engineering physics (ep) 548 engineering analysis ii...university course engineering physics (ep)...

321
University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class Notes Nasser M. Abbasi Spring 2017

Upload: others

Post on 14-Mar-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

University Course

Engineering Physics (EP) 548Engineering analysis II

University of Wisconsin, MadisonSpring 2017

My Class Notes

Nasser M. Abbasi

Spring 2017

Page 2: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class
Page 3: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Contents

1 Introduction 11.1 links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Resources 52.1 Review of ODEโ€™s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sturm Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 HWs 393.1 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803.3 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.4 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1783.5 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893.6 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4 Study notes 2094.1 question asked 2/7/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2104.2 note on Airy added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2114.3 note p1 added 2/3/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134.4 note added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204.5 note p3 figure 3.4 in text (page 92) reproduced in color . . . . . . . . . . . . 2254.6 note p4 added 2/15/17 animations of the solutions to ODE from lecture 2/9/17

for small parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2274.7 note p5 added 2/15/17 animation figure 9.5 in text page 434 . . . . . . . . . . 2314.8 note p7 added 2/15/17, boundary layer problem solved in details . . . . . . . 2374.9 note p9. added 2/24/17, asking question about problem in book . . . . . . . . 2434.10 note p11. added 3/7/17, Showing that scaling for normalization is same for

any ๐‘› . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2454.11 note p12. added 3/8/17, comparing exact solution to WKB solution using

Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2474.12 Convert ODE to Liouville form . . . . . . . . . . . . . . . . . . . . . . . . . . . 2524.13 note p13. added 3/15/17, solving ๐œ–2๐‘ฆโ€ณ(๐‘ฅ) = (๐‘Ž + ๐‘ฅ + ๐‘ฅ2)๐‘ฆ(๐‘ฅ) in Maple . . . . . . 254

5 Exams 255

iii

Page 4: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Contents CONTENTS

5.1 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2565.2 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

iv

Page 5: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 1

Introduction

Local contents1.1 links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1

Page 6: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.1. links CHAPTER 1. INTRODUCTION

1.1 links

1. Professor Leslie M. Smith web page

2. piazza class page Needs login

2

Page 7: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.2. syllabus CHAPTER 1. INTRODUCTION

1.2 syllabus

NE 548

Engineering Analysis II

TR 11:00-12:15 in Van Vleck B341

Leslie Smith: [email protected], Office Hours in Van Vleck Tuesday/Thursday 12:30-2:00, http://www.math.wisc.edu/ lsmith.

Textbook 1 Required: Advanced Mathematical Methods for Scientists and Engineers,Bender and Orszag, Springer.

Textbook 2 Recommended: Applied Partial Differential Equations, Haberman, Pear-son/Prentice Hall. This text is recommended because some of you may already own it (fromMath 322). Almost any intermediate-advanced PDEs text would be suitable alternative asreference.

Pre-requisite: NE 547. If you have not taken NE 547, you should have previously takencourses equivalent to Math 319, 320 or 340, 321, 322.

Assessment: Your grade for the course will be based on two take-home midterm exams(35% each) and selected homework solutions (30%). The homework and midterms examsfor undergraduate and graduate students will be different in scope; please see the separatelearning outcomes below. Graduate students will be expected to synthesize/analyze materialat a deeper level.

Undergraduate Learning Outcomes:

โ€ข Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-ential equations, including (but not limited to) boundary layer theory, WKB analysisand multiple-scale analysis.

โ€ข Students will demonstrate knowledge of commonly used methods to analyze partialdifferential equations, including (but not limited to) Fourier analysis, Greenโ€™s functionsolutions, similarity solutions, and method of characteristics.

โ€ข Students will apply methods to idealized problems motivated by applications. Such ap-plications include heat conduction (the heat equation), quantum mechanics (Schrodingerโ€™sequation) and plasma turbulence (dispersive wave equations).

Graduate Learning Outcomes:

โ€ข Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-ential equations, including (but not limited to) boundary layer theory, WKB analysisand multiple-scale analysis.

โ€ข Students will demonstrate knowledge of commonly used methods to analyze partialdifferential equations, including (but not limited to) Fourier analysis, Greenโ€™s functionsolutions, similarity solutions, and method of characteristics.

โ€ข Students will apply methods to idealized problems motivated by applications. Such ap-plications include heat conduction (the heat equation), quantum mechanics (Schrodingerโ€™sequation) and plasma turbulence (dispersive wave equations).

3

Page 8: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

1.2. syllabus CHAPTER 1. INTRODUCTION

โ€ข Students will apply methods to solve problems in realistic physical settings.

โ€ข Students will synthesize multiple techniques to solve equations arising from applica-tions.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69D, 59 and below F

Midterm 1: Given out Thursday March 2, 2015 and due Thursday March 9, 2017.

Midterm 2: Given out Thursday April 27, 2017 and due Thursday May 4, 2015.

Homework: Homework problems will be assigned regularly, either each week or every otherweek, paced for 6 hours out-of-class work every week. Homework groups are encouraged,but each student should separately submit solutions reflecting individual understanding ofthe material.

Piazza: There will be a Piazza course page where all course materials will be posted. Piazzais also a forum to facilitate peer-group discussions. Please take advantage of this resource tokeep up to date on class notes, homework and discussions.

Piazza Sign-Up Page: piazza.com/wisc/spring2017/neema548

Piazza Course Page: piazza.com/wisc/spring2017/neema548/home

Course Outline

Part I: Intermediate-Advanced Topics in ODEs from Bender and Orszag.

1. Review of local analysis of ODEs near ordinary points, regular singular points and irregularsingular points (BO Chapter 3, 1.5 weeks)

2. Global analysis using boundary layer theory (BO Chapter 9, 1.5 weeks).

3. Global analysis using WKB theory (BO Chapter 10, 1.5 weeks).

4. Greenโ€™s function solutions (1 week)

5. Multiple-scale analysis (BO Chapter 11, 1.5 weeks).

Part II: Intermediate-Advanced Topics in PDEs

1. Review of Sturm-Liouville theory and eigenfunction expansions (1.5 weeks)

2. Non-homogeneous problems and Greenโ€™s function solutions (1.5 weeks)

3. Infinite domain problems and Fourier transforms (1.5 weeks)

4. Quasilinear PDEs (1.5 weeks)

5. Dispersive wave systems (time remaining)

2

4

Page 9: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 2

Resources

Local contents2.1 Review of ODEโ€™s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Sturm Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5

Page 10: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

2.1 Review of ODEโ€™s

6

Page 11: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

7

Page 12: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

8

Page 13: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

9

Page 14: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

10

Page 15: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

11

Page 16: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

12

Page 17: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

13

Page 18: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

14

Page 19: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

15

Page 20: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.1. Review of ODEโ€™s CHAPTER 2. RESOURCES

16

Page 21: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

2.2 Sturm Liouville

17

Page 22: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

18

Page 23: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

19

Page 24: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

20

Page 25: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

21

Page 26: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

22

Page 27: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

23

Page 28: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

24

Page 29: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

25

Page 30: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

26

Page 31: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.2. Sturm Liouville CHAPTER 2. RESOURCES

27

Page 32: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

2.3 Wave equation

28

Page 33: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

29

Page 34: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

30

Page 35: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

31

Page 36: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

32

Page 37: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

33

Page 38: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

34

Page 39: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

35

Page 40: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

36

Page 41: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

37

Page 42: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

2.3. Wave equation CHAPTER 2. RESOURCES

38

Page 43: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 3

HWs

Local contents3.1 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803.3 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243.4 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1783.5 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893.6 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

39

Page 44: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1 HW1

3.1.1 problem 3.3 (page 138)

3.1.1.1 Part c

problem Classify all the singular points (finite and infinite) of the following

๐‘ฅ (1 โˆ’ ๐‘ฅ) ๐‘ฆโ€ฒโ€ฒ + (๐‘ โˆ’ (๐‘Ž + ๐‘ + 1) ๐‘ฅ) ๐‘ฆโ€ฒ โˆ’ ๐‘Ž๐‘๐‘ฆ = 0

Answer

Writing the DE in standard form

๐‘ฆโ€ฒโ€ฒ + ๐‘ (๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ž (๐‘ฅ) ๐‘ฆ = 0

๐‘ฆโ€ฒโ€ฒ +๐‘ โˆ’ (๐‘Ž + ๐‘ + 1) ๐‘ฅ

๐‘ฅ (1 โˆ’ ๐‘ฅ)๐‘ฆโ€ฒ โˆ’

๐‘Ž๐‘๐‘ฅ (1 โˆ’ ๐‘ฅ)

๐‘ฆ = 0

๐‘ฆโ€ฒโ€ฒ +

๐‘(๐‘ฅ)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

๐‘๐‘ฅ (1 โˆ’ ๐‘ฅ)

โˆ’(๐‘Ž + ๐‘ + 1)(1 โˆ’ ๐‘ฅ) ๏ฟฝ๐‘ฆโ€ฒ โˆ’

๐‘ž(๐‘ฅ)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘๐‘ฅ (1 โˆ’ ๐‘ฅ)

๐‘ฆ = 0

๐‘ฅ = 0, 1 are singular points for ๐‘ (๐‘ฅ) as well as for ๐‘ž (๐‘ฅ). Now we classify what type of singularityeach point is. For ๐‘ (๐‘ฅ)

lim๐‘ฅโ†’0

๐‘ฅ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ ๏ฟฝ๐‘

๐‘ฅ (1 โˆ’ ๐‘ฅ)โˆ’(๐‘Ž + ๐‘ + 1)(1 โˆ’ ๐‘ฅ) ๏ฟฝ

= lim๐‘ฅโ†’0

๏ฟฝ๐‘

(1 โˆ’ ๐‘ฅ)โˆ’๐‘ฅ (๐‘Ž + ๐‘ + 1)(1 โˆ’ ๐‘ฅ) ๏ฟฝ

= ๐‘

Hence ๐‘ฅ๐‘ (๐‘ฅ) is analytic at ๐‘ฅ = 0. Therefore ๐‘ฅ = 0 is regular singularity point. Now we checkfor ๐‘ž (๐‘ฅ)

lim๐‘ฅโ†’0

๐‘ฅ2๐‘ž (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ2โˆ’๐‘Ž๐‘

๐‘ฅ (1 โˆ’ ๐‘ฅ)

= lim๐‘ฅโ†’0

โˆ’๐‘ฅ๐‘Ž๐‘(1 โˆ’ ๐‘ฅ)

= 0

Hence ๐‘ฅ2๐‘ž (๐‘ฅ) is also analytic at ๐‘ฅ = 0. Therefore ๐‘ฅ = 0 is regular singularity point. Now we

40

Page 45: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

look at ๐‘ฅ = 1 and classify it. For ๐‘ (๐‘ฅ)

lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1) ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1) ๏ฟฝ๐‘

๐‘ฅ (1 โˆ’ ๐‘ฅ)โˆ’(๐‘Ž + ๐‘ + 1)(1 โˆ’ ๐‘ฅ) ๏ฟฝ

= lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1) ๏ฟฝโˆ’๐‘

๐‘ฅ (๐‘ฅ โˆ’ 1)+(๐‘Ž + ๐‘ + 1)(๐‘ฅ โˆ’ 1) ๏ฟฝ

= lim๐‘ฅโ†’1

๏ฟฝโˆ’๐‘๐‘ฅ+ (๐‘Ž + ๐‘ + 1)๏ฟฝ

= โˆ’๐‘ + (๐‘Ž + ๐‘ + 1)

Hence (๐‘ฅ โˆ’ 1) ๐‘ (๐‘ฅ) is analytic at ๐‘ฅ = 1. Therefore ๐‘ฅ = 1 is regular singularity point. Now wecheck for ๐‘ž (๐‘ฅ)

lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)2 ๐‘ž (๐‘ฅ) = lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)2 ๏ฟฝโˆ’๐‘Ž๐‘

๐‘ฅ (1 โˆ’ ๐‘ฅ)๏ฟฝ

= lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)2 ๏ฟฝ๐‘Ž๐‘

๐‘ฅ (๐‘ฅ โˆ’ 1)๏ฟฝ

= lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1) ๏ฟฝ๐‘Ž๐‘๐‘ฅ ๏ฟฝ

= 0

Hence (๐‘ฅ โˆ’ 1)2 ๐‘ž (๐‘ฅ) is analytic also at ๐‘ฅ = 1. Therefore ๐‘ฅ = 1 is regular singularity point.Therefore ๐‘ฅ = 0, 1 are regular singular points for the ODE. Now we check for ๐‘ฅ at โˆž. Tocheck the type of singularity, if any, at ๐‘ฅ = โˆž, the DE is first transformed using

๐‘ฅ =1๐‘ก

(1)

41

Page 46: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

This transformation will always results in 1 new ODE in ๐‘ก of this form

๐‘‘2๐‘ฆ๐‘‘๐‘ก2

+๏ฟฝโˆ’๐‘ (๐‘ก) + 2๐‘ก๏ฟฝ

๐‘ก2+๐‘ž (๐‘ก)๐‘ก4๐‘ฆ = 0 (2)

But

๐‘ (๐‘ก) = ๐‘ (๐‘ฅ)๏ฟฝ๐‘ฅ= 1

๐‘ก= ๏ฟฝ

๐‘ โˆ’ (๐‘Ž + ๐‘ + 1) ๐‘ฅ๐‘ฅ (1 โˆ’ ๐‘ฅ) ๏ฟฝ

๐‘ฅ= 1๐‘ก

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘ โˆ’ (๐‘Ž + ๐‘ + 1) 1๐‘ก1๐‘ก๏ฟฝ1 โˆ’ 1

๐‘ก๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๐‘๐‘ก2 โˆ’ ๐‘ก (๐‘Ž + ๐‘ + 1)

(๐‘ก โˆ’ 1)(3)

And

๐‘ž (๐‘ก) = ๐‘ž (๐‘ฅ)๏ฟฝ๐‘ฅ= 1

๐‘ก= ๏ฟฝโˆ’

๐‘Ž๐‘๐‘ฅ (1 โˆ’ ๐‘ฅ)๏ฟฝ

๐‘ฅ= 1๐‘ก

= โˆ’๐‘Ž๐‘

1๐‘ก๏ฟฝ1 โˆ’ 1

๐‘ก๏ฟฝ

= โˆ’๐‘Ž๐‘๐‘ก2

(๐‘ก โˆ’ 1)(4)

1Let ๐‘ฅ = 1๐‘ก, then

๐‘‘๐‘‘๐‘ฅ

=๐‘‘๐‘‘๐‘ก

๐‘‘๐‘ก๐‘‘๐‘ฅ

= โˆ’๐‘ก2๐‘‘๐‘‘๐‘ก

And

๐‘‘2

๐‘‘๐‘ฅ2=

๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

๐‘‘๐‘‘๐‘ฅ๏ฟฝ

= ๏ฟฝโˆ’๐‘ก2๐‘‘๐‘‘๐‘ก ๏ฟฝ ๏ฟฝ

โˆ’๐‘ก2๐‘‘๐‘‘๐‘ก ๏ฟฝ

= โˆ’๐‘ก2๐‘‘๐‘‘๐‘ก ๏ฟฝ

โˆ’๐‘ก2๐‘‘๐‘‘๐‘ก ๏ฟฝ

= โˆ’๐‘ก2 ๏ฟฝโˆ’2๐‘ก๐‘‘๐‘‘๐‘ก

โˆ’ ๐‘ก2๐‘‘2

๐‘‘๐‘ก2 ๏ฟฝ

= 2๐‘ก3๐‘‘๐‘‘๐‘ก

+ ๐‘ก4๐‘‘2

๐‘‘๐‘ก2

The original ODE becomes

๏ฟฝ2๐‘ก3๐‘‘๐‘‘๐‘ก

+ ๐‘ก4๐‘‘2

๐‘‘๐‘ก2 ๏ฟฝ๐‘ฆ + ๐‘ (๐‘ฅ)๏ฟฝ

๐‘ฅ= 12๏ฟฝโˆ’๐‘ก2

๐‘‘๐‘‘๐‘ก ๏ฟฝ

๐‘ฆ + ๐‘ž (๐‘ฅ)๏ฟฝ๐‘ฅ= 1

๐‘ก

๐‘ฆ = 0

๏ฟฝ2๐‘ก3๐‘ฆโ€ฒ + ๐‘ก4๐‘ฆโ€ฒโ€ฒ๏ฟฝ โˆ’ ๐‘ก2๐‘ (๐‘ก) ๐‘ฆโ€ฒ + ๐‘ž (๐‘ก) ๐‘ฆ = 0

๐‘ก4๐‘ฆโ€ฒโ€ฒ + ๏ฟฝโˆ’๐‘ก2๐‘ (๐‘ก) + 2๐‘ก3๏ฟฝ ๐‘ฆโ€ฒ + ๐‘ž (๐‘ก) ๐‘ฆ = 0

๐‘ฆโ€ฒโ€ฒ +๏ฟฝโˆ’๐‘ (๐‘ก) + 2๐‘ก๏ฟฝ

๐‘ก2๐‘ฆโ€ฒ +

๐‘ž (๐‘ก)๐‘ก4

๐‘ฆ = 0

42

Page 47: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Substituting equations (3,4) into (2) gives

๐‘ฆโ€ฒโ€ฒ +๏ฟฝโˆ’ ๏ฟฝ ๐‘๐‘ก

2โˆ’๐‘ก(๐‘Ž+๐‘+1)(๐‘กโˆ’1)

๏ฟฝ + 2๐‘ก๏ฟฝ

๐‘ก2+๏ฟฝโˆ’ ๐‘Ž๐‘๐‘ก2

(๐‘กโˆ’1)๏ฟฝ

๐‘ก4๐‘ฆ = 0

๐‘ฆโ€ฒโ€ฒ +๏ฟฝ2๐‘ก (๐‘ก โˆ’ 1) โˆ’ ๐‘ก2๐‘ + (๐‘Ž + ๐‘ + 1) ๐‘ก๏ฟฝ

๐‘ก2 (๐‘ก โˆ’ 1)๐‘ฆโ€ฒ โˆ’

๐‘Ž๐‘๐‘ก2 (๐‘ก โˆ’ 1)

๐‘ฆ = 0

Expanding

๐‘ฆโ€ฒโ€ฒ +

๐‘(๐‘ก)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ2๐‘ก โˆ’ 1 โˆ’ ๐‘ก๐‘ + ๐‘Ž + ๐‘

๐‘ก (๐‘ก โˆ’ 1) ๏ฟฝ๐‘ฆโ€ฒ โˆ’

๐‘ž(๐‘ก)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Ž๐‘๐‘ก2 (๐‘ก โˆ’ 1)

๐‘ฆ = 0

We see that ๐‘ก = 0 (this means ๐‘ฅ = โˆž) is singular point for both ๐‘ (๐‘ฅ) , ๐‘ž (๐‘ฅ). Now we checkwhat type it is. For ๐‘ (๐‘ก)

lim๐‘กโ†’0

๐‘ก๐‘ (๐‘ก) = lim๐‘กโ†’0

๐‘ก ๏ฟฝ2๐‘กโˆ’

๐‘(๐‘ก โˆ’ 1)

+(๐‘Ž + ๐‘ + 1)๐‘ก (๐‘ก โˆ’ 1) ๏ฟฝ

= lim๐‘กโ†’0

๏ฟฝ2 โˆ’๐‘ก๐‘

(๐‘ก โˆ’ 1)+(๐‘Ž + ๐‘ + 1)(๐‘ก โˆ’ 1) ๏ฟฝ

= 1 โˆ’ ๐‘Ž โˆ’ ๐‘

๐‘ก๐‘ (๐‘ก) is therefore analytic at ๐‘ก = 0. Hence ๐‘ก = 0 is regular singular point. Now we checkfor ๐‘ž (๐‘ก)

lim๐‘กโ†’0

๐‘ก2๐‘ž (๐‘ก) = lim๐‘กโ†’0

๐‘ก2 ๏ฟฝโˆ’๐‘Ž๐‘

๐‘ก2 (๐‘ก โˆ’ 1)๏ฟฝ

= lim๐‘กโ†’0

๏ฟฝโˆ’๐‘Ž๐‘(๐‘ก โˆ’ 1)๏ฟฝ

= ๐‘Ž๐‘

๐‘ก2๐‘ž (๐‘ก) is therefore analytic at ๐‘ก = 0. Hence ๐‘ก = 0 is regular singular point for ๐‘ž (๐‘ก). Therefore๐‘ก = 0 is regular singular point which mean that ๐‘ฅ โ†’ โˆž is a regular singular point for theODE.

Summary

Singular points are ๐‘ฅ = 0, 1. Both are regular singular points. Also ๐‘ฅ = โˆž is regular singularpoint.

3.1.1.2 Part (d)

Problem Classify all the singular points (finite and infinite) of the following

๐‘ฅ๐‘ฆโ€ฒโ€ฒ + (๐‘ โˆ’ ๐‘ฅ) ๐‘ฆโ€ฒ โˆ’ ๐‘Ž๐‘ฆ = 0

solution

Writing the ODE in standard for

๐‘ฆโ€ฒโ€ฒ +(๐‘ โˆ’ ๐‘ฅ)๐‘ฅ

๐‘ฆโ€ฒ โˆ’๐‘Ž๐‘ฅ๐‘ฆ = 0

43

Page 48: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

We see that ๐‘ฅ = 0 is singularity point for both ๐‘ (๐‘ฅ) and ๐‘ž (๐‘ฅ). Now we check its type. For ๐‘ (๐‘ฅ)

lim๐‘ฅโ†’0

๐‘ฅ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ(๐‘ โˆ’ ๐‘ฅ)๐‘ฅ

= ๐‘

Hence ๐‘ฅ๐‘ (๐‘ฅ) is analytic at ๐‘ฅ = 0. Therefore ๐‘ฅ = 0 is regular singularity point for ๐‘ (๐‘ฅ). For ๐‘ž (๐‘ฅ)

lim๐‘ฅโ†’0

๐‘ฅ2๐‘ž (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ2 ๏ฟฝโˆ’๐‘Ž๐‘ฅ๏ฟฝ

= lim๐‘ฅโ†’0

(โˆ’๐‘Ž๐‘ฅ)

= 0

Hence ๐‘ฅ2๐‘ž (๐‘ฅ) is analytic at ๐‘ฅ = 0. Therefore ๐‘ฅ = 0 is regular singularity point for ๐‘ž (๐‘ฅ).

Now we check for ๐‘ฅ at โˆž. To check the type of singularity, if any, at ๐‘ฅ = โˆž, the DE is firsttransformed using

๐‘ฅ =1๐‘ก

(1)

This results in (as was done in above part)

๐‘‘2๐‘ฆ๐‘‘๐‘ก2

+๏ฟฝโˆ’๐‘ (๐‘ก) + 2๐‘ก๏ฟฝ

๐‘ก2+๐‘ž (๐‘ก)๐‘ก4๐‘ฆ = 0

Where

๐‘ (๐‘ก) =(๐‘ โˆ’ ๐‘ฅ)๐‘ฅ

๏ฟฝ๐‘ฅ= 1

๐‘ก

=๏ฟฝ๐‘ โˆ’ 1

๐‘ก๏ฟฝ

1๐‘ก

= (๐‘๐‘ก โˆ’ 1)

And ๐‘ž (๐‘ก) = โˆ’ ๐‘Ž๐‘ฅ = โˆ’๐‘Ž๐‘ก Hence the new ODE is

๐‘‘2๐‘ฆ๐‘‘๐‘ก2

+(โˆ’ (๐‘๐‘ก โˆ’ 1) + 2๐‘ก)

๐‘ก2โˆ’๐‘Ž๐‘ก๐‘ก4๐‘ฆ = 0

๐‘‘2๐‘ฆ๐‘‘๐‘ก2

+โˆ’๐‘๐‘ก + 1 + 2๐‘ก

๐‘ก2โˆ’๐‘Ž๐‘ก3๐‘ฆ = 0

Therefore ๐‘ก = 0 (or ๐‘ฅ = โˆž) is singular point. Now we will find the singularity type

lim๐‘กโ†’0

๐‘ก๐‘ (๐‘ก) = lim๐‘กโ†’0

๐‘ก ๏ฟฝโˆ’๐‘๐‘ก + 1 + 2๐‘ก

๐‘ก2 ๏ฟฝ

= lim๐‘กโ†’0

๏ฟฝโˆ’๐‘๐‘ก + 1 + 2๐‘ก

๐‘ก ๏ฟฝ

= โˆž

Hence ๐‘ก๐‘ (๐‘ก) is not analytic, since the limit do not exist, which means ๐‘ก = 0 is an irregular

44

Page 49: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

singular point for ๐‘ (๐‘ก) . We can stop here, but will also check for ๐‘ž (๐‘ก)

lim๐‘กโ†’0

๐‘ก2๐‘ž (๐‘ก) = lim๐‘กโ†’0

๐‘ก2 ๏ฟฝโˆ’๐‘Ž๐‘ก3๏ฟฝ

= lim๐‘กโ†’0

๏ฟฝโˆ’๐‘Ž๐‘ก๏ฟฝ

= โˆž

Therefore, ๐‘ก = 0 is irregular singular point, which means ๐‘ฅ = โˆž is an irregular singular point.

Summary

๐‘ฅ = 0 is regular singular point. ๐‘ฅ = โˆž is an irregular singular point.

3.1.2 problem 3.4

3.1.2.1 part d

problem Classify ๐‘ฅ = 0 and ๐‘ฅ = โˆž of the following

๐‘ฅ2๐‘ฆโ€ฒโ€ฒ = ๐‘ฆ๐‘’1๐‘ฅ

Answer

In standard form

๐‘ฆโ€ฒโ€ฒ โˆ’๐‘’1๐‘ฅ

๐‘ฅ2๐‘ฆ = 0

Hence ๐‘ (๐‘ฅ) = 0, ๐‘ž (๐‘ฅ) = โˆ’ ๐‘’1๐‘ฅ

๐‘ฅ2 . The singularity is ๐‘ฅ = 0. We need to check on ๐‘ž (๐‘ฅ) only.

lim๐‘ฅโ†’0

๐‘ฅ2๐‘ž (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ2โŽ›โŽœโŽœโŽœโŽœโŽœโŽโˆ’๐‘’1๐‘ฅ

๐‘ฅ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘ฅโ†’0

๏ฟฝโˆ’๐‘’1๐‘ฅ ๏ฟฝ

The above is not analytic, since lim๐‘ฅโ†’0+ ๏ฟฝโˆ’๐‘’1๐‘ฅ ๏ฟฝ = โˆž while lim๐‘ฅโ†’0โˆ’ ๏ฟฝโˆ’๐‘’

1๐‘ฅ ๏ฟฝ = 0. This means ๐‘’

1๐‘ฅ is

not di๏ฟฝerentiable at ๐‘ฅ = 0. Here is plot ๐‘’1๐‘ฅ near ๐‘ฅ = 0

45

Page 50: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

-0.4 -0.2 0.0 0.2 0.4

0

200

400

600

x

f(x)

Plot of exp(1/x)

Therefore ๐‘ฅ = 0 is an irregular singular point. We now convert the ODE using ๐‘ฅ = 1๐‘ก in order

to check what happens at ๐‘ฅ = โˆž. This results in (as was done in above part)

๐‘‘2๐‘ฆ๐‘‘๐‘ก2

+๐‘ž (๐‘ก)๐‘ก4๐‘ฆ = 0

But

๐‘ž (๐‘ก) = ๐‘ž (๐‘ฅ)๏ฟฝ๐‘ฅ= 1

๐‘ก

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽโˆ’๐‘’1๐‘ฅ

๐‘ฅ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘ฅ= 1

๐‘ก

= โˆ’๐‘ก2๐‘’๐‘ก

Hence the ODE becomes

๐‘ฆโ€ฒโ€ฒ โˆ’โˆ’๐‘ก2๐‘’๐‘ก

๐‘ก4๐‘ฆ = 0

๐‘ฆโ€ฒโ€ฒ +๐‘’๐‘ก

๐‘ก2๐‘ฆ = 0

We now check ๐‘ž (๐‘ก).

lim๐‘กโ†’0

๐‘ก2๐‘ž (๐‘ก) = lim๐‘กโ†’0

๐‘ก2๐‘’๐‘ก

๐‘ก2= lim

๐‘กโ†’0๐‘’๐‘ก

= 1

This is analytic. Hence ๐‘ก = 0 is regular singular point, which means ๐‘ฅ = โˆž is regular singularpoint.

Summary ๐‘ฅ = 0 is irregular singular point, ๐‘ฅ = โˆž is regular singular point.

46

Page 51: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.2.2 Part e

problem

Classify ๐‘ฅ = 0 and ๐‘ฅ = โˆž of the following

(tan ๐‘ฅ) ๐‘ฆโ€ฒ = ๐‘ฆAnswer

๐‘ฆโ€ฒ โˆ’1

tan ๐‘ฅ๐‘ฆ = 0

The function tan ๐‘ฅ looks like

-ฯ€ - ฯ€

20 ฯ€

2ฯ€

-6

-4

-2

0

2

4

6

x

tan(x)

tan(x)

Therefore, tan (๐‘ฅ) is not analytic at ๐‘ฅ = ๏ฟฝ๐‘› โˆ’ 12๏ฟฝ ๐œ‹ for ๐‘› โˆˆ โ„ค. Hence the function 1

tan(๐‘ฅ) is not

analytic at ๐‘ฅ = ๐‘›๐œ‹ as seen in this plot

-ฯ€ - ฯ€

20 ฯ€

2ฯ€

-6

-4

-2

0

2

4

6

x

1/tan(x)

1/tan(x)

47

Page 52: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence singular points are ๐‘ฅ = {โ‹ฏ , โˆ’2๐œ‹, โˆ’๐œ‹, 0, ๐œ‹, 2๐œ‹,โ‹ฏ}. Looking at ๐‘ฅ = 0

lim๐‘ฅโ†’0

๐‘ฅ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’0

๏ฟฝ๐‘ฅ1

tan (๐‘ฅ)๏ฟฝ

= lim๐‘ฅโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘๐‘ฅ๐‘‘๐‘ฅ

๐‘‘ tan(๐‘ฅ)๐‘‘๐‘ฅ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘ฅโ†’0

1sec2 ๐‘ฅ

= lim๐‘ฅโ†’0

cos2 ๐‘ฅ

= 1

Therefore the point ๐‘ฅ = 0 is regular singular point. To classify ๐‘ฅ = โˆž, we use ๐‘ฅ = 1๐‘ก substitu-

tion. ๐‘‘๐‘‘๐‘ฅ =

๐‘‘๐‘‘๐‘ก

๐‘‘๐‘ก๐‘‘๐‘ฅ = โˆ’๐‘ก

2 ๐‘‘๐‘‘๐‘ก and the ODE becomes

๏ฟฝโˆ’๐‘ก2๐‘‘๐‘‘๐‘ก๏ฟฝ

๐‘ฆ โˆ’1

tan ๏ฟฝ1๐‘ก ๏ฟฝ๐‘ฆ = 0

โˆ’๐‘ก2๐‘ฆโ€ฒ โˆ’1

tan ๏ฟฝ1๐‘ก ๏ฟฝ๐‘ฆ = 0

๐‘ฆโ€ฒ +1

๐‘ก2 tan ๏ฟฝ1๐‘ก ๏ฟฝ๐‘ฆ = 0

Hence

๐‘ (๐‘ก) =1

๐‘ก2 tan ๏ฟฝ1๐‘ก ๏ฟฝ

This function has singularity at ๐‘ก = 0 and at ๐‘ก = 1๐‘›๐œ‹ for ๐‘› โˆˆ โ„ค. We just need to consider ๐‘ก = 0

48

Page 53: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

since this maps to ๐‘ฅ = โˆž. Hence

lim๐‘กโ†’0

๐‘ก๐‘ (๐‘ก) = lim๐‘กโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘ก

1

๐‘ก2 tan ๏ฟฝ1๐‘ก ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘กโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1

๐‘ก tan ๏ฟฝ1๐‘ก ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘กโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1๐‘ก

tan ๏ฟฝ1๐‘ก ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โ†’Lโ€™hopitals

lim๐‘กโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โˆ’ 1๐‘ก2

โˆ’sec2๏ฟฝ 1๐‘ก ๏ฟฝ

๐‘ก2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘กโ†’0

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1

sec2 ๏ฟฝ1๐‘ก ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= lim๐‘กโ†’0

๏ฟฝcos2 ๏ฟฝ1๐‘ก ๏ฟฝ๏ฟฝ

The following is a plot of cos2 ๏ฟฝ1๐‘ก ๏ฟฝ as ๐‘ก goes to zero.

