engineering of oxide-based materials

Upload: autumn-hernandez

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Engineering of Oxide-based Materials

    1/31

    Copyright 2010 Hewlett-Packard Development Company, L.P. Based on PowerPoint Template version1.0

    1

    ENGINEERING OF OXIDE-

    BASED RESISTIVE SWITCHI

    NG

    MATERIALS

    Byung Joon Choi

    Dept. Mater. Sci. Eng.

    Seoul National University of Science and Technology

    bjchoi@seoultech ac kr

    Workshop on

    Oxide Heterostructures 2014

  • 8/11/2019 Engineering of Oxide-based Materials

    2/31

    Copyright 2010 Hewlett-Packard Development Company, L.P. Based on PowerPoint Template version1.0

    2

    Outline

    1. Introduction: new electronic RRAM

    2. Electrical performance and scaling

    3. Mechanism

    4. Summary future work

  • 8/11/2019 Engineering of Oxide-based Materials

    3/31

    3/18

    Surging needs for high density memory

    Compute-centric Data-centric

    Devices 5.6M disk 21M disk

    Space 26,292 ft2 98,568 ft2

    Power 25 MW 93 MW

    Storage system 2020 for server computer

    R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52, 439 (2008)

    Paradigm shift: compute-centric

    data-centric era

    Ever increasing demand for high density memory!

  • 8/11/2019 Engineering of Oxide-based Materials

    4/31

    4/18

    Next Generation Memory

    Figure from IBM Research at Almaden

    110

    102

    103

    10

    4

    105

    106

    107

    108

    109

    1010

    SRAM

    DRAM

    Flash(SSD)

    HDD

    Tape

    Memory type

    DRAM

    Next

    Gen.

    Memory

  • 8/11/2019 Engineering of Oxide-based Materials

    5/31

    5/18

    PCRAM & RRAM

    J. J. Yang et al. Nature Nanotechnol.8, 13 (2013)G. W. Burr et al. JVST B28, 223 (2010)

    Next generation memory? 3-D crossbar memory!

    Multiple

    stacking(x N)

    Phase Change RAM

    Resistive RAM

    and/or

  • 8/11/2019 Engineering of Oxide-based Materials

    6/31

    6/18

    R. Waser et al.Adv. Mater.21, 2632 (2009)

    K. M. Kim et al. Nanotechnology22, 254002 (2011)

    Materials: Metal oxides,

    Chalcogenides

    Switching:

    Low R High R

    Emerging technology

    High potential, but unclear

    Resistive Random Access Memory (RRAM)

    Connect

    (Low R)1

    Disconnect

    (High R)0

    Strong Candidate: RRAM

  • 8/11/2019 Engineering of Oxide-based Materials

    7/31

  • 8/11/2019 Engineering of Oxide-based Materials

    8/31

  • 8/11/2019 Engineering of Oxide-based Materials

    9/31

    9/18

    O2-

    O2-

    O2- O2- O2-

    -V

    G

    ee

    -V

    G

    Electronic RRAMMore reliable and faster!

  • 8/11/2019 Engineering of Oxide-based Materials

    10/31

    10/18

    Concept: Nanometallicity

    Random system : aperiodic

    Andersons : Electron diffusion distance

    Metal:

    Insulator: <

    Metallic if d< Insulating if d>

    d : sample size

    P.W. Anderson, Phys. Rev. 109, 1492 (1958)A. Chen et al.Nature Nanotech.6, 237 (2011)

    Philip W. Anderson

    Nobel Prize in Physics (1977)

  • 8/11/2019 Engineering of Oxide-based Materials

    11/31

    11/18

    0.00 0.25 0.500

    25

    50

    f

    (nm)

    Conducting

    Insulating

    Percolation Threshold

    Materials design: Pt-dispersed SiO2

    SiO2:PtPt

    Mo

    Nanometallicity

    -6 -3 0 3 6-20

    -10

    0

    10

    20

    100

    1k

    10k

    100k

    1M

    I(mA

    )

    V(V)

    R

    (

    )

    I-VR-V

    V-triggered MIT

    A. Chen et al. Nature Nanotech.6, 237 (2011)

    MIT controlled by thickness (d) and concentration (f)

    Purely electronic switching proposed

    PtSiO2

  • 8/11/2019 Engineering of Oxide-based Materials

    12/31

    12/18

    Device performance: Reliable

    B. J. Choi et al.Ad v. Mater.23, 3847 (2011)

    B. J. Choi et al.Nano Lett. 13, 3213 (2013)

    10

    -4

    10-3

    10-2

    Current(A)

    2.01.00.0-1.0

    Voltage (V)

    Excellent uniformity and high durability

    Much more reliable than any other ionic RRAMs

    0.01 0.1 10.1

    1

    10

    100

    k

    /

    (1)

    (2)

    (3)

    (4)

    (1) R HRS(DC)

