency in total Funding Sources: Institute for Machine Tools and Industrial Management (iwb) Motivation and Objectives Framework System Elements Types of Waste Energy Value Stream Analysis Drawing an Energy Value Stream Map Energy Value Stream Design Summary and Future Work Overproduction, e.g. use of surplus energy by an inefficient manufacturing system Waiting, e.g. energy used while production is down Transportation, e.g. inefficient transportation of compressed air Inventory, e.g. storing energy in batteries Defects, e.g. the energy which was used to manufacture a defective product is wasted Motion, e.g. inefficient transportation of goods Unused human talent, e.g. failure to integrate employees when defining energy efficient processes The energy value stream map consists of different modules representing the different manufacturing processes, transportation processes und supply units. Structured and methodological approach Tool for energy visualization Similarity to Lean Production profits from existing knowledge Apply method in different production environments and improve each step Cause Influence Measure Visualize Analyze System Elements Types of Energy Waste Energy Value Stream Analysis Derive measures Prioritize Identify reciprocal effects Scope of Action Design Kit Energy Value Stream Design Implementation 20 10 0 2030 2010 1990 1970 500 250 0 2008 2004 2000 1996 Consumer price index fossil fuels Producer price index crude oil Global energy consumption in bn toe/a Evalua&on of the energy value stream using analysis methods Drawing and visualizing the energy value stream Collec&ng data on process parameters, power, temperature, compressed air Process parameter analysis Energy use over time Stromverbrauch Wh Prozess Durchschnitt/Stück letztes Intervall Budget/ Stück Drehen Härten Dampfreinigen Schrumpfen Montage Roboter Druckluft 4.0 3.2 5.0 2.0 0.5 0.8 1.4 16.9 3.8 3.3 4.9 2.4 0.5 0.9 1.2 17.0 Stromaufnahme W Aktuell 3.95 2.82 4.23 3.25 0.31 0.80 1.72 LEP gesamt Stromverbrauch Wh Prozess Durchschnitt/Stück letztes Intervall Budget/ Stück Drehen Härten Dampfreinigen Schrumpfen Montage Roboter Druckluft 4.0 3.2 5.0 2.0 0.5 0.8 1.4 16.9 4.0 3.2 5.0 2.0 0.5 0.8 1.4 16.9 3.8 3.3 4.9 2.4 0.5 0.9 1.2 17.0 3.8 3.3 4.9 2.4 0.5 0.9 1.2 17.0 Stromaufnahme W Stromaufnahme W Aktuell 3.95 2.82 4.23 3.25 0.31 0.80 1.72 3.95 2.82 4.23 3.25 0.31 0.80 1.72 LEP gesamt Measure Visualize Analyze Number of parts [Pcs.] = 18 Power[kW] = 0,4 Temperature [°C]= 728 Conveyor Band 0 PT [Sec.] = 1680 CT[ Sec.] = 54 C/O [Sec.] = 2700 Batch [Pc.]= 6 el. Energy [kWh/Pcs.] = 87 Furnace 0,1 Pictures: BoschRexroth Source: Thomson Reuters time Energy consumption initial state implementation phase normal operation Technical Optimization Operators & Management LEAN Wastes Overproduction 1 Transportation 3 4 Inventory 5 Defects 6 Motion 7 Unused Human Talent Waiting 2 Source: iwb, Lernfabrik für Energieproduktivität Source: iwb, Lernfabrik für Energieproduktivität 8 Over Processing Bar length: Amount of waste heat Waste heat • Continuous • State-dependent Type of Consumption Color: Type of energy Bar length: Amount of energy Consumption Process x 1 Legend Natural gas Electrical Energy Space hea&ng Process heat Cooling water Extreme cold Compressed air 6 bar Compressed air 12 bar Waste heat Continuous State-dependent Machining 0,1 PT [Sec.] = 43 CT [Sec.] = 54 C/O [Sec.] = 728 Batch [Pcs.]= 6 Process temp. [°C] = 165 Part temp. [°C]= 65 El. Energy [Wh/Stk.] = 376 Steam [kg/h] = 0 Steam [Bar] = 0 Defects [%] = 0 Inventory [Pcs.] = 0 Compr. air [dm 3 /s] = 3 Compr. air [Bar] = 6 Basic information Detailed information Process Module Legend: PT: Processing time CT: Cycle time C/O: Change over time Source: iwb, Lernfabrik für Energieproduktivität Source: iwb, Lernfabrik für Energieproduktivität Source: iwb, Lernfabrik für Energieproduktivität Source: iwb, Lernfabrik für Energieproduktivität Energy Value Stream Design Waste n Waste 2 Waste 1 Derive measures Prioritize Scope of Action Design Kit Identify reciprocal effects Waste n . Waste 3 Waste 2 Waste 1 M 3 M 6 M 8 M 12 M 7 Several measures are derived to eliminate each waste of energy Measures with negative reciprocal effects are eliminated Cost threshhold Current operation point Quality threshhold Process window 5 Energy consumption Prod. quantity 25 [Pcs.] 15 10 0 Wednesday Thursday Tuesday Monday [Wh] 150 50 0 Sunday Saturday Friday Produced quantity Energy consumption