- ฯ€

20 ฯ€

2

0.0

0.2

0.4

0.6

0.8

1.0

t

f(t)

cos21

t

This is the same as asking for lim๐‘ฅโ†’โˆž cos2 (๐‘ฅ) which does not exist, since cos (๐‘ฅ) keepsoscillating, hence it has no limit. Therefore, we conclude that ๐‘ก๐‘ (๐‘ก) is not analytic at ๐‘ก = 0,hence ๐‘ก is irregular singular point, which means ๐‘ฅ = โˆž is an irregular singular point.

Summary

๐‘ฅ = 0 is regular singular point and ๐‘ฅ = โˆž is an irregular singular point

49

Page 54: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.3 Problem 3.6

3.1.3.1 part b

Problem Find the Taylor series expansion about ๐‘ฅ = 0 of the solution to the initial valueproblem

๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฆโ€ฒ + 8๐‘ฆ = 0๐‘ฆ (0) = 0๐‘ฆโ€ฒ (0) = 4

solution

Since ๐‘ฅ = 0 is ordinary point, then we can use power series solution

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›

Hence

๐‘ฆโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=1

๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=1

๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›

Therefore the ODE becomesโˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘› โˆ’ 2๐‘ฅโˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘› + 8โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘› = 0

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘› โˆ’โˆž๏ฟฝ๐‘›=0

2 (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›+1 +โˆž๏ฟฝ๐‘›=0

8๐‘Ž๐‘›๐‘ฅ๐‘› = 0

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘› โˆ’โˆž๏ฟฝ๐‘›=1

2๐‘›๐‘Ž๐‘›๐‘ฅ๐‘› +โˆž๏ฟฝ๐‘›=0

8๐‘Ž๐‘›๐‘ฅ๐‘› = 0

Hence, for ๐‘› = 0 we obtain(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘› + 8๐‘Ž๐‘›๐‘ฅ๐‘› = 0

2๐‘Ž2 + 8๐‘Ž0 = 0๐‘Ž2 = โˆ’4๐‘Ž0

For ๐‘› โ‰ฅ 1(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2 โˆ’ 2๐‘›๐‘Ž๐‘› + 8๐‘Ž๐‘› = 0

๐‘Ž๐‘›+2 =2๐‘›๐‘Ž๐‘› โˆ’ 8๐‘Ž๐‘›(๐‘› + 1) (๐‘› + 2)

=๐‘Ž๐‘› (2๐‘› โˆ’ 8)

(๐‘› + 1) (๐‘› + 2)Hence for ๐‘› = 1

๐‘Ž3 =๐‘Ž1 (2 โˆ’ 8)

(1 + 1) (1 + 2)= โˆ’๐‘Ž1

50

Page 55: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For ๐‘› = 2

๐‘Ž4 =๐‘Ž2 (2 (2) โˆ’ 8)(2 + 1) (2 + 2)

= โˆ’13๐‘Ž2 = โˆ’

13(โˆ’4๐‘Ž0) =

43๐‘Ž0

For ๐‘› = 3

๐‘Ž5 =๐‘Ž3 (2 (3) โˆ’ 8)(3 + 1) (3 + 2)

= โˆ’110๐‘Ž3 = โˆ’

110(โˆ’๐‘Ž1) =

110๐‘Ž1

For ๐‘› = 4

๐‘Ž6 =๐‘Ž4 (2 (4) โˆ’ 8)(4 + 1) (4 + 2)

= 0

For ๐‘› = 5

๐‘Ž7 =๐‘Ž5 (2 (5) โˆ’ 8)(5 + 1) (5 + 2)

=121๐‘Ž5 =

121 ๏ฟฝ

110๐‘Ž1๏ฟฝ =

1210

๐‘Ž1

For ๐‘› = 6

๐‘Ž8 =๐‘Ž6 (2 (6) โˆ’ 8)(6 + 1) (6 + 2)

=114๐‘Ž6 = 0

For ๐‘› = 7

๐‘Ž9 =๐‘Ž7 (2 (7) โˆ’ 8)(7 + 1) (7 + 2)

=112๐‘Ž7 =

112 ๏ฟฝ

1210

๐‘Ž1๏ฟฝ =1

2520๐‘Ž1

Writing now few terms

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›

= ๐‘Ž0๐‘ฅ0 + ๐‘Ž1๐‘ฅ1 + ๐‘Ž2๐‘ฅ2 + ๐‘Ž3๐‘ฅ3 + ๐‘Ž4๐‘ฅ4 + ๐‘Ž5๐‘ฅ5 + ๐‘Ž6๐‘ฅ6 + ๐‘Ž7๐‘ฅ7 + ๐‘Ž8๐‘ฅ8 + ๐‘Ž9๐‘ฅ9 +โ‹ฏ

= ๐‘Ž0 + ๐‘Ž1๐‘ฅ + (โˆ’4๐‘Ž0) ๐‘ฅ2 + (โˆ’๐‘Ž1) ๐‘ฅ3 +43๐‘Ž0๐‘ฅ4 +

110๐‘Ž1๐‘ฅ5 + 0 +

1210

๐‘Ž1๐‘ฅ7 + 0 +1

2520๐‘Ž1๐‘ฅ9 +โ‹ฏ

= ๐‘Ž0 + ๐‘Ž1๐‘ฅ โˆ’ 4๐‘Ž0๐‘ฅ2 โˆ’ ๐‘Ž1๐‘ฅ3 +43๐‘Ž0๐‘ฅ4 +

110๐‘Ž1๐‘ฅ5 +

1210

๐‘Ž1๐‘ฅ7 +1

2520๐‘Ž1๐‘ฅ9 +โ‹ฏ

= ๐‘Ž0 ๏ฟฝ1 โˆ’ 4๐‘ฅ2 +43๐‘ฅ4๏ฟฝ + ๐‘Ž1 ๏ฟฝ๐‘ฅ โˆ’ ๐‘ฅ3 +

110๐‘ฅ5 +

1210

๐‘ฅ7 +1

2520๐‘ฅ9 +โ‹ฏ๏ฟฝ (1)

We notice that ๐‘Ž0 terms terminates at 43๐‘ฅ

4 but the ๐‘Ž1 terms do not terminate. Now we needto find ๐‘Ž0, ๐‘Ž1 from initial conditions. At ๐‘ฅ = 0, ๐‘ฆ (0) = 0. Hence from (1)

0 = ๐‘Ž0Hence the solution becomes

๐‘ฆ (๐‘ฅ) = ๐‘Ž1 ๏ฟฝ๐‘ฅ โˆ’ ๐‘ฅ3 +110๐‘ฅ5 +

1210

๐‘ฅ7 +1

2520๐‘ฅ9 +โ‹ฏ๏ฟฝ (2)

Taking derivative of (2), term by term

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘Ž1 ๏ฟฝ1 โˆ’ 3๐‘ฅ2 +510๐‘ฅ4 +

7210

๐‘ฅ6 +9

2520๐‘ฅ8 +โ‹ฏ๏ฟฝ

Using ๐‘ฆโ€ฒ (0) = 4 the above becomes

4 = ๐‘Ž1

51

Page 56: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence the solution is

๐‘ฆ (๐‘ฅ) = 4 ๏ฟฝ๐‘ฅ โˆ’ ๐‘ฅ3 +110๐‘ฅ5 +

1210

๐‘ฅ7 +1

2520๐‘ฅ9 +โ‹ฏ๏ฟฝ

Or

๐‘ฆ (๐‘ฅ) = 4๐‘ฅ โˆ’ 4๐‘ฅ3 + 25๐‘ฅ

5 + 2105๐‘ฅ

7 + 1630๐‘ฅ

9 +โ‹ฏ

The above is the Taylor series of the solution expanded around ๐‘ฅ = 0.

3.1.4 Problem 3.7

Problem: Estimate the number of terms in the Taylor series (3.2.1) and (3.2.2) at page 68 ofthe text, that are necessary to compute

Ai(๐‘ฅ) and Bi(๐‘ฅ) correct to three decimal places at ๐‘ฅ = ยฑ1, ยฑ100, ยฑ10000

Answer:

Ai (๐‘ฅ) = 3โˆ’23

โˆž๏ฟฝ๐‘›=0

๐‘ฅ3๐‘›

9๐‘›๐‘›!ฮ“ ๏ฟฝ๐‘› + 23๏ฟฝโˆ’ 3

โˆ’43

โˆž๏ฟฝ๐‘›=0

๐‘ฅ3๐‘›+1

9๐‘›๐‘›!ฮ“ ๏ฟฝ๐‘› + 43๏ฟฝ

(3.2.1)

Bi (๐‘ฅ) = 3โˆ’16

โˆž๏ฟฝ๐‘›=0

๐‘ฅ3๐‘›

9๐‘›๐‘›!ฮ“ ๏ฟฝ๐‘› + 23๏ฟฝโˆ’ 3

โˆ’56

โˆž๏ฟฝ๐‘›=0

๐‘ฅ3๐‘›+1

9๐‘›๐‘›!ฮ“ ๏ฟฝ๐‘› + 43๏ฟฝ

(3.2.2)

The radius of convergence of these series extends from ๐‘ฅ = 0 to ยฑโˆž so we know this willconverge to the correct value of Ai (๐‘ฅ) ,Bi (๐‘ฅ) for all ๐‘ฅ, even though we might need largenumber of terms to achieve this, as will be shown below. The following is a plot of Ai (๐‘ฅ)and Bi (๐‘ฅ)

-10 -5 0 5 10

-0.4

-0.2

0.0

0.2

0.4

x

AiryAi(x)

0.35503

-10 -5 0

-0.5

0.0

0.5

1.0

1.5

2.0

x

AiryBi(x)

0.6149

52

Page 57: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.4.1 AiryAI series

For Ai (๐‘ฅ) looking at the (๐‘+1)๐‘กโ„Ž

๐‘๐‘กโ„Ž term

ฮ” =

3โˆ’23

๐‘ฅ3(๐‘+1)

9๐‘+1(๐‘+1)!ฮ“๏ฟฝ๐‘+1+ 23 ๏ฟฝโˆ’ 3

โˆ’43

๐‘ฅ3๐‘+2

9๐‘+1(๐‘+1)!ฮ“๏ฟฝ๐‘+1+ 43 ๏ฟฝ

3โˆ’23

๐‘ฅ3๐‘

9๐‘๐‘!ฮ“๏ฟฝ๐‘+ 23 ๏ฟฝโˆ’ 3

โˆ’43

๐‘ฅ3๐‘+1

9๐‘๐‘!ฮ“๏ฟฝ๐‘+ 43 ๏ฟฝ

This can be simplified using ฮ“ (๐‘ + 1) = ๐‘ฮ“ (๐‘) giving

ฮ“ ๏ฟฝ๏ฟฝ๐‘ +23๏ฟฝ+ 1๏ฟฝ = ๏ฟฝ๐‘ +

23๏ฟฝฮ“ ๏ฟฝ๐‘ +

23๏ฟฝ

ฮ“ ๏ฟฝ๏ฟฝ๐‘ +43๏ฟฝ+ 1๏ฟฝ = ๏ฟฝ๐‘ +

43๏ฟฝฮ“ ๏ฟฝ๐‘ +

43๏ฟฝ

Hence ฮ” becomes

ฮ” =

3โˆ’23 ๐‘ฅ3(๐‘+1)

9๐‘+1(๐‘+1)!๏ฟฝ๐‘+ 23 ๏ฟฝฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝโˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+2

9๐‘+1(๐‘+1)!๏ฟฝ๐‘+ 43 ๏ฟฝฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝ

3โˆ’23 ๐‘ฅ3๐‘

9๐‘๐‘!ฮ“๏ฟฝ๐‘+ 23 ๏ฟฝโˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+1

9๐‘๐‘!ฮ“๏ฟฝ๐‘+ 43 ๏ฟฝ

Or

ฮ” =

3โˆ’23 ๐‘ฅ3(๐‘+1)

9(๐‘+1)๏ฟฝ๐‘+ 23 ๏ฟฝฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝโˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+2

9(๐‘+1)๏ฟฝ๐‘+ 43 ๏ฟฝฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝ

3โˆ’23 ๐‘ฅ3๐‘

ฮ“๏ฟฝ๐‘+ 23 ๏ฟฝโˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+1

ฮ“๏ฟฝ๐‘+ 43 ๏ฟฝ

Or

ฮ” =

3โˆ’23 ๐‘ฅ3(๐‘+1)๏ฟฝ๐‘+ 4

3 ๏ฟฝฮ“๏ฟฝ๐‘+ 43 ๏ฟฝโˆ’3

โˆ’43 ๐‘ฅ3๐‘+2๏ฟฝ๐‘+ 2

3 ๏ฟฝฮ“๏ฟฝ๐‘+ 23 ๏ฟฝ

9(๐‘+1)๏ฟฝ๐‘+ 23 ๏ฟฝฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝ๏ฟฝ๐‘+ 43 ๏ฟฝฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝ

3โˆ’23 ๐‘ฅ3๐‘ฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝโˆ’3โˆ’43 ๐‘ฅ3๐‘+1ฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝ

ฮ“๏ฟฝ๐‘+ 23 ๏ฟฝฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝ

Or

ฮ” =

3โˆ’23 ๐‘ฅ3(๐‘+1)๏ฟฝ๐‘+ 4

3 ๏ฟฝฮ“๏ฟฝ๐‘+ 43 ๏ฟฝโˆ’3

โˆ’43 ๐‘ฅ3๐‘+2๏ฟฝ๐‘+ 2

3 ๏ฟฝฮ“๏ฟฝ๐‘+ 23 ๏ฟฝ

9(๐‘+1)๏ฟฝ๐‘+ 23 ๏ฟฝ๏ฟฝ๐‘+ 4

3 ๏ฟฝ

3โˆ’23 ๐‘ฅ3๐‘ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+1ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

53

Page 58: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For large๐‘, we can approximate ๏ฟฝ๐‘ + 23๏ฟฝ , ๏ฟฝ๐‘ + 4

3๏ฟฝ , (๐‘ + 1) to just ๐‘+1 and the above becomes

ฮ” =

3โˆ’23 ๐‘ฅ3(๐‘+1)ฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝโˆ’3โˆ’43 ๐‘ฅ3๐‘+2ฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝ

9(๐‘+1)2

3โˆ’23 ๐‘ฅ3๐‘ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’43 ๐‘ฅ3๐‘+1ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

Or

ฮ” =3โˆ’23 ๐‘ฅ3๐‘๐‘ฅ3ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’43 ๐‘ฅ3๐‘๐‘ฅ2ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

9 (๐‘ + 1)2 ๏ฟฝ3โˆ’23 ๐‘ฅ3๐‘ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’43 ๐‘ฅ3๐‘๐‘ฅฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

Or

ฮ” =0.488๐‘ฅ3๐‘๐‘ฅ2 ๏ฟฝ๐‘ฅฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

(0.488) 9 (๐‘ + 1)2 ๐‘ฅ3๐‘ ๏ฟฝฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488๐‘ฅฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

=๐‘ฅ2

9 (๐‘ + 1)2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฅฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488๐‘ฅฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

We want to solve for ๐‘ s.t. ๏ฟฝ๐‘ฅ2

9(๐‘+1)2

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘ฅฮ“๏ฟฝ๐‘+ 4

3 ๏ฟฝโˆ’0.488ฮ“๏ฟฝ๐‘+ 23 ๏ฟฝ

ฮ“๏ฟฝ๐‘+ 43 ๏ฟฝโˆ’0.488๐‘ฅฮ“๏ฟฝ๐‘+ 2

3 ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ ๏ฟฝ < 0.001.

For ๐‘ฅ = 1

19 (๐‘ + 1)2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ < 0.001

19 (๐‘ + 1)2

< 0.001

9 (๐‘ + 1)2 > 1000

(๐‘ + 1)2 >10009

๐‘ + 1 >๏ฟฝ10009

๐‘ > 9.541๐‘ = 10

For ๐‘ฅ = 100

๏ฟฝ๏ฟฝ

1002

9 (๐‘ + 1)2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

100ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488 (100) ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

๏ฟฝ๏ฟฝ< 0.001

I could not simplify away the Gamma terms above any more. Is there a way? So wrote small

54

Page 59: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

function (in Mathematica, which can compute this) which increments ๐‘ and evaluate theabove, until the value became smaller than 0.001. At ๐‘ = 11, 500 this was achieved.

For ๐‘ฅ = 10000

๏ฟฝ๏ฟฝ100002

9 (๐‘ + 1)2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

100ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

ฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.488 (10000) ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

๏ฟฝ๏ฟฝ< 0.001

Using the same program, found that ๐‘ = 11, 500, 000 was needed to obtain the result below0.001.

For = โˆ’1 also ๐‘ = 10. For ๐‘ฅ = โˆ’100, ๐‘ = 10, 030, which is little less than ๐‘ฅ = +100. For๐‘ฅ = โˆ’10000, ๐‘ = 10, 030, 000

Summary table for AiryAI(x)

๐‘ฅ ๐‘1 10โˆ’1 10100 11, 500โˆ’100 10, 03010000 11, 500, 000โˆ’10000 10, 030, 000

The Mathematica function which did the estimate is the following

estimateAiryAi[x_, n_] := (x^2/(9*(n + 1)^2))*((x*Gamma[n + 4/3] -0.488*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.488*x*Gamma[n + 2/3]))estimateAiryAi[-10000, 10030000] // N-0.0009995904estimateAiryAi[100, 11500] // N0.000928983646707407estimateAiryAi[10000, 11500000] // N0.000929156800155198

55

Page 60: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.4.2 AiryBI series

For Bi (๐‘ฅ) the di๏ฟฝerence is the coe๏ฟฝcients. Hence using the result from above, and justreplace the coe๏ฟฝcients

ฮ” =3โˆ’16 ๐‘ฅ3๐‘๐‘ฅ3ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’58 ๐‘ฅ3๐‘๐‘ฅ2ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ

9 (๐‘ + 1)2 ๏ฟฝ3โˆ’16 ๐‘ฅ3๐‘ฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 3

โˆ’58 ๐‘ฅ3๐‘๐‘ฅฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

=๐‘ฅ2 ๏ฟฝ๐‘ฅฮ“ ๏ฟฝ๐‘ + 4

3๏ฟฝ โˆ’ 0.604 39ฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

9 (๐‘ + 1)2 ๏ฟฝฮ“ ๏ฟฝ๐‘ + 43๏ฟฝ โˆ’ 0.604 39๐‘ฅฮ“ ๏ฟฝ๐‘ + 2

3๏ฟฝ๏ฟฝ

Hence for ๐‘ฅ = 1, using the above reduces to1

9 (๐‘ + 1)2< 0.001

Which is the same as AiryAI, therefore ๐‘ = 10. For ๐‘ฅ = 100, using the same small functionin Mathematica to calculate the above, here are the result.

Summary table for AiryBI(x)

๐‘ฅ ๐‘1 10โˆ’1 10100 11, 290โˆ’100 9, 90010000 10, 900, 000โˆ’10000 9, 950, 000

The result between AiryAi and AiryBi are similar. AiryBi needs a slightly less number ofterms in the series to obtain same accuracy.

The Mathematica function which did the estimate for the larger ๐‘ value for the above tableis the following

estimateAiryBI[x_, n_] := Abs[(x^2/(9*(n + 1)^2))*((x*Gamma[n + 4/3] -0.60439*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.6439*x*Gamma[n + 2/3]))]

3.1.5 Problem 3.8

Problem How many terms in the Taylor series solution to ๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘ฅ3๐‘ฆ with ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) =๐‘ฆโ€ฒโ€ฒ (0) = 0 are needed to evaluate โˆซ

1

0๐‘ฆ (๐‘ฅ) ๐‘‘๐‘ฅ correct to three decimal places?

Answer

๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฅ3๐‘ฆ = 056

Page 61: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Since ๐‘ฅ is an ordinary point, we use

๐‘ฆ =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›

๐‘ฆโ€ฒ =โˆž๏ฟฝ๐‘›=0

๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=1

๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›

๐‘ฆโ€ฒโ€ฒ =โˆž๏ฟฝ๐‘›=0

๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=1

๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›

๐‘ฆโ€ฒโ€ฒโ€ฒ =โˆž๏ฟฝ๐‘›=0

๐‘› (๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›โˆ’1 =โˆž๏ฟฝ๐‘›=1

๐‘› (๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›โˆ’1

=โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3) ๐‘Ž๐‘›+3๐‘ฅ๐‘›

Hence the ODE becomesโˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3) ๐‘Ž๐‘›+3๐‘ฅ๐‘› โˆ’ ๐‘ฅ3โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘› = 0

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3) ๐‘Ž๐‘›+3๐‘ฅ๐‘› โˆ’โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+3 = 0

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3) ๐‘Ž๐‘›+3๐‘ฅ๐‘› โˆ’โˆž๏ฟฝ๐‘›=3

๐‘Ž๐‘›โˆ’3๐‘ฅ๐‘› = 0

For ๐‘› = 0(1) (2) (3) ๐‘Ž3 = 0

๐‘Ž3 = 0

For ๐‘› = 1(2) (3) (4) ๐‘Ž4 = 0

๐‘Ž4 = 0

For ๐‘› = 2

๐‘Ž5 = 0

For ๐‘› โ‰ฅ 3, recursive equation is used

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3) ๐‘Ž๐‘›+3 โˆ’ ๐‘Ž๐‘›โˆ’3 = 0

๐‘Ž๐‘›+3 =๐‘Ž๐‘›โˆ’3

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3)Or, for ๐‘› = 3

๐‘Ž6 =๐‘Ž0

(4) (5) (6)For ๐‘› = 4

๐‘Ž7 =๐‘Ž1

(4 + 1) (4 + 2) (4 + 3)=

๐‘Ž1(5) (6) (7)

For ๐‘› = 5

๐‘Ž8 =๐‘Ž2

(5 + 1) (5 + 2) (5 + 3)=

๐‘Ž2(6) (7) (8)

57

Page 62: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

For ๐‘› = 6

๐‘Ž9 =๐‘Ž3

(6 + 1) (6 + 2) (6 + 3)= 0

For ๐‘› = 7

๐‘Ž10 =๐‘Ž4

(๐‘› + 1) (๐‘› + 2) (๐‘› + 3)= 0

For ๐‘› = 8

๐‘Ž11 =๐‘Ž5

(8 + 1) (8 + 2) (8 + 3)= 0

For ๐‘› = 9

๐‘Ž12 =๐‘Ž6

(9 + 1) (9 + 2) (9 + 3)=

๐‘Ž6(10) (11) (12)

=๐‘Ž0

(4) (5) (6) (10) (11) (12)For ๐‘› = 10

๐‘Ž13 =๐‘Ž7

(10 + 1) (10 + 2) (10 + 3)=

๐‘Ž7(11) (12) (13)

=๐‘Ž1

(5) (6) (7) (11) (12) (13)For ๐‘› = 11

๐‘Ž14 =๐‘Ž8

(11 + 1) (11 + 2) (11 + 3)=

๐‘Ž8(12) (13) (14)

=๐‘Ž2

(6) (7) (8) (12) (13) (14)And so on. Hence the series is

๐‘ฆ =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›

= ๐‘Ž0 + ๐‘Ž1๐‘ฅ + ๐‘Ž2๐‘ฅ2 + 0๐‘ฅ3 + 0๐‘ฅ4 + 0๐‘ฅ5 +๐‘Ž0

(4) (5) (6)๐‘ฅ6 +

๐‘Ž1(5) (6) (7)

๐‘ฅ7 +๐‘Ž2

(6) (7) (8)๐‘ฅ8

+ 0 + 0 + 0 +๐‘Ž0

(4) (5) (6) (10) (11) (12)๐‘ฅ12 +

๐‘Ž1(5) (6) (7) (11) (12) (13)

๐‘ฅ13

+๐‘Ž2

(6) (7) (8) (12) (13) (14)๐‘ฅ14 + 0 + 0 + 0 +โ‹ฏ

Or

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 + ๐‘Ž1๐‘ฅ + ๐‘Ž2๐‘ฅ2 +๐‘Ž0

(4) (5) (6)๐‘ฅ6 +

๐‘Ž1(5) (6) (7)

๐‘ฅ7 +๐‘Ž2

(6) (7) (8)๐‘ฅ8+

๐‘Ž0(4) (5) (6) (10) (11) (12)

๐‘ฅ12 +๐‘Ž1

(5) (6) (7) (11) (12) (13)๐‘ฅ13 +

๐‘Ž2(6) (7) (8) (12) (13) (14)

๐‘ฅ14 +โ‹ฏ

Or

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 ๏ฟฝ1 +๐‘ฅ6

(4) (5) (6)+

๐‘ฅ12

(4) (5) (6) (10) (11) (12)+โ‹ฏ๏ฟฝ

+ ๐‘Ž1 ๏ฟฝ๐‘ฅ +๐‘ฅ7

(5) (6) (7)+

๐‘ฅ13

(5) (6) (7) (11) (12) (13)+โ‹ฏ๏ฟฝ

+ ๐‘Ž2 ๏ฟฝ๐‘ฅ2 +๐‘ฅ8

(6) (7) (8)+

๐‘ฅ14

(6) (7) (8) (12) (13) (14)+โ‹ฏ๏ฟฝ

58

Page 63: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 ๏ฟฝ1 +1120

๐‘ฅ6 +1

158400๐‘ฅ12 +โ‹ฏ๏ฟฝ

+ ๐‘Ž1 ๏ฟฝ๐‘ฅ +1210

๐‘ฅ7 +1

360360๐‘ฅ13 +โ‹ฏ๏ฟฝ

+ ๐‘Ž2 ๏ฟฝ๐‘ฅ2 +1336

๐‘ฅ8 +1

733 824๐‘ฅ14 +โ‹ฏ๏ฟฝ

We now apply initial conditions ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) = ๐‘ฆโ€ฒโ€ฒ (0) = 0 . When ๐‘ฆ (0) = 1

1 = ๐‘Ž0Hence solution becomes

๐‘ฆ (๐‘ฅ) = ๏ฟฝ1 +1120

๐‘ฅ6 +1

158400๐‘ฅ12 +โ‹ฏ๏ฟฝ

+ ๐‘Ž1 ๏ฟฝ๐‘ฅ +1210

๐‘ฅ7 +1

360360๐‘ฅ13 +โ‹ฏ๏ฟฝ

+ ๐‘Ž2 ๏ฟฝ๐‘ฅ2 +1336

๐‘ฅ8 +1

733 824๐‘ฅ14 +โ‹ฏ๏ฟฝ

Taking derivative

๐‘ฆโ€ฒ (๐‘ฅ) = ๏ฟฝ6120

๐‘ฅ5 +12

158400๐‘ฅ11 +โ‹ฏ๏ฟฝ

+ ๐‘Ž1 ๏ฟฝ1 +7210

๐‘ฅ6 +13

360360๐‘ฅ12 +โ‹ฏ๏ฟฝ

+ ๐‘Ž2 ๏ฟฝ2๐‘ฅ +8336

๐‘ฅ7 +12

733 824๐‘ฅ13 +โ‹ฏ๏ฟฝ

Applying ๐‘ฆโ€ฒ (0) = 0 gives

0 = ๐‘Ž1And similarly, Applying ๐‘ฆโ€ฒโ€ฒ (0) = 0 gives ๐‘Ž2 = 0. Hence the solution is

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 ๏ฟฝ1 +๐‘ฅ6

(4) (5) (6)+

๐‘ฅ12

(4) (5) (6) (10) (11) (12)+โ‹ฏ๏ฟฝ

= 1 +๐‘ฅ6

(4) (5) (6)+

๐‘ฅ12

(4) (5) (6) (10) (11) (12)+

๐‘ฅ18

(4) (5) (6) (10) (11) (12) (16) (17) (18)+โ‹ฏ

= 1 +๐‘ฅ6

120+

๐‘ฅ12

158 400+

๐‘ฅ18

775 526 400+โ‹ฏ

We are now ready to answer the question. We will do the integration by increasing thenumber of terms by one each time. When the absolute di๏ฟฝerence between each incrementbecomes less than 0.001 we stop. When using one term For

๏ฟฝ1

0๐‘ฆ (๐‘ฅ) ๐‘‘๐‘ฅ = ๏ฟฝ

1

0๐‘‘๐‘ฅ

= 1

59

Page 64: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

When using two terms

๏ฟฝ1

01 +

๐‘ฅ6

120๐‘‘๐‘ฅ = ๏ฟฝ๐‘ฅ +

๐‘ฅ7

120 (7)๏ฟฝ1

0

= 1 +1840

=841840

= 1.001190476

Di๏ฟฝerence between one term and two terms is 0.001190476. When using three terms

๏ฟฝ1

01 +

๐‘ฅ6

120+

๐‘ฅ12

158 400๐‘‘๐‘ฅ = ๏ฟฝ๐‘ฅ +

๐‘ฅ7

840+

๐‘ฅ13

2059 200๏ฟฝ1

0

= 1 +1840

+1

2059 200

=14 431 56714 414 400

= 1.001190962

Comparing the above result, with the result using two terms, we see that only two terms areneeded since the change in accuracy did not a๏ฟฝect the first three decimal points. Hence weneed only this solution with two terms only

๐‘ฆ (๐‘ฅ) = 1 +1120

๐‘ฅ6

3.1.6 Problem 3.24

3.1.6.1 part e

Problem Find series expansion of all the solutions to the following di๏ฟฝerential equationabout ๐‘ฅ = 0. Try to sum in closed form any infinite series that appear.