    (2) R HRS(AC)(3) V off(4) -V on

    More uniformSiO2:Pt

    1000 DC cycles

    Pt

    SiO2

    SiO2: PtTa

  • 8/11/2019 Engineering of Oxide-based Materials

    13/31

    13/18

    100psswitching speedFaster than ionic RRAM

    Highly reliable fast switching

    Device performance: Fast

    BETE

    Transmission line

    Transmission line

    Device

    ON switching

    (same w/ OFF)Memory

    B. J. Choi et al.Nano Lett. 13, 3213 (2013)

  • 8/11/2019 Engineering of Oxide-based Materials

    14/31

    14/18

    Device performance: Scalable

    100nm

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Current(A)

    -4 -2 0 2

    Voltage (V)

    1stON

    Semi-

    log scale

    OFF

    Scalability proved down to (100nm)2

    Uniform, high ON/OFF ratio

    No change up to 6 months10

    010

    210

    410

    610

    8103

    104

    105

    106

    107

    108

    Resistan

    [email protected]

    V()

    time (s)

    6 months

    B. J. Choi et al.Nano Lett. 13, 3213 (2013)

  • 8/11/2019 Engineering of Oxide-based Materials

    15/31

    Resistance and switching voltage with scaling?

    Switching mechanisms? (purely electronic?)

    Can replace Pt?

    How reliable?

    How fast?

    How scaled?

    Mechanism?Other materials?

    SiO2:PtTE

    BE

    Key questions

  • 8/11/2019 Engineering of Oxide-based Materials

    16/31

    0 5 10 15 20 25 30 3510

    -1

    101

    103

    105

    107

    109

    f= 0.33

    f= 0.27

    f= 0.20

    RHRS

    ()

    d(nm)

    RHRS exp(d

    /HRS)

    *B. I. Shklovskii, A. L. Efros, Springer, Heidelberg (1984)

    B. J. Choiet al.Adv. Mater.23, 3847 (2011)

    Scaling theory in random materials*exponential dependence on d

    Localization length, HRS, can be tuned by Pt concentration, f

    Device resistance: f, d,A

    10-6

    10-5

    10-4

    102

    104

    106

    108

    1010

    27nm

    20nm

    17nm

    Resistance()

    Area (cm2)

    Rl ine(> LRS)

    HRS

    RHRS 1/A

  • 8/11/2019 Engineering of Oxide-based Materials

    17/31

    17/18

    10-11 10-9 10-7 10-510

    1

    103

    10

    5

    107

    109

    Resista

    nce()

    Area (cm2)

    f= 37.5%

    f= 45%

    Scaling projection

    RHRSinversely

    proportional to the device

    area

    Uniform electric

    conduction under RHRSNon-uniform conductionunder RLRS

    (7nm)

    B. J. Choi et al.Nano Lett. 13, 3213 (2013)

  • 8/11/2019 Engineering of Oxide-based Materials

    18/31

    18/18

    Voltage induced switching (trapping/de-trapping)f (V)(fraction of HR element): state variable

    n(total number of R element): determined by device area, concentration,

    and thickness of film

    LH

    electrodeRnfRnf

    RR/)1(/

    1

    B. J. Choi, A. Chen, X. Yang, I-W. Chen, unpublishedA. Chen, B. J. Choi, X. Yang, I-W. Chen,Adv. Funct. Mater.22, 546 (2012)

    Parallel circuit model

  • 8/11/2019 Engineering of Oxide-based Materials

    19/31

    Copyright 2010 Hewlett-Packard Development Company, L.P. Based on PowerPoint Template version1.0

    19

    Outline

    1. Introduction: new electronic RRAM

    2. Electrical performance and scaling

    3. Mechanism

    4. Summary future work

  • 8/11/2019 Engineering of Oxide-based Materials

    20/31

    20/18

    : Free electron path

    : Isolated trap sites Trap filled

    decreases

    T3

    T2

    T1

    electron flow

    TE

    BE

    LRS

    T2

    T1

    T3

    electron flow

    TE

    BE

    HRS

    Mechanism: Trapping-mediated localization

  • 8/11/2019 Engineering of Oxide-based Materials

    21/31

    21/18

    -6 -3 0 3 6

    100

    10k

    1M

    100M

    R(

    )

    V(V)

    21 nm

    12 nm9 nm

    7 nm5.5 nm

    -6 -3 0 3 6

    10k

    1M

    100M

    20%

    25%

    32%36%

    R

    ()

    V(V)

    42%

    Nanoscale MIT

    d-triggered (SiO2:20%Pt)

    f-triggered (d~20 nm)

    Sameswitching voltage always!