Upload: others

Post on 25-Dec-2019

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Energy Value Stream Mappinglma.berkeley.edu/posters/201114saskia-poster.pdf · 2015-01-22 · Energy Value Stream Mapping a e Analyze energy flows of a production site Identify the

BerkeleyUNIVERSITY OF CALIFORNIA /

© 2

011

LM

AS

c

onta

ct e

mai

l:

■  Technology & System ■  Organization & Management ■  Human & Behavior

■  Holistic consideration of all 3 system elements is necessary for sustainable improvement of energy efficiency

Energy Value Stream Mapping S

aski

a R

einh

ardt

sa

skia

.rein

hard

t@iw

b.tu

mde

■  Analyze energy flows of a production site ■  Identify the factory’s key energy consumers and where the

greatest amount of energy is wasted ■  Improve energy efficiency in total

Funding Sources: Institute for Machine Tools and Industrial Management (iwb)

Motivation and Objectives Framework

System Elements Types of Waste

Energy Value Stream Analysis Drawing an Energy Value Stream Map

Energy Value Stream Design Summary and Future Work

■  Overproduction, e.g. use of surplus energy by an inefficient manufacturing system

■  Waiting, e.g. energy used while production is down

■  Transportation, e.g. inefficient transportation of compressed air ■  Inventory, e.g. storing energy in batteries ■  Defects, e.g. the energy which was used

to manufacture a defective product is wasted

■  Motion, e.g. inefficient transportation of goods

■  Unused human talent, e.g. failure to integrate employees when defining energy efficient processes

■  The energy value stream map consists of different modules representing the different manufacturing processes, transportation processes und supply units.

■  Structured and methodological approach ■  Tool for energy visualization ■  Similarity to Lean Production profits from existing

knowledge

■  Apply method in different production environments and improve each step

Cau

se  

Influ

ence

 

• Measure • Visualize • Analyze

System Elements Types of Energy Waste

Energy Value Stream Analysis

• Derive measures • Prioritize •  Identify reciprocal effects

Scope of Action Design Kit

Energy Value Stream Design

Implementation

20

10

0 2030 2010 1990 1970

500

250

0 2008 2004 2000 1996

Consumer price index fossil fuels

Producer price index crude oil

Global energy consumption in bn toe/a

•  Evalua&on  of  the    energy  value  stream    using  analysis  methods  

•  Drawing  and  visualizing    the  energy  value  stream  

•  Collec&ng  data  on    process  parameters,    power,  temperature,  compressed  air  