2๐‘ฅ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฆโ€ฒ + ๐‘ฅ2๐‘ฆ = 0

Solution

๐‘ฆโ€ฒโ€ฒ โˆ’12๐‘ฅ๐‘ฆโ€ฒ +

๐‘ฅ2๐‘ฆ = 0

The only singularity is in ๐‘ (๐‘ฅ) is ๐‘ฅ = 0. We will now check if it is removable. (i.e. regular)

lim๐‘ฅโ†’0

๐‘ฅ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’0

๐‘ฅ12๐‘ฅ

=12

60

Page 65: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Therefore ๐‘ฅ = 0 is regular singular point. Hence we try Frobenius series

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ

๐‘ฆโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2

Substituting the above in 2๐‘ฅ2๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฅ3๐‘ฆ = 0 results in

2๐‘ฅ2โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2 โˆ’ ๐‘ฅโˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1 + ๐‘ฅ3โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ = 0

โˆž๏ฟฝ๐‘›=0

2 (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ +โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ+3 = 0

โˆž๏ฟฝ๐‘›=0

2 (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ +โˆž๏ฟฝ๐‘›=3

๐‘Ž๐‘›โˆ’3๐‘ฅ๐‘›+๐‘Ÿ = 0 (1)

The first step is to obtain the indicial equation. As the nature of the roots will tell us howto proceed. The indicial equation is obtained from setting ๐‘› = 0 in (1) with the assumptionthat ๐‘Ž0 โ‰  0. Setting ๐‘› = 0 in (1) gives

2 (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘› โˆ’ (๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› = 02 (๐‘Ÿ) (๐‘Ÿ โˆ’ 1) ๐‘Ž0 โˆ’ ๐‘Ÿ๐‘Ž0 = 0

Since ๐‘Ž0 โ‰  0 then we obtain the indicial equation (quadratic in ๐‘Ÿ)

2 (๐‘Ÿ) (๐‘Ÿ โˆ’ 1) โˆ’ ๐‘Ÿ = 0๐‘Ÿ (2 (๐‘Ÿ โˆ’ 1) โˆ’ 1) = 0

๐‘Ÿ (2๐‘Ÿ โˆ’ 3) = 0

Hence roots are

๐‘Ÿ1 = 0

๐‘Ÿ2 =32

Since ๐‘Ÿ1 โˆ’ ๐‘Ÿ2 is not an integer, then we know we can now construct two linearly independentsolutions

๐‘ฆ1 (๐‘ฅ) = ๐‘ฅ๐‘Ÿ1๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›

๐‘ฆ2 (๐‘ฅ) = ๐‘ฅ๐‘Ÿ2๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ๐‘›

Or

๐‘ฆ1 (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›

๐‘ฆ2 (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 32

61

Page 66: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Notice that the coe๏ฟฝcients are not the same. Since we now know ๐‘Ÿ1, ๐‘Ÿ2, we will use the aboveseries solution to obtain ๐‘ฆ1 (๐‘ฅ) and ๐‘ฆ2 (๐‘ฅ).

For ๐‘ฆ1 (๐‘ฅ) where ๐‘Ÿ1 = 0

๐‘ฆ1 (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›

๐‘ฆโ€ฒ (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 = ๏ฟฝ

๐‘›=1๐‘›๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’1 = ๏ฟฝ

๐‘›=0(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 = ๏ฟฝ

๐‘›=1๐‘› (๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›โˆ’1 = ๏ฟฝ

๐‘›=0(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›

Substituting the above in 2๐‘ฅ2๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฅ3๐‘ฆ = 0 results in

2๐‘ฅ2๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘› โˆ’ ๐‘ฅ๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘› + ๐‘ฅ3๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘› = 0

๏ฟฝ๐‘›=02 (๐‘› + 1) (๐‘› + 2) ๐‘Ž๐‘›+2๐‘ฅ๐‘›+2 โˆ’๏ฟฝ

๐‘›=0(๐‘› + 1) ๐‘Ž๐‘›+1๐‘ฅ๐‘›+1 +๏ฟฝ

๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›+3 = 0

๏ฟฝ๐‘›=22 (๐‘› โˆ’ 1) (๐‘›) ๐‘Ž๐‘›๐‘ฅ๐‘› โˆ’๏ฟฝ

๐‘›=1๐‘›๐‘Ž๐‘›๐‘ฅ๐‘› +๏ฟฝ

๐‘›=3๐‘Ž๐‘›โˆ’3๐‘ฅ๐‘› = 0

For ๐‘› = 1 (index starts at ๐‘› = 1).

โˆ’๐‘›๐‘Ž๐‘›๐‘ฅ๐‘› = 0โˆ’๐‘Ž1 = 0๐‘Ž1 = 0

For ๐‘› = 2

2 (๐‘› โˆ’ 1) (๐‘›) ๐‘Ž๐‘›๐‘ฅ๐‘› โˆ’ ๐‘›๐‘Ž๐‘›๐‘ฅ๐‘› = 02 (2 โˆ’ 1) (2) ๐‘Ž2 โˆ’ 2๐‘Ž2 = 0

2๐‘Ž2 = 0๐‘Ž2 = 0

For ๐‘› โ‰ฅ 3 we have recursive formula

2 (๐‘› โˆ’ 1) (๐‘›) ๐‘Ž๐‘› โˆ’ ๐‘›๐‘Ž๐‘› + ๐‘Ž๐‘›โˆ’3 = 0

๐‘Ž๐‘› =โˆ’๐‘Ž๐‘›โˆ’3

๐‘› (2๐‘› โˆ’ 3)Hence, for ๐‘› = 3

๐‘Ž3 =โˆ’๐‘Ž0

(3) (6 โˆ’ 3)=โˆ’๐‘Ž09

For ๐‘› = 4

๐‘Ž4 =โˆ’๐‘Ž1

๐‘› (2๐‘› โˆ’ 3)= 0

For ๐‘› = 5

๐‘Ž5 =โˆ’๐‘Ž2

๐‘› (2๐‘› โˆ’ 3)= 0

For ๐‘› = 6

๐‘Ž6 =โˆ’๐‘Ž3

๐‘› (2๐‘› โˆ’ 3)=

โˆ’๐‘Ž3(6) (12 โˆ’ 3)

=โˆ’๐‘Ž354

=๐‘Ž0

(54) (9)=

1486

๐‘Ž0

62

Page 67: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

And for ๐‘› = 7, 8 we also obtain ๐‘Ž7 = 0, ๐‘Ž8 = 0, but for ๐‘Ž9

๐‘Ž9 =โˆ’๐‘Ž6

9 (2 (9) โˆ’ 3)=โˆ’๐‘Ž6135

=โˆ’๐‘Ž0

(135) (486)= โˆ’

165 610

๐‘Ž0

And so on. Hence from ๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘› we obtain

๐‘ฆ1 (๐‘ฅ) = ๐‘Ž0 โˆ’โˆ’๐‘Ž09๐‘ฅ3 +

1486

๐‘Ž0๐‘ฅ6 โˆ’1

65 610๐‘Ž0๐‘ฅ9 +โ‹ฏ

= ๐‘Ž0 ๏ฟฝ1 โˆ’19๐‘ฅ3 +

1486

๐‘ฅ6 โˆ’1

65 610๐‘ฅ9 +โ‹ฏ๏ฟฝ

Now that we found ๐‘ฆ1 (๐‘ฅ).

For ๐‘ฆ2 (๐‘ฅ) with ๐‘Ÿ2 =32 .

๐‘ฆ (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 32

๐‘ฆโ€ฒ (๐‘ฅ) = ๏ฟฝ๐‘›=0

๏ฟฝ๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 12

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ๐‘›=0

๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›โˆ’ 12

Substituting this into 2๐‘ฅ2๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฅ3๐‘ฆ = 0 gives

2๐‘ฅ2๏ฟฝ๐‘›=0

๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›โˆ’ 12 โˆ’ ๐‘ฅ๏ฟฝ

๐‘›=0๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 12 + ๐‘ฅ3๏ฟฝ

๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 32 = 0

๏ฟฝ๐‘›=02 ๏ฟฝ๐‘› +

12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›โˆ’ 12+2 โˆ’๏ฟฝ

๐‘›=0๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 12+1 +๏ฟฝ

๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 32+3 = 0

๏ฟฝ๐‘›=02 ๏ฟฝ๐‘› +

12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 โˆ’๏ฟฝ

๐‘›=0๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 +๏ฟฝ

๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 92 = 0

๏ฟฝ๐‘›=02 ๏ฟฝ๐‘› +

12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 โˆ’๏ฟฝ

๐‘›=0๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 +๏ฟฝ

๐‘›=3๐‘๐‘›โˆ’3๐‘ฅ

๐‘›+ 92โˆ’3 = 0

๏ฟฝ๐‘›=02 ๏ฟฝ๐‘› +

12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 โˆ’๏ฟฝ

๐‘›=0๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 +๏ฟฝ

๐‘›=3๐‘๐‘›โˆ’3๐‘ฅ

๐‘›+ 32 = 0

Now that all the ๐‘ฅ terms have the same exponents, we can continue.

For ๐‘› = 0

2 ๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘0๐‘ฅ

32 โˆ’ ๏ฟฝ๐‘› +

32๏ฟฝ๐‘0๐‘ฅ

32 = 0

2 ๏ฟฝ12๏ฟฝ ๏ฟฝ

32๏ฟฝ๐‘0๐‘ฅ

32 โˆ’ ๏ฟฝ

32๏ฟฝ๐‘0๐‘ฅ

32 = 0

32๐‘0๐‘ฅ

32 โˆ’ ๏ฟฝ

32๏ฟฝ๐‘0๐‘ฅ

32 = 0

0๐‘0 = 0

63

Page 68: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence ๐‘0 is arbitrary.

For ๐‘› = 1

2 ๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 โˆ’ ๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 = 0

2 ๏ฟฝ1 +12๏ฟฝ ๏ฟฝ

1 +32๏ฟฝ๐‘1 โˆ’ ๏ฟฝ1 +

32๏ฟฝ๐‘1 = 0

5๐‘1 = 0๐‘1 = 0

For ๐‘› = 2

2 ๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 โˆ’ ๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘›๐‘ฅ

๐‘›+ 32 = 0

2 ๏ฟฝ2 +12๏ฟฝ ๏ฟฝ

2 +32๏ฟฝ๐‘2 โˆ’ ๏ฟฝ2 +

32๏ฟฝ๐‘2 = 0

14๐‘2 = 0๐‘2 = 0

For ๐‘› โ‰ฅ 3 we use the recursive formula

2 ๏ฟฝ๐‘› +12๏ฟฝ ๏ฟฝ

๐‘› +32๏ฟฝ๐‘๐‘› โˆ’ ๏ฟฝ๐‘› +

32๏ฟฝ๐‘๐‘› + ๐‘๐‘›โˆ’3 = 0

๐‘๐‘› =โˆ’๐‘๐‘›โˆ’3

๐‘› (2๐‘› + 3)Hence for ๐‘› = 3

๐‘3 =โˆ’๐‘03 (9)

=โˆ’๐‘027

For ๐‘› = 4, ๐‘› = 5 we will get ๐‘4 = 0 and ๐‘5 = 0 since ๐‘1 = 0 and ๐‘2 = 0.

For ๐‘› = 6

๐‘6 =โˆ’๐‘3

6 (12 + 3)=โˆ’๐‘390

=๐‘0

27 (90)=

๐‘02430

For ๐‘› = 7, ๐‘› = 8 we will get ๐‘7 = 0 and ๐‘8 = 0 since ๐‘4 = 0 and ๐‘5 = 0

For ๐‘› = 9

๐‘Ž9 =โˆ’๐‘6

๐‘› (2๐‘› + 3)=

โˆ’๐‘69 (18 + 3)

=โˆ’๐‘6189

=โˆ’๐‘0

2430 (189)=

โˆ’๐‘0459270

And so on. Hence, from ๐‘ฆ2 (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ

๐‘›+ 32 the series is

๐‘ฆ2 (๐‘ฅ) = ๐‘0๐‘ฅ32 โˆ’

๐‘027๐‘ฅ3+

32 +

๐‘02430

๐‘ฅ6+32 โˆ’

๐‘0459 270

๐‘ฅ9+32 +โ‹ฏ

= ๐‘0๐‘ฅ32 ๏ฟฝ1 โˆ’

๐‘ฅ3

27+

๐‘ฅ6

2430โˆ’

๐‘ฅ9

459270+โ‹ฏ๏ฟฝ

64

Page 69: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

The final solution is

๐‘ฆ (๐‘ฅ) = ๐‘ฆ1 (๐‘ฅ) + ๐‘ฆ2 (๐‘ฅ)

Or

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 ๏ฟฝ1 โˆ’19๐‘ฅ

3 + 1486๐‘ฅ

6 โˆ’ 165 610๐‘ฅ

9 +โ‹ฏ๏ฟฝ + ๐‘0๐‘ฅ32 ๏ฟฝ1 โˆ’ ๐‘ฅ3

27 +๐‘ฅ6

2430 โˆ’๐‘ฅ9

459270 +โ‹ฏ๏ฟฝ (2)

Now comes the hard part. Finding closed form solution.

The Taylor series of cos ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ is (using CAS)

cos ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ โ‰ˆ 1 โˆ’

19๐‘ฅ3 +

1486

๐‘ฅ6 โˆ’1

65610๐‘ฅ9 +โ‹ฏ (3)

And the Taylor series for sin ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ is (Using CAS)

sin ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ โ‰ˆ

13๐‘ฅ32โˆš2 โˆ’

181๐‘ฅ92โˆš2 +

17290

๐‘ฅ152 โˆš2 โˆ’โ‹ฏ

= ๐‘ฅ32 ๏ฟฝ13โˆš

2 โˆ’181๐‘ฅ3โˆš2 +

17290

๐‘ฅ6โˆš2 โˆ’โ‹ฏ๏ฟฝ

=13โˆš

2๐‘ฅ32 ๏ฟฝ1 โˆ’

127๐‘ฅ3 +

12430

๐‘ฅ6 โˆ’โ‹ฏ๏ฟฝ (4)

Comparing (3,4) with (2) we see that (2) can now be written as

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 cos ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ +

๐‘013โˆš2

sin ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ

Or letting ๐‘ = ๐‘013โˆš2

๐‘ฆ (๐‘ฅ) = ๐‘Ž0 cos ๏ฟฝ13๐‘ฅ32โˆš2๏ฟฝ + ๐‘0 sin ๏ฟฝ13๐‘ฅ

32โˆš2๏ฟฝ

This is the closed form solution. The constants ๐‘Ž0, ๐‘0 can be found from initial conditions.

3.1.6.2 part f

Problem Find series expansion of all the solutions to the following di๏ฟฝerential equationabout ๐‘ฅ = 0. Try to sum in closed form any infinite series that appear.

(sin ๐‘ฅ) ๐‘ฆโ€ฒโ€ฒ โˆ’ 2 (cos ๐‘ฅ) ๐‘ฆโ€ฒ โˆ’ (sin ๐‘ฅ) ๐‘ฆ = 0Solution

In standard form

๐‘ฆโ€ฒโ€ฒ โˆ’ 2 ๏ฟฝcos ๐‘ฅsin ๐‘ฅ

๏ฟฝ ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ = 0

65

Page 70: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Hence the singularities are in ๐‘ (๐‘ฅ) only and they occur when sin ๐‘ฅ = 0 or ๐‘ฅ = 0, ยฑ๐œ‹, ยฑ2๐œ‹,โ‹ฏbut we just need to consider ๐‘ฅ = 0. Let us check if the singularity is removable.

lim๐‘ฅโ†’0

๐‘ฅ๐‘ (๐‘ฅ) = 2 lim๐‘ฅโ†’0

๐‘ฅcos ๐‘ฅsin ๐‘ฅ = 2 lim

๐‘ฅโ†’0๐‘ฅ1 โˆ’ ๐‘ฅ2

2 +๐‘ฅ4

4! โˆ’โ‹ฏ

๐‘ฅ โˆ’ ๐‘ฅ3

3! +๐‘ฅ5

5! โˆ’โ‹ฏ= 2 lim

๐‘ฅโ†’0

1 โˆ’ ๐‘ฅ2

2 +๐‘ฅ4

4! โˆ’โ‹ฏ

1 โˆ’ ๐‘ฅ2

3! +๐‘ฅ4

5! โˆ’โ‹ฏ= 2

Hence the singularity is regular. So we can use Frobenius series

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ

๐‘ฆโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2

Substituting the above in sin (๐‘ฅ) ๐‘ฆโ€ฒโ€ฒ โˆ’ 2 cos (๐‘ฅ) ๐‘ฆโ€ฒ โˆ’ sin (๐‘ฅ) ๐‘ฆ = 0 results in

sin (๐‘ฅ)โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2 โˆ’ 2 cos (๐‘ฅ)โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1 โˆ’ sin (๐‘ฅ)โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ = 0

Now using Taylor series for sin ๐‘ฅ, cos ๐‘ฅ expanded around 0, the above becomesโˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š+1

(2๐‘š + 1)!

โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2

โˆ’2โˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š

(2๐‘š)!

โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š+1

(2๐‘š + 1)!

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ = 0 (1)

We need now to evaluate products of power series. Using what is called Cauchy product rule,where

๐‘“ (๐‘ฅ) ๐‘” (๐‘ฅ) = ๏ฟฝโˆž๏ฟฝ๐‘š=0

๐‘๐‘š๐‘ฅ๐‘š๏ฟฝ ๏ฟฝโˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๏ฟฝ =โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

๐‘๐‘š๐‘Ž๐‘›๐‘ฅ๐‘š+๐‘› (2)

Applying (2) to first term in (1) givesโˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š+1

(2๐‘š + 1)!

โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’2 =โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1)(2๐‘š + 1)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1

(3)

Applying (2) to second term in (1) givesโˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š

(2๐‘š)!

โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿโˆ’1 =โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ)(2๐‘š)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1 (4)

Applying (2) to the last term in (1) givesโˆž๏ฟฝ๐‘š=0

(โˆ’1)๐‘š๐‘ฅ2๐‘š+1

(2๐‘š + 1)!

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›+๐‘Ÿ =โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š ๐‘Ž๐‘›(2๐‘š + 1)!

๐‘ฅ2๐‘š+๐‘›+๐‘Ÿ+1 (5)

66

Page 71: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Substituting (3,4,5) back into (1) givesโˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1)(2๐‘š + 1)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1

โˆ’2โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ)(2๐‘š)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š ๐‘Ž๐‘›(2๐‘š + 1)!

๐‘ฅ2๐‘š+๐‘›+๐‘Ÿ+1 = 0

We now need to make all ๐‘ฅ exponents the same. This givesโˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1)(2๐‘š + 1)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1

โˆ’2โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ)(2๐‘š)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=2

(โˆ’1)๐‘š ๐‘Ž๐‘›โˆ’2(2๐‘š + 1)!

๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1 = 0 (6)

The first step is to obtain the indicial equation. As the nature of the roots will tell us how toproceed. The indicial equation is obtained from setting ๐‘› = ๐‘š = 0 in (6) with the assumptionthat ๐‘Ž0 โ‰  0. This results in

(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1)(2๐‘š + 1)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1 โˆ’ 2(โˆ’1)๐‘š (๐‘› + ๐‘Ÿ)

(2๐‘š)!๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+๐‘Ÿโˆ’1 = 0

(๐‘Ÿ) (๐‘Ÿ โˆ’ 1) ๐‘Ž0 โˆ’ 2๐‘Ÿ๐‘Ž0 = 0

๐‘Ž0 ๏ฟฝ๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 2๐‘Ÿ๏ฟฝ = 0

Since ๐‘Ž0 โ‰  0 then we obtain the indicial equation (quadratic in ๐‘Ÿ)

๐‘Ÿ2 โˆ’ 3๐‘Ÿ = 0๐‘Ÿ (๐‘Ÿ โˆ’ 3) = 0

Hence roots are

๐‘Ÿ1 = 3๐‘Ÿ2 = 0

(it is always easier to make ๐‘Ÿ1 > ๐‘Ÿ2). Since ๐‘Ÿ1 โˆ’ ๐‘Ÿ2 = 3 is now an integer, then this is case IIpart (b) in textbook, page 72. In this case, the two linearly independent solutions are

๐‘ฆ1 (๐‘ฅ) = ๐‘ฅ3๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘› = ๏ฟฝ

๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›+3

๐‘ฆ2 (๐‘ฅ) = ๐‘˜๐‘ฆ1 (๐‘ฅ) ln (๐‘ฅ) + ๐‘ฅ๐‘Ÿ2๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ๐‘› = ๐‘˜๐‘ฆ1 (๐‘ฅ) ln (๐‘ฅ) +๏ฟฝ

๐‘›=0๐‘๐‘›๐‘ฅ๐‘›

67

Page 72: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

Where ๐‘˜ is some constant. Now we will find ๐‘ฆ1. From (6), where now we set ๐‘Ÿ = 3โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + 3) (๐‘› + 2)(2๐‘š + 1)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›++2

โˆ’2โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=0

(โˆ’1)๐‘š (๐‘› + 3)(2๐‘š)!

๐‘Ž๐‘›๐‘ฅ2๐‘š+๐‘›+2

โˆ’โˆž๏ฟฝ๐‘š=0

โˆž๏ฟฝ๐‘›=2

(โˆ’1)๐‘š ๐‘Ž๐‘›โˆ’2(2๐‘š + 1)!

๐‘ฅ2๐‘š+๐‘›+2 = 0

For ๐‘š = 0, ๐‘› = 1(โˆ’1)๐‘š (๐‘› + 3) (๐‘› + 2)

(2๐‘š + 1)!๐‘Ž๐‘› โˆ’ 2 ๏ฟฝ

(โˆ’1)๐‘š (๐‘› + 3)(2๐‘š)!

๐‘Ž๐‘›๏ฟฝ = 0

(4) (3) ๐‘Ž1 โˆ’ 2 (4๐‘Ž1) = 0๐‘Ž1 = 0

For ๐‘š = 0, ๐‘› โ‰ฅ 2 we obtain recursive equation

(๐‘› + 3) (๐‘› + 2) ๐‘Ž๐‘› โˆ’ 2 (๐‘› + 3) ๐‘Ž๐‘› โˆ’ ๐‘Ž๐‘›โˆ’2 = 0

๐‘Ž๐‘› =โˆ’๐‘Ž๐‘›โˆ’2

(๐‘› + 3) (๐‘› + 2) โˆ’ 2 (๐‘› + 3)=

โˆ’๐‘Ž๐‘›โˆ’2๐‘› (๐‘› + 3)

Hence, for ๐‘š = 0, ๐‘› = 2

๐‘Ž2 =โˆ’๐‘Ž010

For ๐‘š = 0, ๐‘› = 3

๐‘Ž3 =โˆ’๐‘Ž1

๐‘› (๐‘› + 3)= 0

For ๐‘š = 0, ๐‘› = 4

๐‘Ž4 =โˆ’๐‘Ž24 (7)

=๐‘Ž0280

For ๐‘š = 0, ๐‘› = 5

๐‘Ž5 = 0

For ๐‘š = 0, ๐‘› = 6

๐‘Ž6 =โˆ’๐‘Ž4

6 (6 + 3)=

โˆ’๐‘Ž06 (6 + 3) (280)

=โˆ’๐‘Ž015120

For ๐‘š = 0, ๐‘› = 7, ๐‘Ž7 = 0 and for ๐‘š = 0, ๐‘› = 8

๐‘Ž8 =โˆ’๐‘Ž6

8 (8 + 3)=

11330560

๐‘Ž0

68

Page 73: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

And so on. Since ๐‘ฆ1 (๐‘ฅ) = ๏ฟฝ๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›+3, then the first solution is now found. It is

๐‘ฆ1 (๐‘ฅ) = ๐‘Ž0๐‘ฅ3 + ๐‘Ž1๐‘ฅ4 + ๐‘Ž2๐‘ฅ5 + ๐‘Ž3๐‘ฅ6 + ๐‘Ž4๐‘ฅ7 + ๐‘Ž5๐‘ฅ8 + ๐‘Ž6๐‘ฅ9 + ๐‘Ž7๐‘ฅ10 + ๐‘Ž8๐‘ฅ11 +โ‹ฏ

= ๐‘Ž0๐‘ฅ3 + 0 โˆ’๐‘Ž010๐‘ฅ5 + 0 +

๐‘Ž0280

๐‘ฅ7 + 0 โˆ’๐‘Ž0

15 120๐‘ฅ9 + 0 +

11330560

๐‘Ž0๐‘ฅ11 +โ‹ฏ

= ๐‘Ž0๐‘ฅ3 ๏ฟฝ1 โˆ’๐‘ฅ2

10+๐‘ฅ5

280โˆ’

๐‘ฅ6

15120+

๐‘ฅ8

1330560โˆ’โ‹ฏ๏ฟฝ (7)

The second solution can now be found from

๐‘ฆ2 = ๐‘˜๐‘ฆ1 (๐‘ฅ) ln (๐‘ฅ) +๏ฟฝ๐‘›=0๐‘๐‘›๐‘ฅ๐‘›

I could not find a way to convert the complete solution to closed form solution, or even findclosed form for ๐‘ฆ1 (๐‘ฅ). The computer claims that the closed form final solution is

๐‘ฆ (๐‘ฅ) = ๐‘ฆ1 (๐‘ฅ) + ๐‘ฆ2 (๐‘ฅ)

= ๐‘Ž0 cos (๐‘ฅ) + ๐‘0 ๏ฟฝโˆ’โˆšcos2 ๐‘ฅ โˆ’ 1 + cos ๐‘ฅ ln ๏ฟฝcos (๐‘ฅ) + โˆšcos2 ๐‘ฅ โˆ’ 1๏ฟฝ๏ฟฝ

Which appears to imply that (7) is cos (๐‘ฅ) series. But it is not. Converting series solution toclosed form solution is hard. Is this something we are supposed to know how to do? Otherby inspection, is there a formal process to do it?

69

Page 74: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7 key solution of selected problems

3.1.7.1 section 3 problem 8

Problem Statement: How many terms are needed in the Taylor series solution to yโ€ฒโ€ฒโ€ฒ = x3y,

y(0) = 1, yโ€ฒ(0) = 0, yโ€ฒโ€ฒ(0) = 0 are needed to evaluateโˆžโˆซ0

y(x)dx correct to 3 decimal places?

Solution: Let

y =โˆžโˆ‘

n=0

anxn

yโ€ฒ =โˆžโˆ‘

n=0

nanxnโˆ’1

yโ€ฒโ€ฒ =โˆžโˆ‘

n=0

nan(nโˆ’ 1)xnโˆ’1

yโ€ฒโ€ฒโ€ฒ =

โˆžโˆ‘n=0

n(nโˆ’ 1)(nโˆ’ 2)anxnโˆ’3 = x3y = x3

โˆžโˆ‘n=0

anxn =

โˆžโˆ‘n=0

anxn+3.

Shift indices by letting n โ†’ (nโˆ’ 6) in the RHS:

โˆžโˆ‘n=0

anxn+3 โ†’

โˆžโˆ‘n=6

anโˆ’6xnโˆ’3

โˆžโˆ‘n=0

n(nโˆ’ 1)(nโˆ’ 2)anxnโˆ’3 = 0 ยท xโˆ’3 + 0 ยท xโˆ’2 + 0 ยท xโˆ’1 + 3 ยท 2 ยท 1 ยท a3x

0 + 4 ยท 3 ยท 2 ยท a4x1

+ 5 ยท 4 ยท 3 ยท a5x2 +

โˆžโˆ‘n=6

n(nโˆ’ 1)(nโˆ’ 2)anxnโˆ’3

From here,a3 = 0, a4 = 0, a5 = 0

xnโˆ’3{n(nโˆ’ 1)(nโˆ’ 2)an โˆ’ anโˆ’6} = 0 for n = 6, 7, 8, ...

The recurrence relation becomes:

an =1

n(nโˆ’ 1)(nโˆ’ 2)anโˆ’6 n โ‰ฅ 6

Solution to D.E. becomes:

y =

โˆžโˆ‘n=0

anxn = a0 + a1 ยท x+ a2 ยท x

2 +

โˆžโˆ‘n=6

[1

n(nโˆ’ 1)(nโˆ’ 2)anโˆ’6x

n]

y(0) = a0 = 1 ==> a0 = 1

1

70

Page 75: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

yโ€ฒ(0) = a1 = 0 ==> a1 = 0

yโ€ฒโ€ฒ(0) = 2 ยท a2 = 0 ==> a2 = 0

y(x) = 1 +

โˆžโˆ‘n=6

1

n(nโˆ’ 1)(nโˆ’ 2)anโˆ’6x

n

โˆซ 1

0

y(x)dx = [x+โˆžโˆ‘

n=6

1

(n+ 1)n(nโˆ’ 1)(nโˆ’ 2)anโˆ’6x

n+1]10

= 1 +

โˆžโˆ‘n=6

1

(n+ 1)(n)(nโˆ’ 1)(nโˆ’ 2)anโˆ’6

= 1 +1

7 ยท 6 ยท 5 ยท 4(1) +

1

13 ยท 12 ยท 11 ยท 10(

1

6 ยท ยท4(1)) + ...

= 1 +1

840+

1

2, 059, 200+ ...

โˆซ 1

0

y(x)dx โ‰ƒ 1 + 0.00119 + 4.856ร— 10โˆ’7

So the 2nd non-zero term is required. All other terms are below the specified tolerance of0.001.

2

71

Page 76: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.2 section 3 problem 6

72

Page 77: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

73

Page 78: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.3 section 3 problem 4

74

Page 79: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

75

Page 80: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

76

Page 81: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

3.1.7.4 section 3 problem 24

1 Closed form of Problem 3.24e

In problem 3.24e, we find Frobenius series solutions

yฮฑ(x) =โˆžโˆ‘

n=0

anxn+ฮฑ (1)

for ฮฑ = 0, 3

2, and recurrence relation on the coefficients:

an+3 =โˆ’an

(n+ ฮฑ + 3)(2n+ 2ฮฑ+ 3).

For each ฮฑ, a1 = a2 = 0, so only the a3k survive. Rewriting the recurrence relation:

a3k+3 =โˆ’a3k

(3k + 3 + ฮฑ)(6k + 3 + 2ฮฑ)=

โˆ’a3k9(k + 1 + ฮฑ/3)(2k + 1 + 2ฮฑ/3)

.

To identify a closed-form sum, we need to find the general form of the coefficients a3k. Towards thisend, consider the case ฮฑ = 0. Now

a3k =โˆ’1/9

k(2k โˆ’ 1)a3kโˆ’3 =

(โˆ’1/9)2

k(k โˆ’ 1) ยท (2k โˆ’ 1)(2k โˆ’ 3)a3kโˆ’6 = ยท ยท ยท =

(โˆ’1/9)k

k! ยท (2k โˆ’ 1)!!a0.

Now note that

(2k โˆ’ 1)!! =(2k)!

(2k)!!=

(2k)!

2k ยท k!=โ‡’ k! ยท (2k โˆ’ 1)!! = 2โˆ’k(2k)!,

so

a3k =(โˆ’1/9)k

2โˆ’k(2k)!a0 =

(โˆ’2/9)k

(2k)!a0.