  • 8/11/2019 Engineering of Oxide-based Materials

    22/31

    22/18

    10 20 30 4010

    1k

    100k

    10M

    LR

    R

    (

    )

    (nm)

    HR

    CS

    I

    Electronic MIT: f--Tindependent

    -4 -2 0 2 4-2

    -1

    0

    1

    2

    293K

    I(mA)

    V(V)

    10K

    6 8 10 12 14 16

    4

    5

    5000 10000 15000 20000

    4

    5

    15 20 25 30 35

    4

    Voff

    (V)

    f, d, cell size

    (%)

    (nm)

    (m2)

    f

    d

    cell size

    Switching voltage : temperature

    independent

    HR temperature dependence :

    insulating

  • 8/11/2019 Engineering of Oxide-based Materials

    23/31

    23/18

    UV-irradiation resets memory: Electronic

    UV light

    Pt

    SrRuO3or Mo

    Fused SiO2Alloy Film

    0 50 100100

    1k

    10k

    100k

    R

    (

    )

    Time (sec.)

    UV on

    0 20 40 60

    1k

    10k

    100k

    R(

    )

    Time (sec.)

    UV on

    UV source : 300~420 nm (4.2-3.0 eV)

    HRS switches to LRS

    LRS unchanged

    Electronic switching confirmed

    Notan ionic effect

  • 8/11/2019 Engineering of Oxide-based Materials

    24/31

    24/18

    Pressure resets memory: electron-phonon

    X. Yang, I. Tudosa, B. J. Choi, A. Chen, I.-W. Chen,Nano Lett. In press

    Mechanically induced MIT

    also one-way transition: HRSLRS, LRS unchanged

    Electron-phonon interaction confirmed

    P= 300 Mpa(Isostatic )

  • 8/11/2019 Engineering of Oxide-based Materials

    25/31

    25/18

    Pressure resets memory: electron-phonon

    X. Yang, I. Tudosa, B. J. Choi, A. Chen, I.-W. Chen,Nano Lett. In press

    Source:20GeV

    Electron bunch

    (duration time

    ~ 0.24ps)

    Electron bunch

    Circulating I

    Lorentz force

    Tensile stress

  • 8/11/2019 Engineering of Oxide-based Materials

    26/31

    26/18

    -4 -3 -2 -1 0

    103

    104

    105

    106

    50ns

    100ns

    500ns

    1s

    100s

    10ms

    Resistance()

    Voltage (V)

    Overcoming Voltage-time dilemma

    Voltage-time dilemma: fast programmable or long retaining, but not

    both in electronic memory

    No degradation of switching by using shorter pulse widths

    On-switching (-)

    0 1 2 3 4 5

    103

    104

    105

    106

    Voltage (V)

    twrite

    :

    100ns

    1s

    10s

    100s

    1ms

    Off-switching (+)

    B. J. Choi, A. Chen, X. Yang, I-W. Chen,Adv. Mater.23, 3847 (2011)

  • 8/11/2019 Engineering of Oxide-based Materials

    27/31

  • 8/11/2019 Engineering of Oxide-based Materials

    28/31

    28/18

    Variability II: from switching device to device

    Origin:

    Different switching channels indifferent devices.

    Solution:

    Plant similar seeds (nanoclusters)

    of switching channels in different

    devices

    facilitate similar switching

    channels formed in every device.

    Engineered Switching Materials

  • 8/11/2019 Engineering of Oxide-based Materials

    29/31

    29/18

    Summary

    A. Chen et al. Nature Nanotech.6, 237 (2011)

    B. J. Choi, A. Chen et al.Adv. Mater.23, 3847 (2011)

    A. Chen, B. J. Choi, et al.Adv. Funct. Mater.22, 546 (2012)

    1. A new electronic switching in SiO2:Pt

    B. J. Choiet al. Nano Lett. 13, 3213 (2013)

    B. J. Choi, I-W. Chen,Appl. Phys. A(2013)

    X. Yang, B. J. Choiet al.ACS Nano7, 2302 (2013)

    X. Yang, A. Chen, B. J. Choi, I-W. Chen,Appl. Phys. Lett. 102,

    043502 (2013)

    X. Yang, I. Tudosa, B. J. Choi, A. Chen, I.-W. Chen,Nano Lett. In

    press

    2. Performance and mechanism investigated

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    Current(A)

    -4 -2 0 2

    Voltage (V)

    0.01 0.1 10.1

    1

    10

    100

    k

    /

    uniform

    SiO2:Pt

  • 8/11/2019 Engineering of Oxide-based Materials

    30/31

    30/18

    Future work

    Smaller is better!

    What? Different conducting and insulating materials

    How? Processing (ALD, implantation, annealing, etc.)

    Why?Physics and thermodynamics

    A source :

    B source :

    A source feeding Purge

    Purge B source feeding

    Materials & Processing

  • 8/11/2019 Engineering of Oxide-based Materials

    31/31

    31/18

    Acknowledgements

    Prof. Cheol Seong Hwang (SNU)

    Prof. I-Wei Chen (UPENN)

    Dr. Jianhua Joshua Yang (HP)

    Dr. Richard Stanley Williams (HP)Many colleagues