Process parameter analysis Energy use over time

StromverbrauchWh

ProzessDurchschnitt/Stückletztes Intervall

Budget/ Stück

▪ Drehen▪ Härten▪ Dampfreinigen▪ Schrumpfen▪ Montage▪ Roboter▪ Druckluft

4.0

3.2

5.0

2.0

0.5

0.8

1.4

16.9

3.8

3.3

4.9

2.4

0.5

0.9

1.2

17.0

StromaufnahmeW

Aktuell3.95

2.82

4.23

3.25

0.31

0.80

1.72

LEP gesamt

StromverbrauchWh

ProzessDurchschnitt/Stückletztes Intervall

Budget/ Stück

▪ Drehen▪ Härten▪ Dampfreinigen▪ Schrumpfen▪ Montage▪ Roboter▪ Druckluft

4.0

3.2

5.0

2.0

0.5

0.8

1.4

16.9

4.0

3.2

5.0

2.0

0.5

0.8

1.4

16.9

3.8

3.3

4.9

2.4

0.5

0.9

1.2

17.0

3.8

3.3

4.9

2.4

0.5

0.9

1.2

17.0

StromaufnahmeWStromaufnahmeW

Aktuell3.95

2.82

4.23

3.25

0.31

0.80

1.72

3.95

2.82

4.23

3.25

0.31

0.80

1.72

LEP gesamt

Measure

Visualize

Analyze

Number  of  parts  [Pcs.]  =  18  Power[kW]  =  0,4  Temperature  [°C]=  728  

Conveyor  Band                      0  

PT    [Sec.]  =  1680  

CT[  Sec.]  =  54  

C/O  [Sec.]  =  2700  

Batch  [Pc.]=  6  

el.  Energy  [kWh/Pcs.]  =  87  

Furnace                      0,1  

Pictures: BoschRexroth

Source: Thomson Reuters

time

Energy consumption

initial state implementation phase normal operation

Technical Optimization

Operators & Management

LEAN Wastes

Overproduction 1

Transportation 3

4 Inventory

5 Defects

6 Motion

7

Unused Human Talent

Waiting 2

Source: iwb, Lernfabrik für Energieproduktivität

Source: iwb, Lernfabrik für Energieproduktivität

8

Over Processing

•  Bar length: Amount of waste heat

Waste heat

•  Continuous •  State-dependent

Type of Consumption

•  Color: Type of energy •  Bar length: Amount of energy

Consumption

Process x 1 Legend  

Natural  gas  

Electrical  Energy  

Space  hea&ng  

Process  heat  

Cooling  water  

Extreme  cold  

Compressed  air  6  bar  

Compressed  air  12  bar  

Waste  heat  

Continuous  

State-dependent

Machining 0,1

PT [Sec.] = 43

CT [Sec.] = 54

C/O [Sec.] = 728

Batch [Pcs.]= 6

Process temp. [°C] = 165

Part temp. [°C]= 65

El. Energy [Wh/Stk.] = 376

Steam [kg/h] = 0

Steam [Bar] = 0

Defects [%] = 0

Inventory [Pcs.] = 0

Compr. air [dm3/s] = 3

Compr. air [Bar] = 6

Basic information

Detailed information

Process Module

Legend: PT: Processing time CT: Cycle time C/O: Change over time

Source: iwb, Lernfabrik für Energieproduktivität

Source: iwb, Lernfabrik für Energieproduktivität Source: iwb, Lernfabrik für Energieproduktivität

Source: iwb, Lernfabrik für Energieproduktivität

Energy Value Stream Design

Waste  n  

…  

Waste  2  

Waste  1  

Derive measures

Prioritize

Scope of Action Design Kit

Identify reciprocal effects

Waste n …. Waste 3 Waste 2 Waste 1

M 3 M 6 M 8 M 12

M 7

Several measures are derived to eliminate each waste of energy

Measures with negative reciprocal effects are eliminated

Cost threshhold Current operation point Quality threshhold

Processwindow

5

Energy consumption Prod. quantity

25

[Pcs.]

15

10

0 Wednesday Thursday Tuesday Monday

[Wh]

150

50

0 Sunday Saturday Friday

Produced quantity Energy consumption