Therefore,

y0(x) = a0

โˆžโˆ‘

k=0

(โˆ’2/9)k

(2k)!x3k = a0

โˆžโˆ‘

k=0

(โˆ’1)k

(2k)!(x3/2

โˆš2/3)2k =: a0

โˆžโˆ‘

k=0

โˆ’z2k

(2k)!,

where z := x3/2โˆš2/3. We recognize the remaining series as the Taylor series for cos z, so

y0(x) = a0 cos z(x) = a0 cos

(โˆš2

3x3/2

)

.

For ฮฑ = 3

2,

a3k+3 =โˆ’a3k

9(k + 3/2)(2k + 2)=

โˆ’a3k9(k + 1)(2k + 3)

.

Following the same argument as before,

a3k =(โˆ’1/9)k

k! ยท (2k + 1)!!a0.

This is the same as before, but divided by 2k + 1, so

y3/2(x) = a0

โˆžโˆ‘

k=0

(โˆ’2/9)k

(2k + 1)!x3k = a0 sin

(โˆš2

3x3/2

)

.

Therefore, the general solution is

y(x) = y0(x) + y3/2(x) = c1 cos

(โˆš2

3x3/2

)

+ c2 sin

(โˆš2

3x3/2

)

.

1

77

Page 82: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

2 Closed form of Problem 3.24f

Problem 3.24f asks us to solve (sin x)yโ€ฒโ€ฒ โˆ’ 2(cosx)yโ€ฒ โˆ’ (sin x)y = 0. Dividing by sin x,

yโ€ฒโ€ฒ โˆ’ 2(cotx)yโ€ฒ โˆ’ y = 0,

so x = 0 is a regular singular point (cotx is not analytic at x = 0, but x cot x is). Thus, we can look fora Frobenius series solution.

Expanding sin x and cos x:

0 =

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m+ 1)!x2m+1

)

โˆžโˆ‘

n=0

(n+ ฮฑ)(n+ ฮฑโˆ’ 1)anxn+ฮฑโˆ’2 โˆ’ 2

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m)!x2m

)

โˆžโˆ‘

n=0

(n + ฮฑ)anxn+ฮฑโˆ’1

โˆ’

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m+ 1)!x2m+1

)

โˆžโˆ‘

n=0

anxn+ฮฑ.

The lowest order is xฮฑโˆ’1:0 = ฮฑ(ฮฑโˆ’ 1)a0 โˆ’ 2ฮฑa0 = ฮฑ(ฮฑโˆ’ 3)a0,

so ฮฑ = 0, 3. We are in case II(b) on page 72.Let ฮฑ = 0. Then

0 =

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m+ 1)!x2m+1

)

โˆžโˆ‘

n=0

n(nโˆ’ 1)anxnโˆ’2 โˆ’ 2

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m)!x2m

)

โˆžโˆ‘

n=0

nanxnโˆ’1

โˆ’

(

โˆžโˆ‘

m=0

(โˆ’1)m

(2m+ 1)!x2m+1

)

โˆžโˆ‘

n=0

anxn.

We solve order-by-order:

x0 : 0 = โˆ’2a1 =โ‡’ a1 = 0,

x1 : 0 = 2a2 โˆ’ 2 ยท 2a2 โˆ’ a0 =โ‡’ a2 = โˆ’a02,

x2k : 0 =

kโˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“ 2โ„“(2โ„“+ 1)

(2k โˆ’ 2โ„“+ 1)!a2โ„“+1 โˆ’ 2

kโˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“ 2โ„“+ 1

(2k โˆ’ 2โ„“)!a2โ„“+1 โˆ’

kโˆ’1โˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“โˆ’1

(2k โˆ’ 2โ„“โˆ’ 1)!a2โ„“+1,

x2k+1 : 0 =

k+1โˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“+12โ„“(2โ„“โˆ’ 1)

(2k โˆ’ 2โ„“+ 3)!a2โ„“ โˆ’ 2

k+1โˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“+12โ„“

(2k โˆ’ 2โ„“+ 2)!a2โ„“ โˆ’

kโˆ‘

โ„“=0

(โˆ’1)kโˆ’โ„“

(2k โˆ’ 2โ„“+ 1)!a2โ„“,

where k โ‰ฅ 1. From the x2k terms, we see that a2n+1 depends only on a1, a3, ..., a2nโˆ’1. As a1 = 0, it is asimple (strong) induction to show that each a2n+1 = 0.

We use the x2k+1 terms for k = 1 to see that

0 =

(

0a0 โˆ’2

6a2 +

12

1a4

)

โˆ’ 2

(

0a0 โˆ’2

2a2 +

4

1a4

)

โˆ’(

โˆ’1

6a0 +

1

1a2

)

=โ‡’ a4 = โˆ’1

4

(

1

6a0 โˆ’

2

3a2

)

.

As a2 = โˆ’1

2a0, we see that a4 = 1

24a0. We notice a pattern that these coefficients are starting to look

like those in the Taylor series expansion of y0(x) = a0 cos x, which we now verify by plugging into theODE:

(sin x)yโ€ฒโ€ฒ0(x)โˆ’ 2(cosx)yโ€ฒ0(x)โˆ’ (sin x)y0(x) = โˆ’a0 sin x cos x+ 2a0 cos x sin xโˆ’ a0 sin x cosx = 0.

2

78

Page 83: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.1. HW1 CHAPTER 3. HWS

To find the other solution, we use reduction of order: look for a solution of the form y3(x) = v(x) cosx(we keep the ฮฑ = 3 subscript to remind us that we expect the Taylor series of our solution to start atthe x3-term). Plugging into the ODE:

(sin x)(vโ€ฒโ€ฒ(x) cosxโˆ’ 2vโ€ฒ(x) sin xโˆ’ v(x) cosx)โˆ’ (2 cosx)(vโ€ฒ(x) cos xโˆ’ v(x) sin x)โˆ’ (sin x)(v(x) cosx) = 0.

Simplifying,

(sin x cosx)vโ€ฒโ€ฒ(x)โˆ’ 2vโ€ฒ(x) = 0 =โ‡’ vโ€ฒ(x) = c1 tan2 x =โ‡’ v(x) = c1(tanxโˆ’ x) + c0.

We set c0 = 0, since this corresponds to y0(x). Then y3(x) = c1(tan xโˆ’ x) cosx = c1(sin xโˆ’ x cosx).The full solution is therefore

y(x) = c0 cosx+ c1(sin xโˆ’ x cosx).

3

79

Page 84: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2 HW2

3.2.1 problem 3.27 (page 138)

Problem derive 3.4.28. Below is a screen shot from the book giving 3.4.28 at page 88, andthe context it is used in before solving the problem

Solution

For ๐‘›๐‘กโ„Ž order ODE, ๐‘†0 (๐‘ฅ) is given by

๐‘†0 (๐‘ฅ) โˆผ ๐œ”๏ฟฝ๐‘ฅ๐‘„ (๐‘ก)

1๐‘› ๐‘‘๐‘ก

And (page 497, textbook)

๐‘†1 (๐‘ฅ) โˆผ1 โˆ’ ๐‘›2๐‘›

ln (๐‘„ (๐‘ฅ)) + ๐‘ (10.2.11)

80

Page 85: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Therefore

๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 + ๐‘†1)

โˆผ exp ๏ฟฝ๐œ”๏ฟฝ๐‘ฅ๐‘„ (๐‘ก)

1๐‘› ๐‘‘๐‘ก +

1 โˆ’ ๐‘›2๐‘›

ln (๐‘„ (๐‘ฅ)) + ๐‘๏ฟฝ

โˆผ ๐‘ [๐‘„ (๐‘ฅ)]1โˆ’๐‘›2๐‘› exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘„ (๐‘ก)

1๐‘› ๐‘‘๐‘ก๏ฟฝ

Note: I have tried other methods to proof this, such as a proof by induction. But was notable to after many hours trying. The above method uses a given formula which the bookdid not indicate how it was obtained. (see key solution)

3.2.2 Problem 3.33(b) (page 140)

Problem Find leading behavior as ๐‘ฅ โ†’ 0+ for ๐‘ฅ4๐‘ฆโ€ฒโ€ฒโ€ฒ โˆ’ 3๐‘ฅ2๐‘ฆโ€ฒ + 2๐‘ฆ = 0

Solution Let

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ)

๐‘ฆโ€ฒ = ๐‘†โ€ฒ๐‘’๐‘†

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ๐‘’๐‘† + (๐‘†โ€ฒ)2 ๐‘’๐‘†

๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒโ€ฒ๐‘’๐‘† + ๐‘†โ€ฒโ€ฒ๐‘†โ€ฒ๐‘’๐‘† + 2๐‘†โ€ฒ๐‘†โ€ฒโ€ฒ๐‘’๐‘† + (๐‘†โ€ฒ)3 ๐‘’๐‘†

Hence the ODE becomes

๐‘ฅ4 ๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ + 3๐‘†โ€ฒ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)3๏ฟฝ โˆ’ 3๐‘ฅ2๐‘†โ€ฒ = โˆ’2 (1)

Now, we define ๐‘† (๐‘ฅ) as sum of a number of leading terms, which we try to find

๐‘† (๐‘ฅ) = ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐‘†2 (๐‘ฅ) +โ‹ฏ

Therefore (1) becomes (using only two terms for now ๐‘† = ๐‘†0 + ๐‘†1)

{๐‘†0 + ๐‘†1}โ€ฒโ€ฒโ€ฒ + 3 ๏ฟฝ(๐‘†0 + ๐‘†1) (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ๏ฟฝ + ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ3โˆ’3๐‘ฅ2{๐‘†0 + ๐‘†1}

โ€ฒ = โˆ’2๐‘ฅ4

๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ + 3 ๏ฟฝ(๐‘†0 + ๐‘†1) ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ๏ฟฝ + ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ3โˆ’3๐‘ฅ2๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ = โˆ’

2๐‘ฅ4

๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ + 3 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0 + ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ โˆ’

3๐‘ฅ2๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ = โˆ’

2๐‘ฅ4

(2)

Assuming that ๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ1, ๐‘†โ€ฒโ€ฒโ€ฒ0 โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ1 , ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ 3๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 then equation (2) simplifies to

๐‘†โ€ฒโ€ฒโ€ฒ0 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โˆ’3๐‘ฅ2๐‘†โ€ฒ0 โˆผ โˆ’

2๐‘ฅ4

Assuming ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ0 , ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

3โ‹™ 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0, ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

3โ‹™ 3

๐‘ฅ2๐‘†โ€ฒ0 (which we need to verify later), then

the above becomes

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โˆผ โˆ’

2๐‘ฅ4

Verification2

2When carrying out verification, all constant multipliers and signs are automticaly simplified and removed

81

Page 86: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Since ๐‘†โ€ฒ0 โˆผ ๏ฟฝโˆ’2๐‘ฅ4๏ฟฝ13= 1

๐‘ฅ43then ๐‘†โ€ฒโ€ฒ0 โˆผ 1

๐‘ฅ73and ๐‘†โ€ฒโ€ฒโ€ฒ0 โˆผ 1

๐‘ฅ103. Now we need to verify the three

assumptions made above, which we used to obtain ๐‘†โ€ฒ0.

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ0

1๐‘ฅ4โ‹™

1

๐‘ฅ103

Yes.

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0

1๐‘ฅ4โ‹™

โŽ›โŽœโŽœโŽœโŽœโŽ1

๐‘ฅ73

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽ1

๐‘ฅ43

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

1๐‘ฅ4โ‹™

โŽ›โŽœโŽœโŽœโŽœโŽ1

๐‘ฅ113

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

Yes.

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™

3๐‘ฅ2๐‘†โ€ฒ0

1๐‘ฅ4โ‹™ ๏ฟฝ

1๐‘ฅ2 ๏ฟฝ

1

๐‘ฅ43

1๐‘ฅ4โ‹™

1

๐‘ฅ103

Yes. Assumed balance ise verified. Therefore

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โˆผ โˆ’

2๐‘ฅ4

๐‘†โ€ฒ0 โˆผ ๐œ”๐‘ฅโˆ’43

Where ๐œ”3 = โˆ’2. Integrating

๐‘†0 โˆผ ๐œ”๏ฟฝ๐‘ฅโˆ’43 ๐‘‘๐‘ฅ

โˆผ ๐œ”๏ฟฝ๐‘ฅโˆ’43๐‘‘๐‘ฅ

โˆผ โˆ’3๐œ”๐‘ฅโˆ’13

Where we ignored the constant of integration since subdominant. To find leading behavior,we go back to equation (2) and now solve for ๐‘†1.

๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ + 3 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0 + ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ โˆ’

3๐‘ฅ2๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ = โˆ’

2๐‘ฅ4

Moving all known quantities (those which are made of ๐‘†0 and its derivatives) to the RHS

going from one step to the next, as they do not a๏ฟฝect the final result.

82

Page 87: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

and simplifying, gives

๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ + 3 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0๏ฟฝ + ๏ฟฝ3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ โˆ’

3๐‘†โ€ฒ1๐‘ฅ2

โˆผ โˆ’๐‘†โ€ฒโ€ฒโ€ฒ0 โˆ’ 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0 +3๐‘ฅ2๐‘†โ€ฒ0

Now we assume the following (then will verify later)

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ1

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0

Hence

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โˆ’

3๐‘†โ€ฒ1๐‘ฅ2

โˆผ โˆ’๐‘†โ€ฒโ€ฒโ€ฒ0 โˆ’ 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ0 +3๐‘†โ€ฒ0๐‘ฅ2

(3)

But

๐‘†โ€ฒ0 โˆผ ๐œ”๐‘ฅโˆ’43

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐œ”2๐‘ฅ

โˆ’83

๐‘†โ€ฒโ€ฒ0 โˆผ โˆ’43๐œ”๐‘ฅ

โˆ’73

๐‘†โ€ฒโ€ฒโ€ฒ0 โˆผ289๐œ”๐‘ฅ

โˆ’103

Hence (3) becomes

3 ๏ฟฝ๐œ”2๐‘ฅโˆ’83 ๏ฟฝ ๐‘†โ€ฒ1 โˆ’

3๐‘†โ€ฒ1๐‘ฅ2

โˆผ289๐œ”๐‘ฅ

โˆ’103 + 3 ๏ฟฝ

43๐œ”2๐‘ฅ

โˆ’73 ๐‘ฅ

โˆ’43 ๏ฟฝ +

3๐œ”๐‘ฅโˆ’43

๐‘ฅ2

3๐œ”2๐‘ฅโˆ’83 ๐‘†โ€ฒ1 โˆ’ 3๐‘ฅโˆ’2๐‘†โ€ฒ1 โˆผ

289๐œ”๐‘ฅ

โˆ’103 + 4๐œ”2๐‘ฅ

โˆ’113 + 3๐œ”๐‘ฅ

โˆ’103

For small ๐‘ฅ, ๐‘ฅโˆ’83 ๐‘†โ€ฒ1 โ‹™ ๐‘ฅโˆ’2๐‘†โ€ฒ1 and ๐‘ฅ

โˆ’113 โ‹™ ๐‘ฅ

โˆ’103 , then the above simplifies to

3๐œ”2๐‘ฅโˆ’83 ๐‘†โ€ฒ1 โˆผ 4๐œ”2๐‘ฅ

โˆ’113

๐‘†โ€ฒ1 โˆผ43๐‘ฅโˆ’1

๐‘†1 โˆผ43

ln ๐‘ฅ

Where constant of integration was dropped, since subdominant.

83

Page 88: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Verification Using ๐‘†โ€ฒ0 โˆฝ ๐‘ฅโˆ’43 , ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2โˆฝ ๐‘ฅ

โˆ’83 , ๐‘†โ€ฒโ€ฒ0 โˆฝ ๐‘ฅ

โˆ’73 , ๐‘†โ€ฒ1 โˆผ

1๐‘ฅ , ๐‘†

โ€ฒโ€ฒ1 โˆผ 1

๐‘ฅ2 , ๐‘†โ€ฒโ€ฒโ€ฒ1 โˆผ 1

๐‘ฅ3

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

๐‘ฅโˆ’831๐‘ฅโ‹™ ๐‘ฅ

โˆ’431๐‘ฅ2

๐‘ฅโˆ’83 โ‹™ ๐‘ฅ

โˆ’73

Yes.

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ1

๐‘ฅโˆ’831๐‘ฅโ‹™

1๐‘ฅ3

1

๐‘ฅ83

โ‹™1๐‘ฅ2

Yes.

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0

๐‘ฅโˆ’831๐‘ฅโ‹™

1๐‘ฅ2๐‘ฅโˆ’43

๐‘ฅโˆ’83 โ‹™ ๐‘ฅ

โˆ’73

Yes.

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1

๐‘ฅโˆ’831๐‘ฅโ‹™ ๐‘ฅ

โˆ’731๐‘ฅ

๐‘ฅโˆ’83 โ‹™ ๐‘ฅ

โˆ’73

Yes

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1 ๐‘†โ€ฒ0

๐‘ฅโˆ’831๐‘ฅโ‹™

1๐‘ฅ2๐‘ฅโˆ’43

๐‘ฅโˆ’83 โ‹™ ๐‘ฅ

โˆ’73

Yes. All verified. Leading behavior is

๐‘ฆ (๐‘ฅ) โˆฝ ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ)

= exp ๏ฟฝ๐‘๐œ”๐‘ฅโˆ’13 +

43

ln ๐‘ฅ๏ฟฝ

= ๐‘ฅ43 ๐‘’๐‘๐œ”๐‘ฅ

โˆ’13

I now wanted to see how Maple solution to this problem compare with the leading behaviornear ๐‘ฅ = 0. To obtain a solution from Maple, one have to give initial conditions a little bitremoved from ๐‘ฅ = 0 else no solution could be generated. So using arbitrary initial conditionsat ๐‘ฅ = 1

100 a solution was obtained and compared to the above leading behavior. Another

84

Page 89: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

problem is how to select ๐‘ in the above leading solution. By trial and error a constant wasselected. Here is screen shot of the result. The exact solution generated by Maple is verycomplicated, in terms of hypergeom special functions.

ode:=x^4*diff(y(x),x$3)-3*x^2*diff(y(x),x)+2*y(x);pt:=1/100:ic:=y(pt)=500,D(y)(pt)=0,(D@@2)(y)(pt)=0:sol:=dsolve({ode,ic},y(x)):leading:=(x,c)->x^(4/3)*exp(c*x^(-1/3));plot([leading(x,.1),rhs(sol)],x=pt..10,y=0..10,color=[blue,red],legend=["leading behavior","exact solution"],legendstyle=[location=top]);

3.2.3 problem 3.33(c) (page 140)

Problem Find leading behavior as ๐‘ฅ โ†’ 0+ for ๐‘ฆโ€ฒโ€ฒ = โˆš๐‘ฅ๐‘ฆ

Solution

Let ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ). Hence

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘†โ€ฒ0๐‘’๐‘†0

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ0 ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0

Substituting in the ODE gives

๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= โˆš๐‘ฅ (1)

85

Page 90: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Assuming ๐‘†โ€ฒโ€ฒ0 โˆผ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2then (1) becomes

๐‘†โ€ฒโ€ฒ0 โˆผ โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2

Let ๐‘†โ€ฒ0 = ๐‘ง then the above becomes ๐‘งโ€ฒ = โˆ’๐‘ง2. Hence ๐‘‘๐‘ง๐‘‘๐‘ฅ

1๐‘ง2 = โˆ’1 or ๐‘‘๐‘ง

๐‘ง2 = โˆ’๐‘‘๐‘ฅ. Integratingโˆ’1๐‘ง = โˆ’๐‘ฅ + ๐‘ or ๐‘ง =

1๐‘ฅ+๐‘1

. Hence ๐‘†โ€ฒ0 =1

๐‘ฅ+๐‘1. Integrating again gives

๐‘†0 (๐‘ฅ) โˆผ ln |๐‘ฅ + ๐‘1| + ๐‘2

Verification

๐‘†โ€ฒ0 =1

๐‘ฅ+๐‘1, ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2= 1

(๐‘ฅ+๐‘1)2 , ๐‘†โ€ฒโ€ฒ0 =

โˆ’1(๐‘ฅ+๐‘1)

2

๐‘†โ€ฒโ€ฒ0 โ‹™ ๐‘ฅ12

1(๐‘ฅ + ๐‘1)

2 โ‹™ ๐‘ฅ12

Yes for ๐‘ฅ โ†’ 0+.

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘ฅ

12

1(๐‘ฅ + ๐‘1)

2 โ‹™ ๐‘ฅ12

Yes for ๐‘ฅ โ†’ 0+. Verified. Controlling factor is

๐‘ฆ (๐‘ฅ) โˆผ ๐‘’๐‘†0(๐‘ฅ)

โˆผ ๐‘’ln|๐‘ฅ+๐‘1|+๐‘2

โˆผ ๐ด๐‘ฅ + ๐ต

3.2.4 problem 3.35

Problem: Obtain the full asymptotic behavior for small ๐‘ฅ of solutions to the equation

๐‘ฅ2๐‘ฆโ€ฒโ€ฒ + (2๐‘ฅ + 1) ๐‘ฆโ€ฒ โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’2๐‘ฅ + 1๏ฟฝ ๐‘ฆ = 0

Solution

86

Page 91: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Let ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ). Hence

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘†โ€ฒ0๐‘’๐‘†0

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ0 ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0

Substituting in the ODE gives

๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0 + (2๐‘ฅ + 1) ๐‘†โ€ฒ0๐‘’๐‘†0 โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ ๐‘’๐‘†0(๐‘ฅ) = 0

๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ + (2๐‘ฅ + 1) ๐‘†โ€ฒ0 โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ = 0

๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ + (2๐‘ฅ + 1) ๐‘†โ€ฒ0 = ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ

๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+(2๐‘ฅ + 1)๐‘ฅ2

๐‘†โ€ฒ0 = ๐‘’2๐‘ฅ + 1

Assuming balance

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘’

2๐‘ฅ

๐‘†โ€ฒ0 โˆผ ยฑ๐‘’1๐‘ฅ

Where 1 was dropped since subdominant to ๐‘’1๐‘ฅ for small ๐‘ฅ.

Verification Since ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘’

2๐‘ฅ then ๐‘†โ€ฒ0 โˆผ ๐‘’

1๐‘ฅ and ๐‘†โ€ฒโ€ฒ0 โˆผ โˆ’ 1

๐‘ฅ2 ๐‘’1๐‘ฅ , hence

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0

๐‘’2๐‘ฅ โ‹™

1๐‘ฅ2๐‘’1๐‘ฅ

๐‘’1๐‘ฅ โ‹™

1๐‘ฅ2

Yes, As ๐‘ฅ โ†’ 0+

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™

(2๐‘ฅ + 1) ๐‘†โ€ฒ0๐‘ฅ2

๐‘’2๐‘ฅ โ‹™

(2๐‘ฅ + 1)๐‘ฅ2

๐‘’1๐‘ฅ

๐‘’1๐‘ฅ โ‹™

(2๐‘ฅ + 1)๐‘ฅ2

๐‘’1๐‘ฅ โ‹™

2๐‘ฅ+1๐‘ฅ2

87

Page 92: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes as ๐‘ฅ โ†’ 0+. Verified. Hence both assumptions used were verified OK. Hence

๐‘†โ€ฒ0 โˆผ ยฑ๐‘’2๐‘ฅ

๐‘†0 โˆผ ยฑ๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ

Since the integral do not have closed form, we will do asymptotic expansion on the integral.

Rewriting โˆซ ๐‘’1๐‘ฅ๐‘‘๐‘ฅ as โˆซ ๐‘’

1๐‘ฅ

๏ฟฝโˆ’๐‘ฅ2๏ฟฝ๏ฟฝโˆ’๐‘ฅ2๏ฟฝ ๐‘‘๐‘ฅ. Using โˆซ๐‘ข๐‘‘๐‘ฃ = ๐‘ข๐‘ฃ โˆ’ โˆซ๐‘ฃ๐‘‘๐‘ข, where ๐‘ข = โˆ’๐‘ฅ2, ๐‘‘๐‘ฃ = โˆ’๐‘’

1๐‘ฅ

๐‘ฅ2 , gives

๐‘‘๐‘ข = โˆ’2๐‘ฅ and ๐‘ฃ = ๐‘’1๐‘ฅ , hence

๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ โˆ’๏ฟฝ๐‘ฃ๐‘‘๐‘ข

= โˆ’๐‘ฅ2๐‘’1๐‘ฅ โˆ’๏ฟฝโˆ’2๐‘ฅ๐‘’

1๐‘ฅ๐‘‘๐‘ฅ

= โˆ’๐‘ฅ2๐‘’1๐‘ฅ + 2๏ฟฝ๐‘ฅ๐‘’

1๐‘ฅ๐‘‘๐‘ฅ (1)

Now we apply integration by parts on โˆซ๐‘ฅ๐‘’1๐‘ฅ๐‘‘๐‘ฅ = โˆซ๐‘ฅ ๐‘’

1๐‘ฅ

โˆ’๐‘ฅ3๏ฟฝโˆ’๐‘ฅ3๏ฟฝ ๐‘‘๐‘ข = โˆซ ๐‘’

1๐‘ฅ

โˆ’๐‘ฅ2๏ฟฝโˆ’๐‘ฅ3๏ฟฝ ๐‘‘๐‘ข, where

๐‘ข = โˆ’๐‘ฅ3, ๐‘‘๐‘ฃ = ๐‘’1๐‘ฅ

โˆ’๐‘ฅ2 , hence ๐‘‘๐‘ข = โˆ’3๐‘ฅ2, ๐‘ฃ = ๐‘’

1๐‘ฅ , hence we have

๏ฟฝ๐‘ฅ๐‘’1๐‘ฅ๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ โˆ’๏ฟฝ๐‘ฃ๐‘‘๐‘ข

= โˆ’๐‘ฅ3๐‘’1๐‘ฅ +๏ฟฝ3๐‘ฅ2๐‘’

1๐‘ฅ๐‘‘๐‘ฅ

Substituting this into (1) gives

๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ = โˆ’๐‘ฅ2๐‘’

1๐‘ฅ + 2 ๏ฟฝโˆ’๐‘ฅ3๐‘’

1๐‘ฅ +๏ฟฝ3๐‘ฅ2๐‘’

1๐‘ฅ๐‘‘๐‘ฅ๏ฟฝ

= โˆ’๐‘ฅ2๐‘’1๐‘ฅ โˆ’ 2๐‘ฅ3๐‘’

1๐‘ฅ + 6๏ฟฝ3๐‘ฅ2๐‘’

1๐‘ฅ๐‘‘๐‘ฅ

And so on. The series will become

๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ = โˆ’๐‘ฅ2๐‘’

1๐‘ฅ โˆ’ 2๐‘ฅ3๐‘’

1๐‘ฅ + 6๐‘ฅ4๐‘’

1๐‘ฅ + 24๐‘ฅ5๐‘’

1๐‘ฅ +โ‹ฏ+ ๐‘›!๐‘ฅ๐‘›+1๐‘’

1๐‘ฅ +โ‹ฏ

= โˆ’๐‘’1๐‘ฅ ๏ฟฝ๐‘ฅ2 + 2๐‘ฅ3 + 6๐‘ฅ4 +โ‹ฏ+ ๐‘›!๐‘ฅ๐‘›+1 +โ‹ฏ๏ฟฝ

Now as ๐‘ฅ โ†’ 0+, we can decide how many terms to keep in the RHS, If we keep one term,then we can say

๐‘†0 โˆผ ยฑ๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ

โˆผ ยฑ๐‘ฅ2๐‘’1๐‘ฅ

For two terms

๐‘†0 โˆผ ยฑ๏ฟฝ๐‘’1๐‘ฅ๐‘‘๐‘ฅ โˆผ ยฑ๐‘’

1๐‘ฅ ๏ฟฝ๐‘ฅ2 + 2๐‘ฅ3๏ฟฝ

And so on. Let us use one term for now for the rest of the solution.

๐‘†0 โˆผ ยฑ๐‘ฅ2๐‘’1๐‘ฅ

88

Page 93: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

To find leading behavior, let

๐‘† (๐‘ฅ) = ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ)

Then ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ) and hence now

๐‘ฆโ€ฒ (๐‘ฅ) = (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))โ€ฒ ๐‘’๐‘†0+๐‘†1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2๐‘’๐‘†0+๐‘†1 + (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ ๐‘’๐‘†0+๐‘†1

Substituting into the given ODE gives

๐‘ฅ2 ๏ฟฝ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2+ (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ๏ฟฝ + (2๐‘ฅ + 1) (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))โ€ฒ โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ = 0

๐‘ฅ2 ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ2+ (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ๏ฟฝ + (2๐‘ฅ + 1) ๏ฟฝ๐‘†โ€ฒ0 (๐‘ฅ) + ๐‘†โ€ฒ1 (๐‘ฅ)๏ฟฝ โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’2๐‘ฅ + 1๏ฟฝ = 0

๐‘ฅ2 ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ๏ฟฝ + (2๐‘ฅ + 1) ๐‘†โ€ฒ0 (๐‘ฅ) + (2๐‘ฅ + 1) ๐‘†โ€ฒ1 (๐‘ฅ) โˆ’ ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ = 0

๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘ฅ2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘ฅ2๐‘†โ€ฒโ€ฒ0 + ๐‘ฅ2๐‘†โ€ฒโ€ฒ1 + (2๐‘ฅ + 1) ๐‘†โ€ฒ0 (๐‘ฅ) + (2๐‘ฅ + 1) ๐‘†โ€ฒ1 (๐‘ฅ) = ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ

But ๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘ฅ2 ๏ฟฝ๐‘’

2๐‘ฅ + 1๏ฟฝ since we found that ๐‘†โ€ฒ0 โˆผ ๐‘’

1๐‘ฅ . Hence the above simplifies to

๐‘ฅ2 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘ฅ2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘ฅ2๐‘†โ€ฒโ€ฒ0 + ๐‘ฅ2๐‘†โ€ฒโ€ฒ1 + (2๐‘ฅ + 1) ๐‘†โ€ฒ0 (๐‘ฅ) + (2๐‘ฅ + 1) ๐‘†โ€ฒ1 (๐‘ฅ) = 0

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 +

(2๐‘ฅ + 1)๐‘ฅ2

๐‘†โ€ฒ0 (๐‘ฅ) +(2๐‘ฅ + 1)๐‘ฅ2

๐‘†โ€ฒ1 (๐‘ฅ) = 0 (2)

Now looking at ๐‘†โ€ฒโ€ฒ0 +(2๐‘ฅ+1)๐‘ฅ2 ๐‘†โ€ฒ0 (๐‘ฅ) terms in the above. We can simplify this since we know

๐‘†โ€ฒ0 = ๐‘’1๐‘ฅ ,๐‘†โ€ฒโ€ฒ0 = โˆ’

1๐‘ฅ2 ๐‘’

1๐‘ฅ This terms becomes

โˆ’1๐‘ฅ2๐‘’1๐‘ฅ +

(2๐‘ฅ + 1)๐‘ฅ2

๐‘’1๐‘ฅ =

โˆ’๐‘’1๐‘ฅ + 2๐‘ฅ๐‘’

1๐‘ฅ + ๐‘’

1๐‘ฅ

๐‘ฅ2=2๐‘ฅ๐‘’

1๐‘ฅ

๐‘ฅ2=2๐‘’

1๐‘ฅ

๐‘ฅTherefore (2) becomes

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ1 +

(2๐‘ฅ + 1)๐‘ฅ2

๐‘†โ€ฒ1 (๐‘ฅ) โˆผโˆ’2๐‘’

1๐‘ฅ

๐‘ฅ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

๐‘†โ€ฒ0+ 2๐‘†โ€ฒ1 +

๐‘†โ€ฒโ€ฒ1๐‘†โ€ฒ0

+(2๐‘ฅ + 1)๐‘ฅ2๐‘†โ€ฒ0

๐‘†โ€ฒ1 (๐‘ฅ) โˆผโˆ’2๐‘’

1๐‘ฅ

๐‘ฅ๐‘†โ€ฒ0๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

๐‘’1๐‘ฅ

+ 2๐‘†โ€ฒ1 +๐‘†โ€ฒโ€ฒ1๐‘’1๐‘ฅ

+(2๐‘ฅ + 1)

๐‘ฅ2๐‘’1๐‘ฅ

๐‘†โ€ฒ1 (๐‘ฅ) โˆผโˆ’2๐‘ฅ

Assuming the balance is

๐‘†โ€ฒ1 โˆผโˆ’1๐‘ฅ

Hence

๐‘†1 (๐‘ฅ) โˆผ โˆ’ ln (๐‘ฅ) + ๐‘

89

Page 94: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Since ๐‘ subdominant as ๐‘ฅ โ†’ 0+ then

๐‘†1 (๐‘ฅ) โˆผ โˆ’ ln (๐‘ฅ)

Verification

๐‘†โ€ฒ1 โ‹™๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

๐‘’1๐‘ฅ

1๐‘ฅโ‹™

1๐‘ฅ2

1

๐‘’1๐‘ฅ

๐‘’1๐‘ฅ โ‹™

1๐‘ฅ

Yes, for ๐‘ฅ โ†’ 0+

๐‘†โ€ฒ1 โ‹™๐‘†โ€ฒโ€ฒ1๐‘’1๐‘ฅ

1๐‘ฅโ‹™

1๐‘ฅ2

1

๐‘’1๐‘ฅ

Yes.

๐‘†โ€ฒ1 โ‹™(2๐‘ฅ + 1)

๐‘ฅ2๐‘’1๐‘ฅ

๐‘†โ€ฒ1 (๐‘ฅ)

1๐‘ฅโ‹™

(2๐‘ฅ + 1)

๐‘ฅ2๐‘’1๐‘ฅ

1๐‘ฅ

1๐‘ฅโ‹™

1

๐‘ฅ3๐‘’1๐‘ฅ

Yes. All assumptions verified. Hence leading behavior is

๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))

โˆผ exp ๏ฟฝยฑ๐‘ฅ2๐‘’1๐‘ฅ โˆ’ ln (๐‘ฅ)๏ฟฝ

โˆผ1๐‘ฅ๏ฟฝexp ๏ฟฝ๐‘ฅ2๐‘’

1๐‘ฅ ๏ฟฝ + exp ๏ฟฝโˆ’๐‘ฅ2๐‘’

1๐‘ฅ ๏ฟฝ๏ฟฝ

For small ๐‘ฅ, then we ignore exp ๏ฟฝโˆ’๐‘ฅ2๐‘’1๐‘ฅ ๏ฟฝ since much smaller than exp ๏ฟฝ๐‘ฅ2๐‘’

1๐‘ฅ ๏ฟฝ. Therefore

๐‘ฆ (๐‘ฅ) โˆผ1๐‘ฅ

exp ๏ฟฝ๐‘ฅ2๐‘’1๐‘ฅ ๏ฟฝ

3.2.5 problem 3.39(h)

problem Find leading asymptotic behavior as ๐‘ฅ โ†’ โˆž for ๐‘ฆโ€ฒโ€ฒ = ๐‘’โˆ’3๐‘ฅ๐‘ฆ

90

Page 95: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

solution Let ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ). Hence

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘†โ€ฒ0๐‘’๐‘†0

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ0 ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0

Substituting in the ODE gives

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0 = ๐‘’โˆ’

3๐‘ฅ ๐‘’๐‘†0

๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= ๐‘’โˆ’

3๐‘ฅ

Assuming ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0 the above becomes

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘’โˆ’

3๐‘ฅ

๐‘†โ€ฒ0 โˆผ ยฑ๐‘’โˆ’32๐‘ฅ

Hence

๐‘†0 โˆผ ยฑ๏ฟฝ๐‘’โˆ’32๐‘ฅ๐‘‘๐‘ฅ

Integration by parts. Since ๐‘‘๐‘‘๐‘ฅ๐‘’

โˆ’32๐‘ฅ = 3

2๐‘ฅ2 ๐‘’โˆ’ 32๐‘ฅ , then we rewrite the integral above as

๏ฟฝ๐‘’โˆ’32๐‘ฅ๐‘‘๐‘ฅ = ๏ฟฝ

32๐‘ฅ2

๐‘’โˆ’32๐‘ฅ ๏ฟฝ

2๐‘ฅ2

3 ๏ฟฝ ๐‘‘๐‘ฅ

And now apply integration by parts. Let ๐‘‘๐‘ฃ = 32๐‘ฅ2 ๐‘’

โˆ’ 32๐‘ฅ โ†’ ๐‘ฃ = ๐‘’โˆ’

32๐‘ฅ , ๐‘ข = 2๐‘ฅ2

3 โ†’ ๐‘‘๐‘ข = 43๐‘ฅ, hence

๏ฟฝ๐‘’โˆ’32๐‘ฅ๐‘‘๐‘ฅ = [๐‘ข๐‘ฃ] โˆ’๏ฟฝ๐‘ฃ๐‘‘๐‘ข

=2๐‘ฅ2

3๐‘’โˆ’

32๐‘ฅ โˆ’๏ฟฝ

43๐‘ฅ๐‘’โˆ’

32๐‘ฅ๐‘‘๐‘ฅ

Ignoring higher terms, then we use

๐‘†0 โˆผ ยฑ2๐‘ฅ2

3๐‘’โˆ’

32๐‘ฅ

Verification

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0

๏ฟฝ๐‘’โˆ’32๐‘ฅ ๏ฟฝ

2โ‹™

32๐‘ฅ2

๐‘’โˆ’32๐‘ฅ

๐‘’โˆ’3๐‘ฅ โ‹™

32๐‘ฅ2

๐‘’โˆ’32๐‘ฅ

Yes, as ๐‘ฅ โ†’ โˆž. To find leading behavior, let

๐‘† (๐‘ฅ) = ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ)

91

Page 96: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Then ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ) and hence now

๐‘ฆโ€ฒ (๐‘ฅ) = (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))โ€ฒ ๐‘’๐‘†0+๐‘†1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2๐‘’๐‘†0+๐‘†1 + (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ ๐‘’๐‘†0+๐‘†1

Using the above, the ODE ๐‘ฆโ€ฒโ€ฒ = ๐‘’โˆ’3๐‘ฅ๐‘ฆ now becomes

๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2+ (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ = ๐‘’โˆ’3๐‘ฅ

๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ2+ ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 = ๐‘’

โˆ’ 3๐‘ฅ

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 = ๐‘’

โˆ’ 3๐‘ฅ

But ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘’โˆ’

3๐‘ฅ hence the above simplifies to

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 = 0

Assuming ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ1๏ฟฝ โ‹™ ๐‘†โ€ฒโ€ฒ1 the above becomes

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 = 0

Assuming 2๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2

2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 = 0

๐‘†โ€ฒ1 โˆผ โˆ’๐‘†โ€ฒโ€ฒ02๐‘†โ€ฒ0

๐‘†1 โˆผ โˆ’12

ln ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

But ๐‘†โ€ฒ0 โˆผ ๐‘’โˆ’32๐‘ฅ , hence the above becomes

๐‘†1 โˆผ โˆ’12

ln ๏ฟฝ๐‘’โˆ’32๐‘ฅ ๏ฟฝ + ๐‘

โˆผ34๐‘ฅ+ ๐‘

Verification

๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ1๏ฟฝ โ‹™ ๐‘†โ€ฒโ€ฒ1

๏ฟฝ2๐‘’โˆ’32๐‘ฅโˆ’34๐‘ฅ2 ๏ฟฝ

โ‹™32๐‘ฅ3

32๐‘’โˆ’

32๐‘ฅ

๐‘ฅ2โ‹™

32๐‘ฅ3

For large ๐‘ฅ the above simplifies to1๐‘ฅ2โ‹™

1๐‘ฅ3

92

Page 97: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes.

๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ1๏ฟฝ โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2

๏ฟฝ2๐‘’โˆ’32๐‘ฅโˆ’34๐‘ฅ2 ๏ฟฝ

โ‹™ ๏ฟฝโˆ’34๐‘ฅ2 ๏ฟฝ

2

32๐‘’โˆ’

32๐‘ฅ

๐‘ฅ2โ‹™

916๐‘ฅ4

For large ๐‘ฅ the above simplifies to1๐‘ฅ2โ‹™

1๐‘ฅ4

Yes. All verified. Therefore, the leading behavior is

๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))

โˆผ exp ๏ฟฝยฑ2๐‘ฅ2

3๐‘’โˆ’

32๐‘ฅ โˆ’

12

ln ๏ฟฝ๐‘’โˆ’32๐‘ฅ ๏ฟฝ + ๐‘๏ฟฝ

โˆผ ๐‘๐‘’34๐‘ฅ exp ๏ฟฝยฑ

2๐‘ฅ2

3๐‘’โˆ’

32๐‘ฅ ๏ฟฝ (1)

Check if we can use 3.4.28 to verify:

lim๐‘ฅโ†’โˆž

|๐‘ฅ๐‘›๐‘„ (๐‘ฅ)| = lim๐‘ฅโ†’โˆž

๏ฟฝ๐‘ฅ2๐‘’โˆ’3๐‘ฅ ๏ฟฝ โ†’ โˆž

We can use it. Lets verify using 3.4.28

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ [๐‘„ (๐‘ฅ)]1โˆ’๐‘›2๐‘› exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘„ [๐‘ก]

1๐‘› ๐‘‘๐‘ก๏ฟฝ

Where ๐œ”2 = 1. For ๐‘› = 2,๐‘„ (๐‘ฅ) = ๐‘’โˆ’3๐‘ฅ , the above gives

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ ๏ฟฝ๐‘’โˆ’3๐‘ฅ ๏ฟฝ

1โˆ’24

exp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๐œ”๏ฟฝ

๐‘ฅ๏ฟฝ๐‘’โˆ’

3๐‘ก ๏ฟฝ

12๐‘‘๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ ๐‘ ๏ฟฝ๐‘’โˆ’3๐‘ฅ ๏ฟฝ

โˆ’14

exp ๏ฟฝ๐œ”๏ฟฝ๐‘ฅ๐‘’โˆ’

32๐‘ก๐‘‘๐‘ก๏ฟฝ

โˆผ ๐‘๐‘’34๐‘ฅ exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘’โˆ’

32๐‘ก๐‘‘๐‘ก๏ฟฝ (2)

We see that (1,2) are the same. Verified OK. Notice that in (1), we use the approximation for

the ๐‘’โˆ’32๐‘ฅ๐‘‘๐‘ฅ โ‰ˆ 2๐‘ฅ2

3 ๐‘’โˆ’ 32๐‘ฅ we found earlier. This was done, since there is no closed form solution

for the integral.

QED.

3.2.6 problem 3.42(a)

Problem: Extend investigation of example 1 of section 3.5 (a) Obtain the next few correctionsto the leading behavior (3.5.5) then see how including these terms improves the numerical

93

Page 98: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

approximation of ๐‘ฆ (๐‘ฅ) in 3.5.1.

Solution Example 1 at page 90 is ๐‘ฅ๐‘ฆโ€ฒโ€ฒ + ๐‘ฆโ€ฒ = ๐‘ฆ. The leading behavior is given by 3.5.5 as(๐‘ฅ โ†’ โˆž)

๐‘ฆ (๐‘ฅ) โˆผ ๐‘๐‘ฅโˆ’14 ๐‘’2๐‘ฅ

12 (3.5.5)

Where the book gives ๐‘ = 12๐œ‹

โˆ’12 on page 91. And 3.5.1 is

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘ฅ๐‘›

(๐‘›!)2(3.5.1)

To see the improvement, the book method is followed. This is described at end of page 91.This is done by plotting the leading behavior as ratio to ๐‘ฆ (๐‘ฅ) as given in 3.5.1. Hence forthe above leading behavior, we need to plot

12๐œ‹

โˆ’12 ๐‘ฅ

โˆ’14 ๐‘’2๐‘ฅ

12

๐‘ฆ (๐‘ฅ)We are given ๐‘†0 (๐‘ฅ) , ๐‘†1 (๐‘ฅ) in the problem. They are

๐‘†0 (๐‘ฅ) = 2๐‘ฅ12

๐‘†1 (๐‘ฅ) = โˆ’14

ln ๐‘ฅ + ๐‘

Hence

๐‘†โ€ฒ0 (๐‘ฅ) = ๐‘ฅโˆ’12

๐‘†โ€ฒโ€ฒ0 =โˆ’12๐‘ฅโˆ’

32

๐‘†โ€ฒ1 (๐‘ฅ) = โˆ’141๐‘ฅ

๐‘†โ€ฒโ€ฒ1 (๐‘ฅ) =14๐‘ฅ2

(1)

We need to find ๐‘†2 (๐‘ฅ) , ๐‘†3 (๐‘ฅ) ,โ‹ฏ to see that this will improve the solution ๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 + ๐‘†1 + ๐‘†2 +โ‹ฏ)as ๐‘ฅ โ†’ ๐‘ฅ0 compared to just using leading behavior ๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 + ๐‘†1). So now we need tofind ๐‘†2 (๐‘ฅ)

Let ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†, then the ODE becomes

๐‘ฅ ๏ฟฝ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2๏ฟฝ + ๐‘†โ€ฒ = 1

Replacing ๐‘† by ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐‘†2 (๐‘ฅ) in the above gives

(๐‘†0 + ๐‘†1 + ๐‘†2)โ€ฒโ€ฒ + ๏ฟฝ(๐‘†0 + ๐‘†1 + ๐‘†2)

โ€ฒ๏ฟฝ2+1๐‘ฅ(๐‘†0 + ๐‘†1 + ๐‘†2)

โ€ฒ โˆผ1๐‘ฅ

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2๏ฟฝ๏ฟฝ2+1๐‘ฅ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2๏ฟฝ โˆผ

1๐‘ฅ

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + 2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ

2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2๏ฟฝ โˆผ

1๐‘ฅ

Moving all known quantities to the RHS, these are ๐‘†โ€ฒโ€ฒ0 , ๐‘†โ€ฒโ€ฒ1 , ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2, 2๐‘†โ€ฒ0๐‘†โ€ฒ1, ๐‘†โ€ฒ0, ๐‘†โ€ฒ1, ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2then the

94

Page 99: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

above reduces to

๏ฟฝ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ+2๐‘†โ€ฒ0๐‘†โ€ฒ2 + 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ โˆผ

1๐‘ฅโˆ’ ๐‘†โ€ฒโ€ฒ0 โˆ’ ๐‘†โ€ฒโ€ฒ1 โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2โˆ’ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 โˆ’

1๐‘ฅ๐‘†โ€ฒ0 โˆ’

1๐‘ฅ๐‘†โ€ฒ1 โˆ’ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

Replacing known terms, by using (1) into the above gives

๏ฟฝ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ โˆผ

1๐‘ฅ+12๐‘ฅโˆ’

32 โˆ’

14๐‘ฅ2

โˆ’ ๏ฟฝ๐‘ฅโˆ’12 ๏ฟฝ

2โˆ’ 2 ๏ฟฝ๐‘ฅ

โˆ’12 ๏ฟฝ ๏ฟฝโˆ’

141๐‘ฅ๏ฟฝโˆ’1๐‘ฅ๏ฟฝ๐‘ฅ

โˆ’12 ๏ฟฝ โˆ’

1๐‘ฅ ๏ฟฝโˆ’141๐‘ฅ๏ฟฝโˆ’ ๏ฟฝโˆ’

141๐‘ฅ๏ฟฝ

2

Simplifying gives

๏ฟฝ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ โˆผ

1๐‘ฅ+12๐‘ฅโˆ’

32 โˆ’

14๐‘ฅ2

โˆ’ ๐‘ฅโˆ’1 +12๐‘ฅโˆ’32 โˆ’ ๐‘ฅ

โˆ’32 +

141๐‘ฅ2โˆ’116

1๐‘ฅ2

Hence

๏ฟฝ๐‘†โ€ฒโ€ฒ2 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ โˆผ โˆ’

116

1๐‘ฅ2

Lets assume now that

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โˆผ โˆ’116

1๐‘ฅ2

(2)

Therefore

๐‘†โ€ฒ2 โˆผ โˆ’132

1๐‘†โ€ฒ0๐‘ฅ2

โˆผ โˆ’132

1

๏ฟฝ๐‘ฅโˆ’12 ๏ฟฝ ๐‘ฅ2

โˆผ โˆ’132๐‘ฅโˆ’32

We can now verify this before solving the ODE. We need to check that (as ๐‘ฅ โ†’ โˆž)

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ ๐‘†โ€ฒโ€ฒ22๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ 2๐‘†โ€ฒ1๐‘†โ€ฒ2

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™1๐‘ฅ๐‘†โ€ฒ2

Where ๐‘†โ€ฒโ€ฒ2 โˆผ ๐‘ฅโˆ’52 , Hence

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ ๐‘†โ€ฒโ€ฒ2

๐‘ฅโˆ’12 ๏ฟฝ๐‘ฅ

โˆ’32 ๏ฟฝ โ‹™ ๐‘ฅ

โˆ’52

๐‘ฅโˆ’2 โ‹™ ๐‘ฅโˆ’52

95

Page 100: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes.

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ 2๐‘†โ€ฒ1๐‘†โ€ฒ2

๐‘ฅโˆ’2 โ‹™ ๏ฟฝ1๐‘ฅ๏ฟฝ๏ฟฝ๐‘ฅ

โˆ’32 ๏ฟฝ

๐‘ฅโˆ’2 โ‹™ ๐‘ฅโˆ’52

Yes

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™ ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ2

๐‘ฅโˆ’2 โ‹™ ๏ฟฝ๐‘ฅโˆ’32 ๏ฟฝ

2

๐‘ฅโˆ’2 โ‹™ ๐‘ฅโˆ’3

Yes

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โ‹™1๐‘ฅ๐‘†โ€ฒ2

๐‘ฅโˆ’2 โ‹™1๐‘ฅ๐‘ฅโˆ’32

๐‘ฅโˆ’2 โ‹™ ๐‘ฅโˆ’52

Yes. All assumptions are verified. Therefore we can g ahead and solve for ๐‘†2 using (2)

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โˆผ โˆ’116

1๐‘ฅ2

๐‘†โ€ฒ2 โˆผ โˆ’132

1๐‘ฅ2

1๐‘†โ€ฒ0

โˆผ โˆ’132

1๐‘ฅ2

1

๐‘ฅโˆ’12

โˆผ โˆ’132

1

๐‘ฅ32

Hence

๐‘†2 โˆผ116

1

โˆš๐‘ฅ

The leading behavior now is

๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 + ๐‘†1 + ๐‘†2)

โˆผ exp ๏ฟฝ2๐‘ฅ12 โˆ’

14

ln ๐‘ฅ + ๐‘ + 116

1

โˆš๐‘ฅ๏ฟฝ

Now we will find ๐‘†3. From

๐‘ฅ ๏ฟฝ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2๏ฟฝ + ๐‘†โ€ฒ = 1

96

Page 101: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Replacing ๐‘† by ๐‘†0 + ๐‘†1 + ๐‘†2 + ๐‘†3 in the above gives

(๐‘†0 + ๐‘†1 + ๐‘†2 + ๐‘†3)โ€ฒโ€ฒ + ๏ฟฝ(๐‘†0 + ๐‘†1 + ๐‘†2 + ๐‘†3)

โ€ฒ๏ฟฝ2+1๐‘ฅ(๐‘†0 + ๐‘†1 + ๐‘†2 + ๐‘†3)

โ€ฒ โˆผ1๐‘ฅ

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒ2 + ๐‘†โ€ฒโ€ฒ3 ๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2 + ๐‘†โ€ฒ3๏ฟฝ๏ฟฝ2+1๐‘ฅ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2 + ๐‘†โ€ฒ3๏ฟฝ โˆผ

1๐‘ฅ

Hence

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒ2 + ๐‘†โ€ฒโ€ฒ3 ๏ฟฝ +

๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + 2๐‘†โ€ฒ0๐‘†โ€ฒ2 + 2๐‘†โ€ฒ1๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ3 + 2๐‘†โ€ฒ1๐‘†โ€ฒ3 + 2๐‘†โ€ฒ2๐‘†โ€ฒ3 + ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ

2๏ฟฝ

+1๐‘ฅ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 + ๐‘†โ€ฒ2 + ๐‘†โ€ฒ3๏ฟฝ โˆผ

1๐‘ฅ

Moving all known quantities to the RHS gives

๏ฟฝ๐‘†โ€ฒโ€ฒ3 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ3 + 2๐‘†โ€ฒ1๐‘†โ€ฒ3 + 2๐‘†โ€ฒ2๐‘†โ€ฒ3 + ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ

โˆผ1๐‘ฅโˆ’ ๐‘†โ€ฒโ€ฒ0 โˆ’ ๐‘†โ€ฒโ€ฒ1 โˆ’ ๐‘†โ€ฒโ€ฒ2 โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2โˆ’ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 โˆ’ 2๐‘†โ€ฒ0๐‘†โ€ฒ2 โˆ’ 2๐‘†โ€ฒ1๐‘†โ€ฒ2 โˆ’ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2โˆ’ ๏ฟฝ๐‘†โ€ฒ2๏ฟฝ

2โˆ’1๐‘ฅ๐‘†โ€ฒ0 โˆ’

1๐‘ฅ๐‘†โ€ฒ1 โˆ’

1๐‘ฅ๐‘†โ€ฒ2 (3)

Now we will simplify the RHS, since it is all known. Using

๐‘†โ€ฒ0 (๐‘ฅ) = ๐‘ฅโˆ’12

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= ๐‘ฅโˆ’1

๐‘†โ€ฒโ€ฒ0 =โˆ’12๐‘ฅโˆ’

32

๐‘†โ€ฒ1 (๐‘ฅ) = โˆ’141๐‘ฅ

๏ฟฝ๐‘†โ€ฒ1 (๐‘ฅ)๏ฟฝ2=116

1๐‘ฅ2

๐‘†โ€ฒโ€ฒ1 (๐‘ฅ) =14๐‘ฅ2

๐‘†โ€ฒ2 (๐‘ฅ) = โˆ’132

1

๐‘ฅ32

๏ฟฝ๐‘†โ€ฒ2 (๐‘ฅ)๏ฟฝ2=

11024๐‘ฅ3

๐‘†โ€ฒโ€ฒ2 (๐‘ฅ) =364

1

๐‘ฅ52

2๐‘†โ€ฒ0๐‘†โ€ฒ1 = 2 ๏ฟฝ๐‘ฅโˆ’12 ๏ฟฝ ๏ฟฝโˆ’

141๐‘ฅ๏ฟฝ= โˆ’

121

๐‘ฅ32

2๐‘†โ€ฒ0๐‘†โ€ฒ2 = 2 ๏ฟฝ๐‘ฅโˆ’12 ๏ฟฝโŽ›โŽœโŽœโŽœโŽœโŽโˆ’

132

1

๐‘ฅ32

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  = โˆ’

116๐‘ฅ2

2๐‘†โ€ฒ1๐‘†โ€ฒ2 = 2 ๏ฟฝโˆ’141๐‘ฅ๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽโˆ’

132

1

๐‘ฅ32

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  =

1

64๐‘ฅ52

97

Page 102: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Hence (3) becomes

๏ฟฝ๐‘†โ€ฒโ€ฒ3 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ3 + 2๐‘†โ€ฒ1๐‘†โ€ฒ3 + 2๐‘†โ€ฒ2๐‘†โ€ฒ3 + ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ โˆผ

1๐‘ฅ+

1

2๐‘ฅ32

โˆ’14๐‘ฅ2

โˆ’364

1

๐‘ฅ52

โˆ’1๐‘ฅ+121

๐‘ฅ32

+1

16๐‘ฅ2โˆ’

1

64๐‘ฅ52

โˆ’116

1๐‘ฅ2โˆ’

11024๐‘ฅ3

โˆ’1

๐‘ฅ32

+141๐‘ฅ2+132

1

๐‘ฅ52

Simplifying gives

๏ฟฝ๐‘†โ€ฒโ€ฒ3 ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ3 + 2๐‘†โ€ฒ1๐‘†โ€ฒ3 + 2๐‘†โ€ฒ2๐‘†โ€ฒ3 + ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ2๏ฟฝ +

1๐‘ฅ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ โˆผ โˆ’

โŽ›โŽœโŽœโŽœโŽœโŽ

32

1024๐‘ฅ52

+1

1024๐‘ฅ3

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

Let us now assume that

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒ1๐‘†โ€ฒ3๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒ2๐‘†โ€ฒ3

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ2

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™1๐‘ฅ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒโ€ฒ3Therefore, we end up with the balance

2๐‘†โ€ฒ0๐‘†โ€ฒ3 โˆผ โˆ’โŽ›โŽœโŽœโŽœโŽœโŽ

32

1024๐‘ฅ52

+1

1024๐‘ฅ3

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

๐‘†โ€ฒ3 โˆผ โˆ’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

32

1024๐‘ฅ52๐‘†โ€ฒ0

+1

1024๐‘ฅ3๐‘†โ€ฒ0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ โˆ’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

32

1024๐‘ฅ52 ๏ฟฝ๐‘ฅ

โˆ’12 ๏ฟฝ

+1

1024๐‘ฅ3 ๏ฟฝ๐‘ฅโˆ’12 ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ โˆ’โŽ›โŽœโŽœโŽœโŽœโŽ1

32๐‘ฅ2+

1

1024๐‘ฅ52

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

Hence

๐‘†3 โˆผ1

1024๏ฟฝ 232๐‘ฅ2 +

32๐‘ฅ๏ฟฝ

Where constant of integration was ignored. Let us now verify the assumptions made

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒ1๐‘†โ€ฒ3๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ1

Yes.

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒ2๐‘†โ€ฒ3๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ2

98

Page 103: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Yes

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ2

๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ3Yes.

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™1๐‘ฅ๏ฟฝ๐‘†โ€ฒ3๏ฟฝ

๐‘†โ€ฒ0 โ‹™1๐‘ฅ

๐‘ฅโˆ’12 โ‹™

1๐‘ฅ

Yes, as ๐‘ฅ โ†’ โˆž, and finally

๐‘†โ€ฒ0๐‘†โ€ฒ3 โ‹™ ๐‘†โ€ฒโ€ฒ3

๐‘ฅโˆ’12

โŽ›โŽœโŽœโŽœโŽœโŽ1

32๐‘ฅ2+

1

1024๐‘ฅ52

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  โ‹™

โŽ›โŽœโŽœโŽœโŽœโŽ

5

2048๐‘ฅ72

+1

16๐‘ฅ3

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

๏ฟฝ32โˆš๐‘ฅ + 1๏ฟฝ1024๐‘ฅ3

โ‹™128โˆš๐‘ฅ + 5

2048๐‘ฅ72

Yes, as ๐‘ฅ โ†’ โˆž. All assumptions verified. The leading behavior now is

๐‘ฆ (๐‘ฅ) โˆผ exp (๐‘†0 + ๐‘†1 + ๐‘†2 + ๐‘†3)

โˆผ exp ๏ฟฝ2๐‘ฅ12 โˆ’

14

ln ๐‘ฅ + ๐‘ + 116

1

โˆš๐‘ฅ+

11024 ๏ฟฝ

232๐‘ฅ2

+32๐‘ฅ ๏ฟฝ๏ฟฝ

โˆผ ๐‘๐‘ฅโˆ’14 exp ๏ฟฝ2๐‘ฅ

12 +

116

1

โˆš๐‘ฅ+

11024 ๏ฟฝ

232๐‘ฅ2

+32๐‘ฅ ๏ฟฝ๏ฟฝ

Now we will show how adding more terms to leading behavior improved the ๐‘ฆ (๐‘ฅ) solutionfor large ๐‘ฅ. When plotting the solutions, we see that exp(๐‘†0+๐‘†1+๐‘†2+๐‘†3)

๐‘ฆ(๐‘ฅ) approached the ratio

1 sooner than exp(๐‘†0+๐‘†1+๐‘†2)๐‘ฆ(๐‘ฅ) and this in turn approached the ratio 1 sooner than just using

exp(๐‘†0+๐‘†1)๐‘ฆ(๐‘ฅ) . So the e๏ฟฝect of adding more terms, is that the solution becomes more accurate

for larger range of ๐‘ฅ values. Below is the code used and the plot generated.

99

Page 104: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

ClearAll[y, x];

s0[x_] :=

1

2 Pi12

Exp2 x12

y[x, 300];

s0s1[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x]

y[x, 300];

s0s1s2[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x] +

1

16

1

Sqrt[x]

y[x, 300];

s0s1s2s3[x_] :=

1

2 Pi12

Exp2 x12 -

1

4Log[x] +

1

16

1

Sqrt[x]+

1

1024

2

32 x2+

32

x

y[x, 300];

y[x_, max_] := Sum[ x^n / (Factorial[n]^2), {n, 0, max}];

LogLinearPlot[Evaluate[{s0s1[x], s0s1s2[x], s0s1s2s3[x]}], {x, 1, 30},

PlotRange โ†’ All, Frame โ†’ True, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

PlotLegends โ†’ {"exp(S0+S1)", "exp(S0+S1+S2)", "exp(S0+S1+S2+S3)"},

FrameLabel โ†’ {{None, None}, {"x", "Showing improvement as more terms are added"}},

PlotStyle โ†’ {Red, Blue, Black}, BaseStyle โ†’ 14]

Out[59]=

1 2 5 10 20

0.92

0.94

0.96

0.98

1.00

x

Showing improvement as more terms are added

exp(S0+S1)

exp(S0+S1+S2)

exp(S0+S1+S2+S3)

100

Page 105: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.7 problem 3.49(c)

Problem Find the leading behavior as ๐‘ฅ โ†’ โˆž of the general solution of ๐‘ฆโ€ฒโ€ฒ + ๐‘ฅ๐‘ฆ = ๐‘ฅ5

Solution This is non-homogenous ODE. We solve this by first finding the homogenoussolution (asymptotic solution) and then finding particular solution. Hence we start with

๐‘ฆโ€ฒโ€ฒโ„Ž + ๐‘ฅ๐‘ฆโ„Ž = 0

๐‘ฅ = โˆž is ISP point. Therefore, we assume ๐‘ฆโ„Ž (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ) and obtain

๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2 + ๐‘ฅ = 0 (1)

Let

๐‘† (๐‘ฅ) = ๐‘†0 + ๐‘†1 +โ‹ฏ

Therefore (1) becomes

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1 +โ‹ฏ๏ฟฝ2= โˆ’๐‘ฅ

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+โ‹ฏ๏ฟฝ = โˆ’๐‘ฅ (2)

Assuming ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0 we obtain

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ โˆ’๐‘ฅ

๐‘†โ€ฒ0 โˆผ ๐œ”โˆš๐‘ฅ

Where ๐œ” = ยฑ๐‘–

Verification

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0

๐‘ฅ โ‹™121

โˆš๐‘ฅYes, as ๐‘ฅ โ†’ โˆž. Hence

๐‘†0 โˆผ32๐œ”๐‘ฅ

32

Now we will find ๐‘†1. From (2), and moving all known terms to RHS

๏ฟฝ๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+โ‹ฏ๏ฟฝ โˆผ โˆ’๐‘ฅ โˆ’ ๐‘†โ€ฒโ€ฒ0 โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2(3)

Assuming

2๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1

2๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2

101

Page 106: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Then (3) becomes (where ๐‘†โ€ฒ0 โˆผ ๐œ”โˆš๐‘ฅ, ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ โˆ’๐‘ฅ, ๐‘†โ€ฒโ€ฒ0 โˆผ 1

2๐œ”1

โˆš๐‘ฅ)

2๐‘†โ€ฒ0๐‘†โ€ฒ1 โˆผ โˆ’๐‘ฅ โˆ’ ๐‘†โ€ฒโ€ฒ0 โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2

๐‘†โ€ฒ1 โˆผโˆ’๐‘ฅ โˆ’ ๐‘†โ€ฒโ€ฒ0 โˆ’ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2

2๐‘†โ€ฒ0

โˆผโˆ’๐‘ฅ โˆ’ 1

2๐œ”1

โˆš๐‘ฅโˆ’ (โˆ’๐‘ฅ)

2๐œ”โˆš๐‘ฅ

โˆผ โˆ’14๐‘ฅ

Verification (where ๐‘†โ€ฒโ€ฒ1 โˆผ 141๐‘ฅ2 )

2๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1

โˆš๐‘ฅ ๏ฟฝ14๐‘ฅ๏ฟฝ

โ‹™141๐‘ฅ2

1

๐‘ฅ12

โ‹™1๐‘ฅ2

Yes, as ๐‘ฅ โ†’ โˆž

2๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2

1

๐‘ฅ12

โ‹™ ๏ฟฝ14๐‘ฅ๏ฟฝ

2

1

๐‘ฅ12

โ‹™1

16๐‘ฅ2

Yes, as ๐‘ฅ โ†’ โˆž. All validated. We solve for ๐‘†1

๐‘†โ€ฒ1 โˆผ โˆ’14๐‘ฅ

๐‘†1 โˆผ โˆ’14

ln ๐‘ฅ + ๐‘

๐‘ฆโ„Ž is found. It is given by

๐‘ฆโ„Ž (๐‘ฅ) โˆผ exp (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))

โˆผ exp ๏ฟฝ32๐œ”๐‘ฅ

32 โˆ’

14

ln ๐‘ฅ + ๐‘๏ฟฝ

โˆผ ๐‘๐‘ฅโˆ’14 exp ๏ฟฝ

32๐œ”๐‘ฅ

32 ๏ฟฝ

Now that we have found ๐‘ฆโ„Ž, we go back and look at

๐‘ฆโ€ฒโ€ฒ + ๐‘ฅ๐‘ฆ = ๐‘ฅ5

And consider two cases (a) ๐‘ฆโ€ฒโ€ฒ โˆผ ๐‘ฅ5 (b) ๐‘ฅ๐‘ฆ โˆผ ๐‘ฅ5. The case of ๐‘ฆโ€ฒโ€ฒ โˆผ ๐‘ฅ๐‘ฆ was covered above.This is what we did to find ๐‘ฆโ„Ž (๐‘ฅ).

102

Page 107: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

case (a)

๐‘ฆโ€ฒโ€ฒ๐‘ โˆผ ๐‘ฅ5

๐‘ฆโ€ฒ๐‘ โˆผ15๐‘ฅ4

๐‘ฆ๐‘ โˆผ120๐‘ฅ3

Where constants of integration are ignored since subdominant for ๐‘ฅ โ†’ โˆž. Now we check ifthis case is valid.

๐‘ฅ๐‘ฆ๐‘ โ‹˜ ๐‘ฅ5

๐‘ฅ120๐‘ฅ3 โ‹˜ ๐‘ฅ5

๐‘ฅ4 โ‹˜ ๐‘ฅ5

No. Therefore case (a) did not work out. We try case (b) now

๐‘ฅ๐‘ฆ๐‘ โˆผ ๐‘ฅ5

๐‘ฆ๐‘ โˆผ ๐‘ฅ4

Now we check is this case is valid.

๐‘ฆโ€ฒโ€ฒ๐‘ โ‹˜ ๐‘ฅ5

12๐‘ฅ2 โ‹˜ ๐‘ฅ5

Yes. Therefore, we found

๐‘ฆ๐‘ โˆผ ๐‘ฅ4

Hence the complete asymptotic solution is

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ฆโ„Ž (๐‘ฅ) + ๐‘ฆ๐‘ (๐‘ฅ)

โˆผ ๐‘๐‘ฅโˆ’14 exp ๏ฟฝ

32๐œ”๐‘ฅ

32 ๏ฟฝ + ๐‘ฅ4

103

Page 108: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8 key solution of selected problems

3.2.8.1 section 3 problem 27

104

Page 109: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

105

Page 110: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

106

Page 111: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

107

Page 112: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.2 section 3 problem 33 b

NEEP 548: Engineering Analysis II 2/6/2011

Problem 3.33: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the leading behavoir of the following equation as x โ†’ 0+:

x4yโ€ฒโ€ฒโ€ฒ โˆ’ 3x2yโ€ฒ + 2y = 0 (1)

2 Solution

Need to make the substitution: y = eS(x)

yโ€ฒ = Sโ€ฒeS(x)

yโ€ฒโ€ฒ = Sโ€ฒโ€ฒeS(x) + (Sโ€ฒ)2eS(x)

yโ€ฒโ€ฒโ€ฒ = Sโ€ฒโ€ฒโ€ฒeS(x) + 3Sโ€ฒโ€ฒSโ€ฒeS(x) + (Sโ€ฒ)3eS(x)

After substituting and diving through by y, one obtains,

Sโ€ฒโ€ฒโ€ฒ + 3Sโ€ฒโ€ฒSโ€ฒ + (Sโ€ฒ)3 โˆ’3

x2Sโ€ฒ +

2

x4โˆผ 0 (2)

Typically, Sโ€ฒโ€ฒ << (Sโ€ฒ)2 =โ‡’ Sโ€ฒโ€ฒโ€ฒ << (Sโ€ฒ)3. Similarly, assume Sโ€ฒโ€ฒโ€ฒ << (Sโ€ฒ)3

With these assumptions, 2 becomes:

(Sโ€ฒ)3 โˆ’3

x2Sโ€ฒ

โˆผ โˆ’2

x4

which is still a difficult problem to solve. Therefore, also want to assume (Sโ€ฒ)3 >> 3x2S

โ€ฒ as x โ†’ 0+.Then,

(Sโ€ฒ)3 โˆผโˆ’2

x4x โ†’ 0+

Sโ€ฒโˆผ wxโˆ’4/3 x โ†’ 0+

w = (โˆ’2)1/3

So(x) โˆผ โˆ’3wxโˆ’1/3 x โ†’ 0+

Sโ€ฒโ€ฒโˆผ โˆ’

4w

3xโˆ’7/3

Sโ€ฒโ€ฒโ€ฒโˆผ

28w

9xโˆ’10/3

1

108

Page 113: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Now, check our assumptions,

(Sโ€ฒ)3 โˆผ โˆ’2xโˆ’12/3 >> โˆ’3Sโ€ฒxโˆ’2โˆผ โˆ’3wxโˆ’10/3 x โ†’ 0+ X

(Sโ€ฒ)3 โˆผ โˆ’2xโˆ’12/3 >> Sโ€ฒโ€ฒโ€ฒโˆผ

28w

9xโˆ’10/3 x โ†’ 0+ X

(Sโ€ฒ)3 โˆผ โˆ’2xโˆ’12/3 >> Sโ€ฒโ€ฒSโ€ฒโˆผ

โˆ’4w2

3xโˆ’11/3 x โ†’ 0+ X

Now estimate the inegrating function C(x) by letting,

S(x) = So(x) + C(x) (3)

and substitute this into 2.

Sโ€ฒโ€ฒโ€ฒ

o + C โ€ฒโ€ฒโ€ฒ + 3 (Sโ€ฒโ€ฒ

o + C โ€ฒโ€ฒ)(Sโ€ฒ

o + C โ€ฒ)๏ธธ ๏ธท๏ธท ๏ธธ

term 1

+(Sโ€ฒ

o + C โ€ฒ)3๏ธธ ๏ธท๏ธท ๏ธธ

term 2

โˆ’3

x2(Sโ€ฒ

o + C โ€ฒ) +2

x4= 0 (4)

term 1: (Sโ€ฒโ€ฒ

oSโ€ฒ

o +C โ€ฒโ€ฒSโ€ฒ

o + Sโ€ฒโ€ฒ

oCโ€ฒ + C โ€ฒโ€ฒC โ€ฒ)

term 2: (Sโ€ฒ

o)3 + (C โ€ฒ)3 + 3(Sโ€ฒ)2C โ€ฒ + 3(Sโ€ฒ)(C โ€ฒ)2

From here, notice that we have already balanced the terms (Sโ€ฒ

o)3 and โˆ’2

x4 , so they are removedat this point. Now we make the following assumptions:

Sโ€ฒ

o >> C โ€ฒ, Sโ€ฒโ€ฒ

o >> C โ€ฒโ€ฒ, Sโ€ฒโ€ฒโ€ฒ

o >> C โ€ฒโ€ฒโ€ฒ as x โ†’ 0+

These assumptions result in,

Sโ€ฒโ€ฒโ€ฒ

o + 3Sโ€ฒโ€ฒ

oSโ€ฒ

o + 3(Sโ€ฒ

o)2C โ€ฒ

โˆผ3Sโ€ฒ

o

x2+

3C โ€ฒ

x2x โ†’ 0+

Insert the value of So found in the previous step,

28w

9xโˆ’10/3

โˆ’ 4w2xโˆ’11/3 + 3w2xโˆ’8/3C โ€ฒโˆผ 3wxโˆ’10/3 + 3C โ€ฒxโˆ’6/3

In keeping with the dominant balance idea, it is clear that the middle two terms dominate, thusleading to the following simplified relation,

3w2xโˆ’8/3C โ€ฒโˆผ 4w2xโˆ’11/3 x โ†’ 0+

C โ€ฒโˆผ

4

3xโˆ’1 x โ†’ 0+

C โˆผ4

3ln(x) x โ†’ 0+

Then C โ€ฒโ€ฒโˆผ

โˆ’43 xโˆ’2, C โ€ฒโ€ฒโ€ฒ

โˆผ83x

โˆ’3 and once again, check assumptions made,

2

109

Page 114: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

Sโ€ฒ

o โˆผ wxโˆ’4/3 >> C โ€ฒโˆผ

4

3xโˆ’1 x โ†’ 0+ X

Sโ€ฒโ€ฒ

o โˆผโˆ’4

3xโˆ’7/3 >> C โ€ฒโ€ฒ

โˆผโˆ’4

3xโˆ’2 x โ†’ 0+ X

Sโ€ฒโ€ฒโ€ฒ

o โˆผ28w

9xโˆ’10/3 >> C โ€ฒโ€ฒโ€ฒ

โˆผ8

3xโˆ’3 x โ†’ 0+ X

With the appearance of the ln(x) term, we have likely found the leading behavior already. However,lets find D, the third term, just to check.

Substitute y = e(So+Co+D), then divide by y,

yโ€ฒ = [Sโ€ฒ

o + C โ€ฒ

o +Dโ€ฒ]e(So+Co+D)

yโ€ฒโ€ฒ = [Sโ€ฒโ€ฒ

o + C โ€ฒโ€ฒ

o +Dโ€ฒโ€ฒ]e(So+Co+D) + [Sโ€ฒ

o + C โ€ฒ

o +Dโ€ฒ]2e(So+Co+D)

yโ€ฒโ€ฒโ€ฒ = [Sโ€ฒโ€ฒโ€ฒ

o + C โ€ฒโ€ฒโ€ฒ

o +Dโ€ฒโ€ฒโ€ฒ]e(So+Co+D) + 3[Sโ€ฒโ€ฒ

o + C โ€ฒโ€ฒ

o +Dโ€ฒโ€ฒ][Sโ€ฒ

o + C โ€ฒ

o +Dโ€ฒ]e(So+Co+D) + [Sโ€ฒ

o + C โ€ฒ

o +Dโ€ฒ]3e(So+Co+D)

And...here we go...

Sโ€ฒโ€ฒโ€ฒ

o +๏ฟฝ๏ฟฝC โ€ฒโ€ฒโ€ฒ

o +๏ฟฝ๏ฟฝDโ€ฒโ€ฒโ€ฒ+3[๏ฟฝ๏ฟฝ๏ฟฝSโ€ฒโ€ฒ

oSโ€ฒ

o + Sโ€ฒโ€ฒ

oCโ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝSโ€ฒโ€ฒ

oDโ€ฒ + C โ€ฒโ€ฒ

oSโ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝC โ€ฒโ€ฒ

oCโ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝC โ€ฒโ€ฒ

oDโ€ฒ +๏ฟฝ๏ฟฝ๏ฟฝ

Dโ€ฒโ€ฒSโ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝDโ€ฒโ€ฒC โ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝDโ€ฒโ€ฒDโ€ฒ]

+๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ6Sโ€ฒ

oCโ€ฒ

oDโ€ฒ + 3[๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

(Sโ€ฒ

o)2C โ€ฒ

o + (Sโ€ฒ

o)2Dโ€ฒ + (C โ€ฒ

o)2Sโ€ฒ

o๏ธธ ๏ธท๏ธท ๏ธธ

Unknown balance

+๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(C โ€ฒ

o)2Dโ€ฒ +๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

(Dโ€ฒ)2Sโ€ฒ

o +๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(Dโ€ฒ)2C โ€ฒ

o] +๏ฟฝ๏ฟฝ๏ฟฝ(Sโ€ฒ

o)3

+๏ฟฝ๏ฟฝ๏ฟฝ(C โ€ฒ

o)3 +๏ฟฝ๏ฟฝ๏ฟฝ(Dโ€ฒ)3 โˆ’

3

x2[Sโ€ฒ

o + C โ€ฒ

o +Dโ€ฒ] +๏ฟฝ๏ฟฝ๏ฟฝ2

x4= 0

Assumptions: Sโ€ฒ

o >> C โ€ฒ

o >> Dโ€ฒ, Sโ€ฒโ€ฒ

o >> C โ€ฒโ€ฒ

o >> Dโ€ฒโ€ฒ, Sโ€ฒโ€ฒโ€ฒ

o >> C โ€ฒโ€ฒโ€ฒ

o >> Dโ€ฒโ€ฒโ€ฒ all as x โ†’ 0+ and removepreviously balanced terms,

Sโ€ฒโ€ฒโ€ฒ

o + 3Sโ€ฒโ€ฒ

oCโ€ฒ

o + 3C โ€ฒโ€ฒ

oSโ€ฒ

o + 3(Sโ€ฒ

o)2Dโ€ฒ

โˆผ โˆ’3(C โ€ฒ

o)Sโ€ฒ

o x โ†’ 0+

Subbing in the previously found values for So, Co,

โˆ’3wxโˆ’10/3 +28w

9xโˆ’10/3

โˆ’

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ16w

3xโˆ’10/3

โˆ’ 4wxโˆ’10/3 + 3w2xโˆ’8/3Dโ€ฒโˆผ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆ’16w

3xโˆ’10/3

3

110

Page 115: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

โˆ’3w2xโˆ’8/3Dโ€ฒโˆผ

35w

9xโˆ’10/3

Dโ€ฒโˆผ

35

27wxโˆ’2/3

D โˆผ35

27w(1

3)x1/3 + d

So since x1/3 โ†’ 0 as x โ†’ 0+, the leading order behavior is

y โˆผ exp[โˆ’w

3xโˆ’1/3 +

4

3ln(x) + d] x โ†’ 0+

4

111

Page 116: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.3 section 3 problem 33 c

112

Page 117: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

113

Page 118: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

114

Page 119: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

115

Page 120: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

116

Page 121: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.4 section 3 problem 35

Some notes on BO 3.35 (to get the leading behavior):

โ€ข a consistent balance at lowest order seems to be

(S โ€ฒ

o)2 โˆผ exp(2/x), x โ†’ 0

โ€ข taking the square root and integrating leads to

So โˆผ ยฑ

โˆซ x

1

exp(1/s)ds

โ€ข then change variables s = 1/t to find

So โˆผ ยฑ

โˆซ (1/x)

1

exp(t)

(

โˆ’1

t2

)

dt

โ€ข integration by parts gives

So โˆผ โˆ“x2 exp(1/x) +ยฑao +โˆ“

โˆซ (1/x)

1

2

t3exp(t)dt

โˆผ โˆ“x2 exp(1/x)

and subdominant terms have been dropped. [Why are these terms subdominant andwhy is this the only consistent integration by parts?]

117

Page 122: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

3.2.8.5 section 3 problem 42a

118

Page 123: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

119

Page 124: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

120

Page 125: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

121

Page 126: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

122

Page 127: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.2. HW2 CHAPTER 3. HWS

123

Page 128: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3 HW3

3.3.1 problem 9.3 (page 479)

problem (a) show that if ๐‘Ž (๐‘ฅ) < 0 for 0 โ‰ค ๐‘ฅ โ‰ค 1 then the solution to 9.1.7 has boundarylayer at ๐‘ฅ = 1. (b) Find a uniform approximation with error ๐‘‚ (๐œ€) to the solution 9.1.7 when๐‘Ž (๐‘ฅ) < 0 for 0 โ‰ค ๐‘ฅ โ‰ค 1 (c) Show that if ๐‘Ž (๐‘ฅ) > 0 it is impossible to match to a boundary layerat ๐‘ฅ = 1

solution

3.3.1.1 Part a

Equation 9.1.7 at page 422 is

๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ (๐‘ฅ) ๐‘ฆ (๐‘ฅ) = 0 (9.1.7)

๐‘ฆ (0) = ๐ด๐‘ฆ (1) = ๐ต

For 0 โ‰ค ๐‘ฅ โ‰ค 1. Now we solve for ๐‘ฆ๐‘–๐‘› (๐‘ฅ), but first we introduce inner variable ๐œ‰. Weassume boundary layer is at ๐‘ฅ = 0, then show that this leads to inconsistency. Let ๐œ‰ = ๐‘ฅ

๐œ€๐‘be the inner variable. We express the original ODE using this new variable. We also needto determine ๐‘. Since ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. Hence ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and (9.1.7) becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0

The largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, ๐œ€โˆ’๐‘๏ฟฝ, therefore balance gives 1 โˆ’ 2๐‘ = โˆ’๐‘ or ๐‘ = 1. The ODE nowbecomes

๐œ€โˆ’1๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’1๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0 (1)

Assuming that

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

124

Page 129: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And substituting the above into (1) gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๐‘Ž (๐‘ฅ) ๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0 (1A)

Collecting powers of ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ terms, gives the ODE to solve for ๐‘ฆ๐‘–๐‘›0 as

๐‘ฆโ€ฒโ€ฒ0 โˆผ โˆ’๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ0In the rapidly changing region, because the boundary layer is very thin, we can approximate๐‘Ž (๐‘ฅ) by ๐‘Ž (0). The above becomes

๐‘ฆโ€ฒโ€ฒ0 โˆผ โˆ’๐‘Ž (0) ๐‘ฆโ€ฒ0But we are told that ๐‘Ž (๐‘ฅ) < 0, so ๐‘Ž (0) < 0, hence โˆ’๐‘Ž (0) is positive. Let โˆ’๐‘Ž (0) = ๐‘›2, to make itmore clear this is positive, then the ODE to solve is

๐‘ฆโ€ฒโ€ฒ0 โˆผ ๐‘›2๐‘ฆโ€ฒ0The solution to this ODE is

๐‘ฆ0 (๐œ‰) โˆผ๐ถ1๐‘›2๐‘’๐‘›2๐œ‰ + ๐ถ2

Using ๐‘ฆ (0) = ๐ด, then the above gives ๐ด = ๐ถ1๐‘›2 + ๐ถ2 or ๐ถ2 = ๐ด โˆ’

๐ถ1๐‘›2 and the ODE becomes

๐‘ฆ0 (๐œ‰) โˆผ๐ถ1๐‘›2๐‘’๐‘›2๐œ‰ + ๏ฟฝ๐ด โˆ’

๐ถ1๐‘›2 ๏ฟฝ

โˆผ๐ถ1๐‘›2๏ฟฝ๐‘’๐‘›2๐œ‰ โˆ’ 1๏ฟฝ + ๐ด

We see from the above solution for the inner layer, that as ๐œ‰ increases (meaning we aremoving away from ๐‘ฅ = 0), then the solution ๐‘ฆ0 (๐œ‰) and its derivative is increasing and notdecreasing since ๐‘ฆโ€ฒ0 (๐œ‰) = ๐ถ1๐‘’๐‘›

2๐œ‰ and ๐‘ฆโ€ฒโ€ฒ0 (๐œ‰) = ๐ถ1๐‘›2๐‘’๐‘›2๐œ‰.

But this contradicts what we assumed that the boundary layer is at ๐‘ฅ = 0 since we expectthe solution to change less rapidly as we move away from ๐‘ฅ = 0. Hence we conclude that if๐‘Ž (๐‘ฅ) < 0, then the boundary layer can not be at ๐‘ฅ = 0.

Let us now see what happens by taking the boundary layer to be at ๐‘ฅ = 1. We repeat thesame process as above, but now the inner variable as defined as

๐œ‰ =1 โˆ’ ๐‘ฅ๐œ€๐‘

We express the original ODE using this new variable and determine ๐‘. Since ๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then

๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰(โˆ’๐œ€โˆ’๐‘). Hence ๐‘‘

๐‘‘๐‘ฅ โ‰ก (โˆ’๐œ€โˆ’๐‘) ๐‘‘

๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ(โˆ’๐œ€โˆ’๐‘)๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

(โˆ’๐œ€โˆ’๐‘)๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

125

Page 130: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and equation (9.1.7) becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

โˆ’ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

โˆ’ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0

The largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, ๐œ€โˆ’๐‘๏ฟฝ, therefore matching them gives 1 โˆ’ 2๐‘ = โˆ’๐‘ or

๐‘ = 1

The ODE now becomes

๐œ€โˆ’1๐‘‘2๐‘ฆ๐‘‘๐œ‰2

โˆ’ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’1๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0 (2)

Assuming that

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

And substituting the above into (2) gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆ’ ๐‘Ž (๐‘ฅ) ๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0 (2A)

Collecting ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ terms, gives the ODE to solve for ๐‘ฆ๐‘–๐‘›0 as

๐‘ฆโ€ฒโ€ฒ0 โˆผ ๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ0In the rapidly changing region, ๐›ผ = ๐‘Ž (1), because the boundary layer is very thin, weapproximated ๐‘Ž (๐‘ฅ) by ๐‘Ž (1). The above becomes

๐‘ฆโ€ฒโ€ฒ0 โˆผ ๐›ผ๐‘ฆโ€ฒ0But we are told that ๐‘Ž (๐‘ฅ) < 0, so ๐›ผ < 0, and the above becomes

๐‘ฆโ€ฒโ€ฒ0 โˆผ ๐›ผ๐‘ฆโ€ฒ0The solution to this ODE is

๐‘ฆ0 (๐œ‰) โˆผ๐ถ1๐›ผ๐‘’๐›ผ๐œ‰ + ๐ถ2 (3)

Using

๐‘ฆ (๐‘ฅ = 1) = ๐‘ฆ (๐œ‰ = 0)= ๐ต

Then (3) gives ๐ต = ๐ถ1๐›ผ + ๐ถ2 or ๐ถ2 = ๐ต โˆ’

๐ถ1๐›ผ and (3) becomes

๐‘ฆ0 (๐œ‰) โˆผ๐ถ1๐›ผ๐‘’๐›ผ๐œ‰ + ๏ฟฝ๐ต โˆ’

๐ถ1๐›ผ ๏ฟฝ

โˆผ๐ถ1๐›ผ๏ฟฝ๐‘’๐›ผ๐œ‰ โˆ’ 1๏ฟฝ + ๐ต (4)

From the above, ๐‘ฆโ€ฒ0 (๐œ‰) = โˆ’๐ถ1๐‘’๐›ผ๐œ‰ and ๐‘ฆโ€ฒโ€ฒ0 (๐œ‰) = ๐ถ1๐›ผ๐‘’๐›ผ๐œ‰. We now see that as that as ๐œ‰ increases(meaning we are moving away from ๐‘ฅ = 1 towards the left), then the solution ๐‘ฆ0 (๐œ‰) is actuallychanging less rapidly. This is because ๐›ผ < 0. The solution is changing less rapidly as we

126

Page 131: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

move away from the boundary layer as what we expect. Therefore, we conclude that if๐‘Ž (๐‘ฅ) < 0 then the boundary layer can not be at ๐‘ฅ = 0 and has to be at ๐‘ฅ = 1.

3.3.1.2 Part b

To find uniform approximation, we need now to find ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) and then do the matching. Sincefrom part(a) we concluded that ๐‘ฆ๐‘–๐‘› is near ๐‘ฅ = 1, then we assume now that ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) is near๐‘ฅ = 0. Let

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting this into (9.1.7) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘Ž (๐‘ฅ) ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ (๐‘ฅ) ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms of ๐‘‚ (1) gives the ODE

๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ0 + ๐‘ (๐‘ฅ) ๐‘ฆ0 = 0

The solution to this ODE is

๐‘ฆ0 (๐‘ฅ) = ๐ถ2๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

Applying ๐‘ฆ (0) = ๐ด gives

๐ด = ๐ถ2๐‘’โˆ’โˆซ

10

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

= ๐ถ2๐ธ

Where ๐ธ is constant, which is the value of the definite integral ๐ธ = ๐‘’โˆ’โˆซ10

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ . Hence the

solution ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) can now be written as

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) =๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

We are now ready to do the matching.

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐œ‰โ†’โˆž

๐ถ1๐›ผ๏ฟฝ๐‘’๐›ผ๐œ‰ โˆ’ 1๏ฟฝ + ๐ต โˆผ lim

๐‘ฅโ†’0

๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

But since ๐›ผ = ๐‘Ž (1) < 0 then the above simplifies to

โˆ’๐ถ1๐‘Ž (1)

+ ๐ต =๐ด๐ธ

๐ถ1 = โˆ’๐‘Ž (1) ๏ฟฝ๐ด๐ธโˆ’ ๐ต๏ฟฝ

127

Page 132: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence inner solution becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผโˆ’๐‘Ž (1) ๏ฟฝ๐ด๐ธ โˆ’ ๐ต๏ฟฝ

๐‘Ž (1)๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ + ๐ต

โˆผ ๏ฟฝ๐ต โˆ’๐ด๐ธ ๏ฟฝ

๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ + ๐ต

โˆผ ๐ต ๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ โˆ’๐ด๐ธ๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ + ๐ต

โˆผ ๏ฟฝ๐ต โˆ’๐ด๐ธ ๏ฟฝ

๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ + ๐ต

The uniform solution is

๐‘ฆuniform (๐‘ฅ) โˆผ ๐‘ฆ๐‘–๐‘› (๐œ‰) + ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

โˆผ

๐‘ฆ๐‘–๐‘›

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐ต โˆ’

๐ด๐ธ ๏ฟฝ

๏ฟฝ๐‘’๐‘Ž(1)๐œ‰ โˆ’ 1๏ฟฝ + ๐ต +

๐‘ฆ๐‘œ๐‘ข๐‘ก

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  โˆ’

๐ด๐ธ

Or in terms of ๐‘ฅ only

๐‘ฆuniform (๐‘ฅ) โˆผ ๏ฟฝ๐ต โˆ’๐ด๐ธ ๏ฟฝ

๏ฟฝ๐‘’๐‘Ž(1)1โˆ’๐‘ฅ๐œ€ โˆ’ 1๏ฟฝ + ๐ต +

๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  โˆ’

๐ด๐ธ

3.3.1.3 Part c

We now assume the boundary layer is at ๐‘ฅ = 1 but ๐‘Ž (๐‘ฅ) > 0. From part (a), we found thatthe solution for ๐‘ฆ๐‘–๐‘›0 (๐œ‰) where boundary layer at ๐‘ฅ = 1 is

๐‘ฆ0 (๐œ‰) โˆผ๐ถ1๐›ผ๏ฟฝ๐‘’๐›ผ๐œ‰ โˆ’ 1๏ฟฝ + ๐ต

But now ๐›ผ = ๐‘Ž (1) > 0 and not negative as before. We also found that ๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) solution was

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) =๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

Lets now try to do the matching and see what happens

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐œ‰โ†’โˆž

๐ถ1๐›ผ๏ฟฝ๐‘’๐›ผ๐œ‰ โˆ’ 1๏ฟฝ + ๐ต + ๐‘‚ (๐œ€) โˆผ lim

๐‘ฅโ†’0

๐ด๐ธ๐‘’โˆ’โˆซ

๐‘ฅ0

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  + ๐‘‚ (๐œ€)

lim๐œ‰โ†’โˆž

๐ถ1 ๏ฟฝ๐‘’๐›ผ๐œ‰

๐›ผโˆ’1๐›ผ๏ฟฝ

โˆผ๐ด๐ธโˆ’ ๐ต

Since now ๐›ผ > 0, then the term on the left blows up, while the term on the right is finite.Not possible to match, unless ๐ถ1 = 0. But this means the boundary layer solution is just aconstant ๐ต and that ๐ด

๐ธ = ๐ต. So the matching does not work in general for arbitrary conditions.This means if ๐‘Ž (๐‘ฅ) > 0, it is not possible to match boundary layer at ๐‘ฅ = 1.

128

Page 133: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.2 problem 9.4(b)

Problem Find the leading order uniform asymptotic approximation to the solution of

๐œ€๐‘ฆโ€ฒโ€ฒ + ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ ๐‘ฆโ€ฒ โˆ’ ๐‘ฅ3๐‘ฆ (๐‘ฅ) = 0 (1)

๐‘ฆ (0) = 1๐‘ฆ (1) = 1

For 0 โ‰ค ๐‘ฅ โ‰ค 1 in the limit as ๐œ€ โ†’ 0.

solution

Since ๐‘Ž (๐‘ฅ) = ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ is positive, we expect the boundary layer to be near ๐‘ฅ = 0. First we find๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ), which is near ๐‘ฅ = 1. Assuming

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

And substituting this into (1) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ โˆ’ ๐‘ฅ3 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms in ๐‘‚ (1) gives the ODE

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ ๐‘ฆโ€ฒ0 โˆผ ๐‘ฅ3๐‘ฆ0

The ODE becomes ๐‘ฆโ€ฒ0 โˆผ๐‘ฅ3

๏ฟฝ1+๐‘ฅ2๏ฟฝ๐‘ฆ0 with integrating factor ๐œ‡ = ๐‘’

โˆซ โˆ’๐‘ฅ3

๏ฟฝ1+๐‘ฅ2๏ฟฝ๐‘‘๐‘ฅ. To evaluate โˆซ โˆ’๐‘ฅ3

๏ฟฝ1+๐‘ฅ2๏ฟฝ๐‘‘๐‘ฅ,

let ๐‘ข = ๐‘ฅ2, hence ๐‘‘๐‘ข๐‘‘๐‘ฅ = 2๐‘ฅ and the integral becomes

๏ฟฝโˆ’๐‘ฅ3

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ๐‘‘๐‘ฅ = โˆ’๏ฟฝ

๐‘ข๐‘ฅ(1 + ๐‘ข)

๐‘‘๐‘ข2๐‘ฅ

= โˆ’12 ๏ฟฝ

๐‘ข(1 + ๐‘ข)

๐‘‘๐‘ข

But

๏ฟฝ๐‘ข

(1 + ๐‘ข)๐‘‘๐‘ข = ๏ฟฝ1 โˆ’

1(1 + ๐‘ข)

๐‘‘๐‘ข

= ๐‘ข โˆ’ ln (1 + ๐‘ข)But ๐‘ข = ๐‘ฅ2, hence

๏ฟฝโˆ’๐‘ฅ3

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ๐‘‘๐‘ฅ =

โˆ’12๏ฟฝ๐‘ฅ2 โˆ’ ln ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ๏ฟฝ

129

Page 134: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore the integrating factor is ๐œ‡ = exp ๏ฟฝโˆ’12 ๐‘ฅ2 + 1

2 ln ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ๏ฟฝ. The ODE becomes

๐‘‘๐‘‘๐‘ฅ๏ฟฝ๐œ‡๐‘ฆ0๏ฟฝ = 0

๐œ‡๐‘ฆ0 โˆผ ๐‘

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆผ ๐‘ exp ๏ฟฝ12๐‘ฅ2 โˆ’

12

ln ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ๏ฟฝ

โˆผ ๐‘๐‘’12๐‘ฅ

2๐‘’ln๏ฟฝ1+๐‘ฅ

2๏ฟฝโˆ’12

โˆผ ๐‘๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2To find ๐‘, using boundary conditions ๐‘ฆ (1) = 1 gives

1 = ๐‘๐‘’12

โˆš2

๐‘ = โˆš2๐‘’โˆ’12

Hence

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) โˆผ โˆš2๐‘’๐‘ฅ2โˆ’12

โˆš1 + ๐‘ฅ2

Now we find ๐‘ฆ๐‘–๐‘› (๐‘ฅ) near ๐‘ฅ = 0. Let ๐œ‰ = ๐‘ฅ๐œ€๐‘ be the inner variable. We express the original ODE

using this new variable and determine ๐‘. Since ๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. Hence ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and ๐œ€๐‘ฆ

โ€ฒโ€ฒ + ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ ๐‘ฆโ€ฒ โˆ’ ๐‘ฅ3๐‘ฆ (๐‘ฅ) = 0 becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ1 + (๐œ‰๐œ€๐‘)2๏ฟฝ ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ (๐œ‰๐œ€๐‘)3 ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ1 + ๐œ‰2๐œ€2๐‘๏ฟฝ ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ ๐œ‰3๐œ€3๐‘๐‘ฆ = 0

The largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, ๐œ€โˆ’๐‘๏ฟฝ, therefore matching them gives 1 โˆ’ 2๐‘ = โˆ’๐‘ or ๐‘ = 1. TheODE now becomes

๐œ€โˆ’1๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ1 + ๐œ‰2๐œ€2๏ฟฝ ๐œ€โˆ’1๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ ๐œ‰3๐œ€3๐‘ฆ = 0 (2)

130

Page 135: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Assuming that

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

And substituting the above into (2) gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ1 + ๐œ‰2๐œ€2๏ฟฝ ๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ โˆ’ ๐œ‰3๐œ€3 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0 (2A)

Collecting terms in ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives the ODE

๐‘ฆโ€ฒโ€ฒ0 (๐œ‰) โˆผ โˆ’๐‘ฆโ€ฒ0 (๐œ‰)

The solution to this ODE is

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ ๐‘1 + ๐‘2๐‘’โˆ’๐œ‰ (3)

Applying ๐‘ฆ๐‘–๐‘›0 (0) = 1 gives

1 = ๐‘1 + ๐‘2๐‘1 = 1 โˆ’ ๐‘2

Hence (3) becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ (1 โˆ’ ๐‘2) + ๐‘2๐‘’โˆ’๐œ‰

โˆผ 1 + ๐‘2 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ (4)

Now that we found ๐‘ฆ๐‘œ๐‘ข๐‘ก and ๐‘ฆ๐‘–๐‘›, we apply matching to find ๐‘2 in the ๐‘ฆ๐‘–๐‘› solution.

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ lim๐‘ฅโ†’0+

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ)

lim๐œ‰โ†’โˆž

1 + ๐‘2 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ โˆผ lim๐‘ฅโ†’0+

โˆš2๐‘’๐‘ฅ2โˆ’12

โˆš1 + ๐‘ฅ2

1 โˆ’ ๐‘2 โˆผ๏ฟฝ2๐‘’

lim๐‘ฅโ†’0+

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โˆผ๏ฟฝ2๐‘’

lim๐‘ฅโ†’0+

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

=๏ฟฝ2๐‘’

Hence

๐‘2 = 1 โˆ’๏ฟฝ2๐‘’

131

Page 136: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore the ๐‘ฆ๐‘–๐‘›0 (๐œ‰) becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ 1 +โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’๏ฟฝ

2๐‘’

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ๐‘’

โˆ’๐œ‰ โˆ’ 1๏ฟฝ

โˆผ 1 + ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ โˆ’๏ฟฝ2๐‘’๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

โˆผ ๐‘’โˆ’๐œ‰ โˆ’๏ฟฝ2๐‘’๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

โˆผ ๐‘’โˆ’๐œ‰ โˆ’๏ฟฝ2๐‘’๐‘’โˆ’๐œ‰ +

๏ฟฝ2๐‘’

โˆผ ๐‘’โˆ’๐œ‰โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’๏ฟฝ

2๐‘’

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  +๏ฟฝ

2๐‘’

โˆผ 0.858 + 0.142๐‘’โˆ’๐œ‰

Therefore, the uniform solution is

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š โˆผ ๐‘ฆ๐‘–๐‘› (๐‘ฅ) + ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž + ๐‘‚ (๐œ€) (4)

Where ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž is ๐‘ฆ๐‘–๐‘› (๐‘ฅ) at the boundary layer matching location. (or ๐‘ฆ๐‘œ๐‘ข๐‘ก at same matchinglocation). Hence

๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž โˆผ 1 โˆ’ ๐‘2

โˆผ 1 โˆ’โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’๏ฟฝ

2๐‘’

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ๏ฟฝ2๐‘’

Hence (4) becomes

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š โˆผ

๐‘ฆ๐‘–๐‘›๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘’โˆ’๐œ‰

โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’๏ฟฝ

2๐‘’

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  +๏ฟฝ

2๐‘’+

๐‘ฆ๐‘œ๐‘ข๐‘ก๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

โˆš2๐‘’๐‘ฅ2โˆ’12

โˆš1 + ๐‘ฅ2โˆ’

๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž๏ฟฝ

๏ฟฝ2๐‘’

โˆผ ๐‘’โˆ’๐‘ฅ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’๏ฟฝ

2๐‘’

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  + โˆš2

๐‘’๐‘ฅ2โˆ’12

โˆš1 + ๐‘ฅ2+ ๐‘‚ (๐œ€)

This is the leading order uniform asymptotic approximation solution. To verify the result,the numerical solution was plotted against the above solution for ๐œ€ = {0.1, 0.05, 0.01}. We seefrom these plots that as ๐œ€ becomes smaller, the asymptotic solution becomes more accuratewhen compared to the numerical solution. This is because the error, which is ๐‘‚ (๐œ€) , becomessmaller. The code used to generate these plots is

132

Page 137: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[180]:= eps = 0.1;

sol = NDSolve[{1 / 100 y''[x] + (1 + x^2) y'[x] - x^3 y[x] โฉต 0, y[0] โฉต 1, y[1] โฉต 1}, y, {x, 0, 1}];

p1 = Plot[Evaluate[y[x] /. sol], {x, 0, 1}, Frame โ†’ True,

FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"numberical vs. asymptotic for eps =", eps}]}},

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray];

mysol[x_, eps_] := Exp-x

eps 1 - Sqrt

2

Exp[1] +

Sqrt[2] Exp x2-1

2

Sqrt[1 + x^2];

p2 = Plot[mysol[x, eps], {x, 0, 1}, PlotRange โ†’ All, PlotStyle โ†’ Red];

Show[Legended[p1, Style["Numerical", Red]], Legended[p2, Style["Asymtotic", Blue]]]

The following are the three plots for each value of ๐œ€

Out[6]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.1

NumericalAsymptotic

Out[12]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.05

NumericalAsymptotic

133

Page 138: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[17]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

numberical vs. asymptotic for eps =0.01

NumericalAsymptotic

To see the e๏ฟฝect on changing ๐œ€ on only the asymptotic approximation, the following plotgives the approximation solution only as ๐œ€ changes. We see how the approximation convergesto the numerical solution as ๐œ€ becomes smaller.

In[236]:= Plot[{mysol[x, .1], mysol[x, .05], mysol[x, .01]}, {x, 0, 1},

PlotLegends โ†’ {"โˆˆ=0.1", "โˆˆ=0.05", "โˆˆ=0.01"}, Frame โ†’ True,

FrameLabel โ†’ {{"y(x)", None}, {"x", "Asymptotic solution as eps changes"}},

BaseStyle โ†’ 14]

Out[236]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Asymptotic solution as eps changes

โˆˆ=0.1

โˆˆ=0.05

โˆˆ=0.01

3.3.3 problem 9.6

Problem Consider initial value problem

๐‘ฆโ€ฒ = ๏ฟฝ1 +๐‘ฅโˆ’2

100๏ฟฝ๐‘ฆ2 โˆ’ 2๐‘ฆ + 1

With ๐‘ฆ (1) = 1 on the interval 0 โ‰ค ๐‘ฅ โ‰ค 1. (a) Formulate this problem as perturbation problemby introducing a small parameter ๐œ€. (b) Find outer approximation correct to order ๐œ€ witherrors of order ๐œ€2. Where does this approximation break down? (c) Introduce inner variableand find the inner solution valid to order 1 (with errors of order ๐œ€). By matching to the outersolution find a uniform valid solution to ๐‘ฆ (๐‘ฅ) on interval 0 โ‰ค ๐‘ฅ โ‰ค 1. Estimate the accuracy of

134

Page 139: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

this approximation. (d) Find inner solution correct to order ๐œ€ (with errors of order ๐œ€2) andshow that it matches to the outer solution correct to order ๐œ€.

solution

3.3.3.1 Part a

Since 1100 is relatively small compared to all other coe๏ฟฝcients, we replace it with ๐œ€ and the

ODE becomes

๐‘ฆโ€ฒ โˆ’ ๏ฟฝ1 +๐œ€๐‘ฅ2๏ฟฝ ๐‘ฆ2 + 2๐‘ฆ = 1 (1)

3.3.3.2 Part b

Assuming boundary layer is on the left side at ๐‘ฅ = 0. We now solve for ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ), which is thesolution near ๐‘ฅ = 1.

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting this into (1) gives

๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ โˆ’ ๏ฟฝ1 +๐œ€๐‘ฅ2๏ฟฝ ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ

2+ 2 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 1

Expanding the above to see more clearly the terms gives

๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ โˆ’ ๏ฟฝ1 +๐œ€๐‘ฅ2๏ฟฝ ๏ฟฝ๐‘ฆ20 + ๐œ€ ๏ฟฝ2๐‘ฆ0๐‘ฆ1๏ฟฝ + ๐œ€2 ๏ฟฝ2๐‘ฆ0๐‘ฆ2 + ๐‘ฆ21๏ฟฝ +โ‹ฏ๏ฟฝ + 2 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 1

(2)

The leading order are those terms of coe๏ฟฝcient ๐‘‚ (1). This gives

๐‘ฆโ€ฒ0 โˆ’ ๐‘ฆ20 + 2๐‘ฆ0 โˆผ 1

With boundary conditions ๐‘ฆ (1) = 1.๐‘‘๐‘ฆ0๐‘‘๐‘ฅ

โˆผ ๐‘ฆ20 โˆ’ 2๐‘ฆ0 + 1

This is separable๐‘‘๐‘ฆ0

๐‘ฆ20 โˆ’ 2๐‘ฆ0 + 1โˆผ ๐‘‘๐‘ฅ

๐‘‘๐‘ฆ0๏ฟฝ๐‘ฆ0 โˆ’ 1๏ฟฝ

2 โˆผ ๐‘‘๐‘ฅ

135

Page 140: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

For ๐‘ฆ0 โ‰  1. Integrating

๏ฟฝ๐‘‘๐‘ฆ0

๏ฟฝ๐‘ฆ0 โˆ’ 1๏ฟฝ2 โˆผ๏ฟฝ๐‘‘๐‘ฅ

โˆ’1๐‘ฆ0 โˆ’ 1

โˆผ ๐‘ฅ + ๐ถ

๏ฟฝ๐‘ฆ0 โˆ’ 1๏ฟฝ (๐‘ฅ + ๐ถ) โˆผ โˆ’1

๐‘ฆ0 โˆผโˆ’1๐‘ฅ + ๐ถ

+ 1 (3)

To find ๐ถ, from ๐‘ฆ (1) = 1, we find

1 โˆผโˆ’11 + ๐ถ

+ 1

1 โˆผ๐ถ

1 + ๐ถThis is only possible if ๐ถ = โˆž. Therefore from (2), we conclude that

๐‘ฆ0 (๐‘ฅ) โˆผ 1

The above is leading order for the outer solution. Now we repeat everything to find ๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ).From (2) above, we now keep all terms with ๐‘‚ (๐œ€) which gives

๐‘ฆโ€ฒ1 โˆ’ 2๐‘ฆ0๐‘ฆ1 + 2๐‘ฆ1 โˆผ1๐‘ฅ2๐‘ฆ20

But we found ๐‘ฆ0 (๐‘ฅ) โˆผ 1 from above, so the above ODE becomes

๐‘ฆโ€ฒ1 โˆ’ 2๐‘ฆ1 + 2๐‘ฆ1 โˆผ1๐‘ฅ2

๐‘ฆโ€ฒ1 โˆผ1๐‘ฅ2

Integrating gives

๐‘ฆ1 (๐‘ฅ) โˆผ โˆ’1๐‘ฅ+ ๐ถ

The boundary condition now becomes ๐‘ฆ1 (1) = 0 (since we used ๐‘ฆ (1) = 1 earlier with ๐‘ฆ0).This gives

0 = โˆ’11+ ๐ถ

๐ถ = 1

Therefore the solution becomes

๐‘ฆ1 (๐‘ฅ) โˆผ 1 โˆ’ 1๐‘ฅ

Therefore, the outer solution is

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆผ ๐‘ฆ0 + ๐œ€๐‘ฆ1

136

Page 141: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Or

๐‘ฆ (๐‘ฅ) โˆผ 1 + ๐œ€ ๏ฟฝ1 โˆ’ 1๐‘ฅ๏ฟฝ + ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ

Since the ODE is ๐‘ฆโ€ฒ โˆ’ ๏ฟฝ1 + ๐œ€๐‘ฅ2๏ฟฝ ๐‘ฆ2 + 2๐‘ฆ = 1, the approximation breaks down when ๐‘ฅ < โˆš๐œ€ or

๐‘ฅ < 110 . Because when ๐‘ฅ < โˆš๐œ€, the

๐œ€๐‘ฅ2 will start to become large. The term ๐œ€

๐‘ฅ2 should remainsmall for the approximation to be accurate. The following are plots of the ๐‘ฆ0 and ๐‘ฆ0 + ๐œ€๐‘ฆ1solutions (using ๐œ€ = 1

100 ) showing that with two terms the approximation has improved forthe outer layer, compared to the full solution of the original ODE obtained using CAS. Butthe outer solution breaks down near ๐‘ฅ = 0.1 and smaller as can be seen in these plots. Hereis the solution of the original ODE obtained using CAS

In[46]:= eps =1

100;

ode = y'[x] == 1 +eps

x2 y[x]^2 - 2 y[x] + 1;

sol = y[x] /. First@DSolve[{ode, y[1] โฉต 1}, y[x], x]

Out[48]=

10 x -12 - 5 6 - 12 x2 65 + 5 6 x

2 65

- 6 - 120 x - 50 6 x + 6 x2 65 - 120 x1+

2 65 + 50 6 x1+

2 65

In[53]:= Plot[sol, {x, 0, 1}, PlotRange โ†’ All, Frame โ†’ True, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

FrameLabel โ†’ {{"y(x)", None}, {"x", "Exact solution to use to compare with"}}, BaseStyle โ†’ 14,

PlotStyle โ†’ Red, ImageSize โ†’ 400]

Out[53]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact solution to use to compare with

In the following plot, the ๐‘ฆ0 and the ๐‘ฆ0 + ๐œ€๐‘ฆ1 solutions are superimposed on same figure, toshow how the outer solution has improved when adding another term. But we also noticethat the outer solution ๐‘ฆ0+๐œ€๐‘ฆ1 only gives good approximation to the exact solution for about๐‘ฅ > 0.1 and it breaks down quickly as ๐‘ฅ becomes smaller.

137

Page 142: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[164]:= outer1 = 1;

outer2 = 1 + eps * (1 - 1 / x);

p2 = Plot[Callout[outer1, "y0", Scaled[0.1]], {x, 0, 1}, PlotRange โ†’ All, Frame โ†’ True,

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

FrameLabel โ†’ {{"y(x)", None}, {"x", "comparing outer solution y0 with y0+ โˆˆy1"}},

BaseStyle โ†’ 14, PlotStyle โ†’ Red, ImageSize โ†’ 400];

p3 = Plot[Callout[outer2, "y0+ โˆˆy1", {Scaled[0.5], Below}], {x, 0.01, 1}, AxesOrigin โ†’ {0, 0}];

Show[p2, p3, PlotRange โ†’ {{0.01, .5}, {0, 1.2}}]

Out[168]=

y0

y0+ โˆˆy1

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

y(x)

comparing outer solution y0 with y0+ โˆˆy1

3.3.3.3 Part c

Now we will obtain solution inside the boundary layer ๐‘ฆ๐‘–๐‘› (๐œ‰) = ๐‘ฆ๐‘–๐‘›0 (๐œ‰) + ๐‘‚ (๐œ€). The first stepis to always introduce new inner variable. Since the boundary layer is on the right side, then

๐œ‰ =๐‘ฅ๐œ€๐‘

And then to express the original ODE using this new variable. We also need to determine๐‘ in the above expression. Since the original ODE is ๐‘ฆโ€ฒ โˆ’ ๏ฟฝ1 + ๐œ€๐‘ฅโˆ’2๏ฟฝ ๐‘ฆ2 + 2๐‘ฆ = 1, then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰(๐œ€โˆ’๐‘), then the ODE now becomes

๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€โˆ’๐‘ โˆ’ ๏ฟฝ1 +

๐œ€๐œ‰๐œ€๐‘2 ๏ฟฝ

๐‘ฆ2 + 2๐‘ฆ = 1

๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€โˆ’๐‘ โˆ’ ๏ฟฝ1 +

๐œ€1โˆ’2๐‘

๐œ‰2 ๏ฟฝ ๐‘ฆ2 + 2๐‘ฆ = 1

Where in the above ๐‘ฆ โ‰ก ๐‘ฆ (๐œ‰). We see that we have ๏ฟฝ๐œ€โˆ’๐‘, ๐œ€๏ฟฝ1โˆ’2๐‘๏ฟฝ๏ฟฝ as the two biggest terms to

match. This means โˆ’๐‘ = 1 โˆ’ 2๐‘ or

๐‘ = 1

Hence the above ODE becomes๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€โˆ’1 โˆ’ ๏ฟฝ1 +

๐œ€โˆ’1

๐œ‰2 ๏ฟฝ๐‘ฆ2 + 2๐‘ฆ = 1

138

Page 143: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

We are now ready to replace ๐‘ฆ (๐œ‰) with โˆ‘โˆž๐‘›=0 ๐œ€

๐‘›๐‘ฆ๐‘› which gives

๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ ๐œ€โˆ’1 โˆ’ ๏ฟฝ1 +๐œ€โˆ’1

๐œ‰2 ๏ฟฝ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ

2+ 2 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 1

๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ ๐œ€โˆ’1 โˆ’ ๏ฟฝ1 +๐œ€โˆ’1

๐œ‰2 ๏ฟฝ๏ฟฝ๐‘ฆ20 + ๐œ€ ๏ฟฝ2๐‘ฆ0๐‘ฆ1๏ฟฝ +โ‹ฏ๏ฟฝ + 2 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 1 (3)

Collecting terms with ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives

๐‘ฆโ€ฒ0 โˆผ1๐œ‰2๐‘ฆ20

This is separable

๏ฟฝ๐‘‘๐‘ฆ0๐‘ฆ20

โˆผ๏ฟฝ1๐œ‰2๐‘‘๐œ‰

โˆ’๐‘ฆโˆ’10 โˆผ โˆ’๐œ‰โˆ’1 + ๐ถ1๐‘ฆ0

โˆผ1๐œ‰โˆ’ ๐ถ

1๐‘ฆ0

โˆผ1 โˆ’ ๐ถ๐œ‰๐œ‰

๐‘ฆ๐‘–๐‘›0 โˆผ๐œ‰

1 โˆ’ ๐œ‰๐ถNow we use matching with ๐‘ฆ๐‘œ๐‘ข๐‘ก to find ๐ถ. We have found before that ๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) โˆผ 1 therefore

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘›0 (๐œ‰) + ๐‘‚ (๐œ€) = lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) + ๐‘‚ (๐œ€)

lim๐œ‰โ†’โˆž

๐œ‰1 โˆ’ ๐œ‰๐ถ

= 1 + ๐‘‚ (๐œ€)

lim๐œ‰โ†’โˆž

(โˆ’๐ถ) + ๐‘‚ ๏ฟฝ๐œ‰โˆ’1๏ฟฝ + ๐‘‚ (๐œ€) = 1 + ๐‘‚ (๐œ€)

โˆ’๐ถ = 1

Therefore

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ๐œ‰

1 + ๐œ‰(4)

Therefore,

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š = ๐‘ฆ๐‘–๐‘›0 + ๐‘ฆ๐‘œ๐‘ข๐‘ก0 โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

=

๐‘ฆ๐‘–๐‘›๏ฟฝ๐œ‰1+ ๐œ‰

+๐‘ฆ๐‘œ๐‘ข๐‘กโž1 โˆ’ 1

Since ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž = 1 (this is what lim๐œ‰โ†’โˆž ๐‘ฆ๐‘–๐‘›0 is). Writing everything in ๐‘ฅ, using ๐œ‰ = ๐‘ฅ๐œ€ the above

becomes

๐‘ฆuniform =๐‘ฅ๐œ€

1 + ๐‘ฅ๐œ€

=๐‘ฅ

๐œ€ + ๐‘ฅ

139

Page 144: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

The following is a plot of the above, using ๐œ€ = 1100 to compare with the exact solution.,

In[189]:= y[x_, eps_] :=x

x + eps

p1 = Plot[{exactSol, y[x, 1 / 100]}, {x, 0.02, 1}, PlotRange โ†’ All,

Frame โ†’ True, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

FrameLabel โ†’

{{"y(x)", None},

{"x", "Exact solution vs. uniform solution found. 9.6 part(c)"}},

BaseStyle โ†’ 14, PlotStyle โ†’ {Red, Blue}, ImageSize โ†’ 400,

PlotLegends โ†’ {"exact", "uniform approximation"}]

Plot[y[x, 1 / 100], {x, 0, 1}, PlotRange โ†’ {{.05, 1}, Automatic}]

Out[190]=

0.0 0.2 0.4 0.6 0.8 1.00.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

x

y(x)

Exact solution vs. uniform solution found. 9.6 part(c)

exact

uniform approximation

3.3.3.4 Part (d)

Now we will obtain ๐‘ฆ๐‘–๐‘›1 solution inside the boundary layer. Using (3) we found in part (c),reproduced here

๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ ๐œ€โˆ’1 โˆ’ ๏ฟฝ1 +๐œ€โˆ’1

๐œ‰2 ๏ฟฝ๏ฟฝ๐‘ฆ20 + ๐œ€ ๏ฟฝ2๐‘ฆ0๐‘ฆ1๏ฟฝ +โ‹ฏ๏ฟฝ + 2 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 1 (3)

But now collecting all terms of order of ๐‘‚ (1), this results in

๐‘ฆโ€ฒ1 โˆ’ ๐‘ฆ20 โˆ’2๐œ‰2๐‘ฆ0๐‘ฆ1 + 2๐‘ฆ0 โˆผ 1

Using ๐‘ฆ๐‘–๐‘›0 found in part (c) into the above gives

๐‘ฆโ€ฒ1 โˆ’2๐œ‰ ๏ฟฝ

11 + ๐œ‰๏ฟฝ

๐‘ฆ1 โˆผ 1 โˆ’ 2 ๏ฟฝ๐œ‰

1 + ๐œ‰๏ฟฝ+ ๏ฟฝ

๐œ‰1 + ๐œ‰๏ฟฝ

2

๐‘ฆโ€ฒ1 โˆ’ ๏ฟฝ2

๐œ‰ (1 + ๐œ‰)๏ฟฝ๐‘ฆ1 โˆผ

1(๐œ‰ + 1)2

140

Page 145: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

This can be solved using integrating factor ๐œ‡ = ๐‘’โˆซ โˆ’2

๐œ‰+๐œ‰2๐‘‘๐œ‰

using partial fractions gives ๐œ‡ =exp (โˆ’2 ln ๐œ‰ + 2 ln (1 + ๐œ‰)) or ๐œ‡ = 1

๐œ‰2(1 + ๐œ‰)2. Hence we obtain

๐‘‘๐‘‘๐‘ฅ๏ฟฝ๐œ‡๐‘ฆ1๏ฟฝ โˆผ ๐œ‡

1(๐œ‰ + 1)2

๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

1๐œ‰2(1 + ๐œ‰)2 ๐‘ฆ1๏ฟฝ โˆผ

1๐œ‰2

Integrating1๐œ‰2(1 + ๐œ‰)2 ๐‘ฆ1 โˆผ๏ฟฝ

1๐œ‰2๐‘‘๐œ‰

1๐œ‰2(1 + ๐œ‰)2 ๐‘ฆ1 โˆผ

โˆ’1๐œ‰+ ๐ถ2

(1 + ๐œ‰)2 ๐‘ฆ1 โˆผ โˆ’๐œ‰ + ๐œ‰2๐ถ2

๐‘ฆ1 โˆผโˆ’๐œ‰ + ๐œ‰2๐ถ2

(1 + ๐œ‰)2

Therefore, the inner solution becomes

๐‘ฆ๐‘–๐‘› (๐œ‰) = ๐‘ฆ0 + ๐œ€๐‘ฆ1

=๐œ‰

1 + ๐œ‰๐ถ1+ ๐œ€

๐œ‰2๐ถ2 โˆ’ ๐œ‰(1 + ๐œ‰)2

To find ๐ถ1, ๐ถ2 we do matching with with ๐‘ฆ๐‘œ๐‘ข๐‘ก that we found in part (a) which is ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆผ1 + ๐œ€ ๏ฟฝ1 โˆ’ 1

๐‘ฅ๏ฟฝ

lim๐œ‰โ†’โˆž

๏ฟฝ๐œ‰

1 + ๐œ‰๐ถ1+ ๐œ€

๐œ‰2๐ถ2 โˆ’ ๐œ‰(1 + ๐œ‰)2

๏ฟฝ โˆผ lim๐‘ฅโ†’0

1 + ๐œ€ ๏ฟฝ1 โˆ’1๐‘ฅ๏ฟฝ

Doing long division ๐œ‰1+๐œ‰๐ถ1

= 1๐ถ1โˆ’ 1

๐œ‰๐ถ21+ 1

๐œ‰2๐ถ31+โ‹ฏ and ๐œ‰2๐ถ2โˆ’๐œ‰

(1+๐œ‰)2= ๐ถ2 โˆ’

2๐ถ2+1๐œ‰ โˆ’โ‹ฏ, hence the above

becomes

lim๐œ‰โ†’โˆž

๏ฟฝ๏ฟฝ1๐ถ1

โˆ’1๐œ‰๐ถ2

1+

1๐œ‰2๐ถ3

1+โ‹ฏ๏ฟฝ + ๏ฟฝ๐œ€๐ถ2 โˆ’ ๐œ€

2๐ถ2 + 1๐œ‰

+โ‹ฏ๏ฟฝ๏ฟฝ โˆผ lim๐‘ฅโ†’0

1 + ๐œ€ ๏ฟฝ1 โˆ’1๐‘ฅ๏ฟฝ

1๐ถ1

+ ๐œ€๐ถ2 โˆผ lim๐‘ฅโ†’0

1 + ๐œ€ ๏ฟฝ1 โˆ’1๐‘ฅ๏ฟฝ

Using ๐‘ฅ = ๐œ‰๐œ€ on the RHS, the above simplifies to

1๐ถ1

+ ๐œ€๐ถ2 โˆผ lim๐œ‰โ†’โˆž

1 + ๐œ€ ๏ฟฝ1 โˆ’1๐œ‰๐œ€๏ฟฝ

โˆผ lim๐œ‰โ†’โˆž

1 + ๏ฟฝ๐œ€ โˆ’1๐œ‰๏ฟฝ

โˆผ 1 + ๐œ€

141

Page 146: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore, ๐ถ1 = 1 and ๐ถ2 = 1. Hence the inner solution is

๐‘ฆ๐‘–๐‘› (๐œ‰) = ๐‘ฆ0 + ๐œ€๐‘ฆ1

=๐œ‰

1 + ๐œ‰+ ๐œ€

๐œ‰2 โˆ’ ๐œ‰(1 + ๐œ‰)2

Therefore

๐‘ฆuniform = ๐‘ฆ๐‘–๐‘› + ๐‘ฆ๐‘œ๐‘ข๐‘ก โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

=

๐‘ฆ๐‘–๐‘›๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐œ‰1 + ๐œ‰

+ ๐œ€๐œ‰2 โˆ’ ๐œ‰(1 + ๐œ‰)2

+

๐‘ฆ๐‘œ๐‘ข๐‘ก๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 + ๐œ€ ๏ฟฝ1 โˆ’

1๐‘ฅ๏ฟฝโˆ’ (1 + ๐œ€)

Writing everything in ๐‘ฅ, using ๐œ‰ = ๐‘ฅ๐œ€ the above becomes

๐‘ฆuniform =๐‘ฅ๐œ€

1 + ๐‘ฅ๐œ€

+ ๐œ€๐‘ฅ2

๐œ€2 โˆ’๐‘ฅ๐œ€

๏ฟฝ1 + ๐‘ฅ๐œ€๏ฟฝ2 + 1 + ๐œ€ ๏ฟฝ1 โˆ’

1๐‘ฅ๏ฟฝโˆ’ (1 + ๐œ€)

=๐‘ฅ

๐œ€ + ๐‘ฅ+

๐‘ฅ2 โˆ’ ๐‘ฅ๐œ€

๐œ€ ๏ฟฝ1 + ๐‘ฅ๐œ€๏ฟฝ2 + 1 + ๐œ€ โˆ’

๐œ€๐‘ฅโˆ’ 1 โˆ’ ๐œ€

=๐‘ฅ

๐œ€ + ๐‘ฅ+

๐‘ฅ2 โˆ’ ๐‘ฅ๐œ€

๐œ€ ๏ฟฝ1 + ๐‘ฅ๐œ€๏ฟฝ2 โˆ’

๐œ€๐‘ฅ+ ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ

The following is a plot of the above, using ๐œ€ = 1100 to compare with the exact solution.

In[192]:= y[x_, eps_] :=x

x + eps+

x2 - x eps

eps 1 +x

eps2-eps

x

p1 = Plot[{exactSol, y[x, 1 / 100]}, {x, 0.02, 1}, PlotRange โ†’ All, Frame โ†’ True,

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

FrameLabel โ†’ {{"y(x)", None}, {"x", "Exact solution vs. uniform solution found. 9.6 part(d)"}},

BaseStyle โ†’ 14, PlotStyle โ†’ {Red, Blue}, ImageSize โ†’ 400,

PlotLegends โ†’ {"exact", "uniform approximation"}]

Plot[y[x, 1 / 100], {x, 0, 1}, PlotRange โ†’ {{.05, 1}, Automatic}]

Out[193]=

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact solution vs. uniform solution found. 9.6 part(d)

exact

uniform approximation

142

Page 147: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Let us check if ๐‘ฆuniform (๐‘ฅ) satisfies ๐‘ฆ (1) = 1 or not.

๐‘ฆuniform (1) =1

๐œ€ + 1+

1 โˆ’ ๐œ€

๐œ€ ๏ฟฝ1 + 1๐œ€๏ฟฝ2 โˆ’ ๐œ€ + ๐‘‚ ๏ฟฝ๐œ€

2๏ฟฝ

=1 โˆ’ ๐œ€3 โˆ’ 3๐œ€2 + ๐œ€

(๐œ€ + 1)2

Taking the limit ๐œ€ โ†’ 0 gives 1. Therefore ๐‘ฆuniform (๐‘ฅ) satisfies ๐‘ฆ (1) = 1.

3.3.4 problem 9.9

problem Use boundary layer methods to find an approximate solution to initial value problem

๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ (๐‘ฅ) ๐‘ฆ = 0 (1)

๐‘ฆ (0) = 1๐‘ฆโ€ฒ (0) = 1

And ๐‘Ž > 0. Show that leading order uniform approximation satisfies ๐‘ฆ (0) = 1 but not ๐‘ฆโ€ฒ (0) = 1for arbitrary ๐‘. Compare leading order uniform approximation with the exact solution tothe problem when ๐‘Ž (๐‘ฅ) , ๐‘ (๐‘ฅ) are constants.

Solution

Since ๐‘Ž (๐‘ฅ) > 0 then we expect the boundary layer to be at ๐‘ฅ = 0. We start by finding ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ).

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting this into (1) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘Ž ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms with ๐‘‚ (1) results in

๐‘Ž๐‘ฆโ€ฒ0 โˆผ โˆ’๐‘๐‘ฆ0๐‘‘๐‘ฆ0๐‘‘๐‘ฅ

โˆผ โˆ’๐‘๐‘Ž๐‘ฆ0

This is separable

๏ฟฝ๐‘‘๐‘ฆ0๐‘ฆ0

โˆผ โˆ’๏ฟฝ๐‘ (๐‘ฅ)๐‘Ž (๐‘ฅ)

๐‘‘๐‘ฅ

ln ๏ฟฝ๐‘ฆ0๏ฟฝ โˆผ โˆ’๏ฟฝ๐‘ (๐‘ฅ)๐‘Ž (๐‘ฅ)

๐‘‘๐‘ฅ + ๐ถ

๐‘ฆ0 โˆผ ๐ถ๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

Now we find ๐‘ฆ๐‘–๐‘›. First we introduce interval variable

๐œ‰ =๐‘ฅ๐œ€๐‘

143

Page 148: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And transform the ODE. Since ๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. Hence ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and the ODE becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๐‘Ž (๐œ‰)๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€โˆ’๐‘ + ๐‘ (๐œ‰) ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐œ€โˆ’๐‘๐‘ฆโ€ฒ + ๐‘๐‘ฆ = 0

Balancing 1 โˆ’ 2๐‘ with โˆ’๐‘ shows that

๐‘ = 1

Hence

๐œ€โˆ’1๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐œ€โˆ’1๐‘ฆโ€ฒ + ๐‘๐‘ฆ = 0

Substituting ๐‘ฆ๐‘–๐‘› = โˆ‘โˆž๐‘›=0 ๐œ€

๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ in the above gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘Ž๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms with order ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives

๐‘ฆโ€ฒโ€ฒ0 โˆผ โˆ’๐‘Ž๐‘ฆโ€ฒ0Assuming ๐‘ง = ๐‘ฆโ€ฒ0 then the above becomes ๐‘งโ€ฒ โˆผ โˆ’๐‘Ž๐‘ง or ๐‘‘๐‘ง

๐‘‘๐œ‰ โˆผ โˆ’๐‘Ž๐‘ง. This is separable. The

solution is ๐‘‘๐‘ง๐‘ง โˆผ โˆ’๐‘Ž๐‘‘๐œ‰ or

ln |๐‘ง| โˆผ โˆ’๏ฟฝ๐œ‰

0๐‘Ž (๐‘ ) ๐‘‘๐‘  + ๐ถ1

๐‘ง โˆผ ๐ถ1๐‘’โˆ’โˆซ

๐œ‰0

๐‘Ž(๐‘ )๐‘‘๐‘ 

Hence๐‘‘๐‘ฆ0๐‘‘๐œ‰

โˆผ ๐ถ1๐‘’โˆ’โˆซ

๐œ‰0

๐‘Ž(๐‘ )๐‘‘๐‘ 

๐‘‘๐‘ฆ0 โˆผ ๏ฟฝ๐ถ1๐‘’โˆ’โˆซ

๐œ‰0

๐‘Ž(๐‘ )๐‘‘๐‘ ๏ฟฝ ๐‘‘๐œ‰

Integrating again

๐‘ฆ๐‘–๐‘›0 โˆผ๏ฟฝ๐œ‰

0๏ฟฝ๐ถ1๐‘’

โˆ’โˆซ๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๏ฟฝ ๐‘‘๐œ‚ + ๐ถ2

Applying initial conditions at ๐‘ฆ (0) since this is where the ๐‘ฆ๐‘–๐‘› exist. Using ๐‘ฆ๐‘–๐‘› (0) = 1 then theabove becomes

1 = ๐ถ2

144

Page 149: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence the solution becomes

๐‘ฆ๐‘–๐‘›0 โˆผ๏ฟฝ๐œ‰

0๏ฟฝ๐ถ1๐‘’

โˆ’โˆซ๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๏ฟฝ ๐‘‘๐œ‚ + 1

To apply the second initial condition, which is ๐‘ฆโ€ฒ (0) = 1, we first take derivative of the abovew.r.t. ๐œ‰

๐‘ฆโ€ฒ0 โˆผ ๐ถ1๐‘’โˆ’โˆซ

๐œ‰0

๐‘Ž(๐‘ )๐‘‘๐‘ 

Applying ๐‘ฆโ€ฒ0 (0) = 1 gives

1 = ๐ถ1

Hence

๐‘ฆ๐‘–๐‘›0 โˆผ 1 +๏ฟฝ๐œ‰

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚

Now to find constant of integration for ๐‘ฆ๐‘œ๐‘ข๐‘ก from earlier, we need to do matching.

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘›0 โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก0

lim๐œ‰โ†’โˆž

1 +๏ฟฝ๐œ‰

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚ โˆผ lim๐‘ฅโ†’0

๐ถ๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

On the LHS the integral โˆซ๐œ‰

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚ since ๐‘Ž > 0 and negative power on the exponential.So as ๐œ‰ โ†’ โˆž the integral value is zero. So we have now

1 โˆผ lim๐‘ฅโ†’0

๐ถ๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

Let lim๐‘ฅโ†’0 ๐‘’โˆ’โˆซ

๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  โ†’ ๐ธ, where ๐ธ is the value of the definite integral ๐ถ๐‘’โˆ’โˆซ

01

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ . Another

constant, which if we know ๐‘Ž (๐‘ฅ) , ๐‘ (๐‘ฅ) we can evaluate. Hence the above gives the value of ๐ถas

๐ถ =1๐ธ

The uniform solution can now be written as

๐‘ฆuniform = ๐‘ฆ๐‘–๐‘› + ๐‘ฆ๐‘œ๐‘ข๐‘ก โˆ’ ๐‘ฆmatch

= 1 +๏ฟฝ๐œ‰

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚ +1๐ธ๐‘’โˆ’โˆซ

๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  โˆ’ 1

= ๏ฟฝ๐œ‰

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚ +1๐ธ๐‘’โˆ’โˆซ

๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  (2)

Finally, we need to show that ๐‘ฆuniform (0) = 1 but not ๐‘ฆโ€ฒuniform (0) = 1. From (2), at ๐‘ฅ = 0 whichalso means ๐œ‰ = 0, since boundary layer at left side, equation (2) becomes

๐‘ฆuniform (0) = 0 +1๐ธ

lim๐‘ฅโ†’0

๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

But we said that lim๐‘ฅโ†’0 ๐‘’โˆ’โˆซ

๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘  = ๐ธ, therefore

๐‘ฆuniform (0) = 1

145

Page 150: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now we take derivative of (2) w.r.t. ๐‘ฅ and obtain

๐‘ฆโ€ฒuniform (๐‘ฅ) =๐‘‘๐‘‘๐‘ฅ

โŽ›โŽœโŽœโŽœโŽ๏ฟฝ

๐‘ฅ๐œ€

0๐‘’โˆ’โˆซ

๐œ‚0

๐‘Ž(๐‘ )๐‘‘๐‘ ๐‘‘๐œ‚โŽžโŽŸโŽŸโŽŸโŽ  +

1๐ธ๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ ๏ฟฝ

= ๐‘’โˆ’โˆซ๐‘ฅ๐œ€

0๐‘Ž(๐‘ )๐‘‘๐‘  โˆ’

1๐ธ๐‘ (๐‘ฅ)๐‘Ž (๐‘ฅ)

๐‘’โˆ’โˆซ๐‘ฅ1

๐‘(๐‘ )๐‘Ž(๐‘ )๐‘‘๐‘ 

And at ๐‘ฅ = 0 the above becomes

๐‘ฆโ€ฒuniform (0) = 1 โˆ’1๐ธ๐‘ (0)๐‘Ž (0)

The above is zero only if ๐‘ (0) = 0 (since we know ๐‘Ž (0) > 0). Therefore, we see that๐‘ฆโ€ฒuniform (0) โ‰  1 for any arbitrary ๐‘ (๐‘ฅ). Which is what we are asked to show.

Will now solve the whole problem again, when ๐‘Ž, ๐‘ are constants.

๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐‘ฆโ€ฒ + ๐‘๐‘ฆ = 0 (1A)

๐‘ฆ (0) = 1๐‘ฆโ€ฒ (0) = 1

And ๐‘Ž > 0. And compare leading order uniform approximation with the exact solution tothe problem when ๐‘Ž (๐‘ฅ) , ๐‘ (๐‘ฅ) are constants. Since ๐‘Ž > 0 then boundary layer will occur at๐‘ฅ = 0. We start by finding ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ).

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting this into (1) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘Ž ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms with ๐‘‚ (1) results in

๐‘Ž๐‘ฆโ€ฒ0 โˆผ โˆ’๐‘๐‘ฆ0๐‘‘๐‘ฆ0๐‘‘๐‘ฅ

โˆผ โˆ’๐‘๐‘Ž๐‘ฆ0

This is separable

๏ฟฝ๐‘‘๐‘ฆ0๐‘ฆ0

โˆผ โˆ’๐‘๐‘Ž๐‘‘๐‘ฅ

ln ๏ฟฝ๐‘ฆ0๏ฟฝ โˆผ โˆ’๐‘๐‘Ž๐‘ฅ + ๐ถ

๐‘ฆ๐‘œ๐‘ข๐‘ก0 โˆผ ๐ถ1๐‘’โˆ’ ๐‘๐‘Ž๐‘ฅ

Now we find ๐‘ฆ๐‘–๐‘›. First we introduce internal variable ๐œ‰ =๐‘ฅ๐œ€๐‘ and transform the ODE as we

did above. This results in

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘Ž๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0

Collecting terms with order ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives

๐‘ฆโ€ฒโ€ฒ0 โˆผ โˆ’๐‘Ž๐‘ฆโ€ฒ0

146

Page 151: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Assuming ๐‘ง = ๐‘ฆโ€ฒ0 then the above becomes ๐‘งโ€ฒ โˆผ โˆ’๐‘Ž๐‘ง or ๐‘‘๐‘ง๐‘‘๐œ‰ โˆผ โˆ’๐‘Ž๐‘ง. This is separable. The

solution is ๐‘‘๐‘ง๐‘ง โˆผ โˆ’๐‘Ž๐‘‘๐œ‰ or

ln |๐‘ง| โˆผ โˆ’๐‘Ž๐œ‰ + ๐ธ1๐‘ง โˆผ ๐ธ1๐‘’โˆ’๐‘Ž๐œ‰

Hence๐‘‘๐‘ฆ0๐‘‘๐œ‰

โˆผ ๐ธ1๐‘’โˆ’๐‘Ž๐œ‰

๐‘‘๐‘ฆ0 โˆผ ๐ธ1๐‘’โˆ’๐‘Ž๐œ‰๐‘‘๐œ‰

Integrating again

๐‘ฆ๐‘–๐‘›0 โˆผ ๐ธ1 ๏ฟฝโˆ’1๐‘Ž ๏ฟฝ

๐‘’โˆ’๐‘Ž๐œ‰ + ๐ธ2

Applying initial conditions at ๐‘ฆ (0) since this is where the ๐‘ฆ๐‘–๐‘› exist. Using ๐‘ฆ๐‘–๐‘› (0) = 1 then theabove becomes

1 = ๐ธ1 ๏ฟฝโˆ’1๐‘Ž ๏ฟฝ

+ ๐ธ2

๐‘Ž (๐ธ2 โˆ’ 1) = ๐ธ1Hence the solution becomes

๐‘ฆ๐‘–๐‘›0 โˆผ (1 โˆ’ ๐ธ2) ๐‘’โˆ’๐‘Ž๐œ‰ + ๐ธ2 (1B)

To apply the second initial condition, which is ๐‘ฆโ€ฒ (0) = 1, we first take derivative of the abovew.r.t. ๐œ‰

๐‘ฆโ€ฒ0 โˆผ โˆ’๐‘Ž (1 โˆ’ ๐ธ2) ๐‘’โˆ’๐‘Ž๐œ‰

Hence ๐‘ฆโ€ฒ (0) = 1 gives

1 = โˆ’๐‘Ž (1 โˆ’ ๐ธ2)1 = โˆ’๐‘Ž + ๐‘Ž๐ธ2

๐ธ2 =1 + ๐‘Ž๐‘Ž

And the solution ๐‘ฆ๐‘–๐‘› in (1B) becomes

๐‘ฆ๐‘–๐‘›0 โˆผ ๏ฟฝ1 โˆ’1 + ๐‘Ž๐‘Ž ๏ฟฝ ๐‘’โˆ’๐‘Ž๐œ‰ +

1 + ๐‘Ž๐‘Ž

โˆผ ๏ฟฝโˆ’1๐‘Ž ๏ฟฝ

๐‘’โˆ’๐‘Ž๐œ‰ +1 + ๐‘Ž๐‘Ž

โˆผ(1 + ๐‘Ž) โˆ’ ๐‘’โˆ’๐‘Ž๐œ‰

๐‘Ž

147

Page 152: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now to find constant of integration for ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) from earlier, we need to do matching.

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘›0 โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก0

lim๐œ‰โ†’โˆž

(1 + ๐‘Ž) โˆ’ ๐‘’โˆ’๐‘Ž๐œ‰

๐‘Žโˆผ lim

๐‘ฅโ†’0๐ถ1๐‘’

โˆ’ ๐‘๐‘Ž๐‘ฅ

1 + ๐‘Ž๐‘Ž

โˆผ ๐ถ1

Hence now the uniform solution can be written as

๐‘ฆuniform (๐‘ฅ) โˆผ ๐‘ฆ๐‘–๐‘› + ๐‘ฆ๐‘œ๐‘ข๐‘ก โˆ’ ๐‘ฆmatch

โˆผ

๐‘ฆ๐‘–๐‘›๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(1 + ๐‘Ž) โˆ’ ๐‘’โˆ’๐‘Ž

๐‘ฅ๐œ€

๐‘Ž+

๐‘ฆ๐‘œ๐‘ข๐‘ก๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 + ๐‘Ž๐‘Ž

๐‘’โˆ’๐‘๐‘Ž๐‘ฅ โˆ’

1 + ๐‘Ž๐‘Ž

โˆผ(1 + ๐‘Ž)๐‘Ž

โˆ’๐‘’โˆ’๐‘Ž

๐‘ฅ๐œ€

๐‘Ž+1 + ๐‘Ž๐‘Ž

๐‘’โˆ’๐‘๐‘Ž๐‘ฅ โˆ’

1 + ๐‘Ž๐‘Ž

โˆผ โˆ’๐‘’โˆ’๐‘Ž

๐‘ฅ๐œ€

๐‘Ž+1 + ๐‘Ž๐‘Ž

๐‘’โˆ’๐‘๐‘Ž๐‘ฅ

โˆผ1๐‘Ž๏ฟฝ(1 + ๐‘Ž) ๐‘’โˆ’

๐‘๐‘Ž๐‘ฅ โˆ’ ๐‘’โˆ’๐‘Ž

๐‘ฅ๐œ€ ๏ฟฝ (2A)

Now we compare the above, which is the leading order uniform approximation, to the exactsolution. Since now ๐‘Ž, ๐‘ are constants, then the exact solution is

๐‘ฆ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก (๐‘ฅ) = ๐ด๐‘’๐œ†1๐‘ฅ + ๐ต๐‘’๐œ†2๐‘ฅ (3)

Where ๐œ†1,2 are roots of characteristic equation of ๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘Ž๐‘ฆโ€ฒ + ๐‘๐‘ฆ = 0. These are ๐œ† = โˆ’๐‘Ž2๐œ€ ยฑ

12๐œ€โˆš๐‘Ž

2 โˆ’ 4๐œ€๐‘. Hence

๐œ†1 =โˆ’๐‘Ž2+12โˆš๐‘Ž2 โˆ’ 4๐œ€๐‘

๐œ†2 =โˆ’๐‘Ž2โˆ’12โˆš๐‘Ž2 โˆ’ 4๐œ€๐‘

Applying initial conditions to (3). ๐‘ฆ (0) = 1 gives

1 = ๐ด + ๐ต๐ต = 1 โˆ’ ๐ด

And solution becomes ๐‘ฆ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก (๐‘ฅ) = ๐ด๐‘’๐œ†1๐‘ฅ + (1 โˆ’ ๐ด) ๐‘’๐œ†2๐‘ฅ. Taking derivatives gives

๐‘ฆโ€ฒ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก (๐‘ฅ) = ๐ด๐œ†1๐‘’๐œ†1๐‘ฅ + (1 โˆ’ ๐ด) ๐œ†2๐‘’๐œ†2๐‘ฅ

Using ๐‘ฆโ€ฒ (0) = 1 gives

1 = ๐ด๐œ†1 + (1 โˆ’ ๐ด) ๐œ†21 = ๐ด (๐œ†1 โˆ’ ๐œ†2) + ๐œ†2

๐ด =1 โˆ’ ๐œ†2๐œ†1 โˆ’ ๐œ†2

148

Page 153: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore, ๐ต = 1 โˆ’ 1โˆ’๐œ†2๐œ†1โˆ’๐œ†2

and the exact solution becomes

๐‘ฆ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก (๐‘ฅ) =1 โˆ’ ๐œ†2๐œ†1 โˆ’ ๐œ†2

๐‘’๐œ†1๐‘ฅ + ๏ฟฝ1 โˆ’1 โˆ’ ๐œ†2๐œ†1 โˆ’ ๐œ†2

๏ฟฝ ๐‘’๐œ†2๐‘ฅ

=1 โˆ’ ๐œ†2๐œ†1 โˆ’ ๐œ†2

๐‘’๐œ†1๐‘ฅ + ๏ฟฝ(๐œ†1 โˆ’ ๐œ†2) โˆ’ (1 โˆ’ ๐œ†2)

๐œ†1 โˆ’ ๐œ†2๏ฟฝ ๐‘’๐œ†2๐‘ฅ

=1 โˆ’ ๐œ†2๐œ†1 โˆ’ ๐œ†2

๐‘’๐œ†1๐‘ฅ + ๏ฟฝ๐œ†1 โˆ’ 1๐œ†1 โˆ’ ๐œ†2

๏ฟฝ ๐‘’๐œ†2๐‘ฅ (4)

While the uniform solution above was found to be 1๐‘Ž๏ฟฝ(1 + ๐‘Ž) ๐‘’โˆ’

๐‘๐‘Ž๐‘ฅ โˆ’ ๐‘’โˆ’๐‘Ž

๐‘ฅ๐œ€ ๏ฟฝ. Here is a plot

of the exact solution above, for ๐œ€ = {1/10, 1/50, 1/100} , and for some values for ๐‘Ž, ๐‘ such as๐‘Ž = 1, ๐‘ = 10 in order to compare with the uniform solution. Note that the uniform solutionis ๐‘‚ (๐œ€). As ๐œ€ becomes smaller, the leading order uniform solution will better approximatethe exact solution. At ๐œ€ = 0.01 the uniform approximation gives very good approximation.This is using only leading term approximation.

In[134]:= ClearAll[x, y]

eps = 1/ 10; a = 1; b = 10;

mySol = 1/ a ((1 + a)* Exp[-b/ a x] - Exp[-a x/ eps]);

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] โฉต 0, y[0] โฉต 1, y'[0] โฉต 1}, y[x], x]

Out[137]=15โ…‡-5 x

5 Cos5 3 x + 2 3 Sin5 3 x

In[125]:= Plot[{sol, mySol}, {x, 0, 1}, PlotRange โ†’ All, PlotStyle โ†’ {Blue, Red}, PlotLegends โ†’ {"Exact", "approximation"},

Frame โ†’ True, FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for ฯต =", eps}]}},

BaseStyle โ†’ 14, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray]

Out[125]=

0.0 0.2 0.4 0.6 0.8 1.0-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for ฯต = 1

10

Exact

approximation

149

Page 154: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[126]:= ClearAll[x, y]

eps = 1/ 50; a = 1; b = 10;

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] โฉต 0, y[0] โฉต 1, y'[0] โฉต 1}, y[x], x]

Plot[{sol, mySol}, {x, 0, 1}, PlotRange โ†’ All, PlotStyle โ†’ {Blue, Red}, PlotLegends โ†’ {"Exact", "approximation"},

Frame โ†’ True, FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for ฯต =", eps}]}},

BaseStyle โ†’ 14, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray]

Out[128]=150

25 โ…‡-25-5 5 x- 26 5 โ…‡

-25-5 5 x+ 25 โ…‡-25+5 5 x

+ 26 5 โ…‡-25+5 5 x

Out[129]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for ฯต = 1

50

Exact

approximation

In[130]:= ClearAll[x, y]

eps = 1/ 100; a = 1; b = 10;

sol = y[x] /. First@DSolve[{eps y''[x] + a y'[x] + b y[x] โฉต 0, y[0] โฉต 1, y'[0] โฉต 1}, y[x], x]

Plot[{sol, mySol}, {x, 0, 1}, PlotRange โ†’ All, PlotStyle โ†’ {Blue, Red}, PlotLegends โ†’ {"Exact", "approximation"},

Frame โ†’ True, FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for ฯต =", eps}]}},

BaseStyle โ†’ 14, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray]

Out[132]=1100

50 โ…‡-50-10 15 x- 17 15 โ…‡

-50-10 15 x+ 50 โ…‡-50+10 15 x

+ 17 15 โ…‡-50+10 15 x

Out[133]=

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y(x)

Exact vs. approximation for ฯต = 1

100

Exact

approximation

3.3.5 problem 9.15(b)

Problem Find first order uniform approximation valid as ๐œ€ โ†’ 0+ for 0 โ‰ค ๐‘ฅ โ‰ค 1

๐œ€๐‘ฆโ€ฒโ€ฒ + ๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ โˆ’ ๐‘ฅ3๐‘ฆ = 0 (1)

๐‘ฆ (0) = 1๐‘ฆ (1) = 1

Solution

Since ๐‘Ž (๐‘ฅ) = ๏ฟฝ๐‘ฅ2 + 1๏ฟฝ is positive for 0 โ‰ค ๐‘ฅ โ‰ค 1, therefore we expect the boundary layer to be

150

Page 155: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

on the left side at ๐‘ฅ = 0. Assuming this is the case for now (if it is not, then we expect notto be able to do the matching). We start by finding ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ).

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting this into (1) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ โˆ’ ๐‘ฅ3 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0 (2)

Collecting terms with ๐‘‚ (1) results in๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ0 โˆผ ๐‘ฅ3๐‘ฆ0

๐‘‘๐‘ฆ0๐‘‘๐‘ฅ

โˆผ๐‘ฅ3

๏ฟฝ๐‘ฅ2 + 1๏ฟฝ๐‘ฆ0

This is separable.

๏ฟฝ๐‘‘๐‘ฆ0๐‘ฆ0

โˆผ๏ฟฝ๐‘ฅ3

๏ฟฝ๐‘ฅ2 + 1๏ฟฝ๐‘‘๐‘ฅ

ln ๏ฟฝ๐‘ฆ0๏ฟฝ โˆผ๏ฟฝ๐‘ฅ โˆ’๐‘ฅ

1 + ๐‘ฅ2๐‘‘๐‘ฅ

โˆผ๐‘ฅ2

2โˆ’12

ln ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ + ๐ถ

Hence

๐‘ฆ0 โˆผ ๐‘’๐‘ฅ22 โˆ’ 1

2 ln๏ฟฝ1+๐‘ฅ2๏ฟฝ+๐ถ

โˆผ๐ถ๐‘’

๐‘ฅ22

โˆš1 + ๐‘ฅ2

Applying ๐‘ฆ๐‘œ๐‘ข๐‘ก0 (1) = 1 to the above (since this is where the outer solution is), we solve for ๐ถ

1 โˆผ๐ถ๐‘’

12

โˆš2

๐ถ โˆผ โˆš2๐‘’โˆ’12

Therefore

๐‘ฆ๐‘œ๐‘ข๐‘ก0 โˆผ โˆš2๐‘’โˆ’12 ๐‘’

๐‘ฅ22

โˆš1 + ๐‘ฅ2

โˆผ๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

Now we need to find ๐‘ฆ๐‘œ๐‘ข๐‘ก1 . From (2), but now collecting terms in ๐‘‚ (๐œ€) gives

๐‘ฆโ€ฒโ€ฒ0 + ๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ1 โˆฝ ๐‘ฅ3๐‘ฆ1 (3)

151

Page 156: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In the above ๐‘ฆโ€ฒโ€ฒ0 is known.

๐‘ฆโ€ฒ0 (๐‘ฅ) = ๏ฟฝ2๐‘’๐‘‘๐‘‘๐‘ฅ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=๏ฟฝ2๐‘’

๐‘ฅ3๐‘’๐‘ฅ22

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ32

And

๐‘ฆโ€ฒโ€ฒ0 (๐‘ฅ) = ๏ฟฝ2๐‘’๐‘ฅ2๐‘’

๐‘ฅ22 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ52

Hence (3) becomes

๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ1 โˆฝ ๐‘ฅ3๐‘ฆ1 โˆ’ ๐‘ฆโ€ฒโ€ฒ0

๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ1 โˆฝ ๐‘ฅ3๐‘ฆ1 โˆ’๏ฟฝ2๐‘’๐‘ฅ2๐‘’

๐‘ฅ22 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ52

๐‘ฆโ€ฒ1 โˆ’๐‘ฅ3

๏ฟฝ๐‘ฅ2 + 1๏ฟฝ๐‘ฆ1 โˆฝ โˆ’๏ฟฝ

2๐‘’๐‘ฅ2๐‘’

๐‘ฅ22 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ72

Integrating factor is ๐œ‡ = ๐‘’โˆ’โˆซ ๐‘ฅ3

๏ฟฝ๐‘ฅ2+1๏ฟฝ๐‘‘๐‘ฅ= ๐‘’โˆ’

๐‘ฅ22 + 1

2 ln๏ฟฝ1+๐‘ฅ2๏ฟฝ = ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ12 ๐‘’

โˆ’๐‘ฅ22 , hence the above becomes

๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ12 ๐‘’

โˆ’๐‘ฅ22 ๐‘ฆ1๏ฟฝ โˆฝ โˆ’๏ฟฝ

2๐‘’๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

12 ๐‘’

โˆ’๐‘ฅ22๐‘ฅ2๐‘’

๐‘ฅ22 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ72

โˆฝ โˆ’๏ฟฝ2๐‘’๐‘ฅ2 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ3

Integrating gives (with help from CAS)

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ12 ๐‘’

โˆ’๐‘ฅ22 ๐‘ฆ1 (๐‘ฅ) โˆฝ โˆ’๏ฟฝ

2๐‘’ ๏ฟฝ

๐‘ฅ2 ๏ฟฝ๐‘ฅ4 + ๐‘ฅ2 + 3๏ฟฝ

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ3 ๐‘‘๐‘ฅ

โˆฝ โˆ’๏ฟฝ2๐‘’ ๏ฟฝ

1 โˆ’3

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ3 +

4

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

21 + ๐‘ฅ2

๐‘‘๐‘ฅ

โˆฝ โˆ’๏ฟฝ2๐‘’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘ฅ โˆ’

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 +

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โˆ’ 9arctan (๐‘ฅ)

8

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  + ๐ถ1

152

Page 157: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence

๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ) โˆฝ โˆ’๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ12

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘ฅ โˆ’

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 +

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โˆ’ 9arctan (๐‘ฅ)

8

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  + ๐ถ1

๐‘’๐‘ฅ22

๏ฟฝ1 + ๐‘ฅ2๏ฟฝ12

Now we find ๐ถ1 from boundary conditions ๐‘ฆ1 (1) = 0. (notice the BC now is ๐‘ฆ1 (1) = 0 andnot ๐‘ฆ1 (1) = 1, since we used ๐‘ฆ1 (1) = 1 already).

๏ฟฝ2๐‘’

๐‘’12

(1 + 1)12๏ฟฝ1 โˆ’

34 (1 + 1)2

+7

8 (1 + 1)โˆ’ 9

arctan (1)8 ๏ฟฝ = ๐ถ1

๐‘’12

(1 + 1)12

๏ฟฝ2๐‘’๐‘’12

โˆš2๏ฟฝ1 โˆ’

316+716โˆ’98

arctan (1)๏ฟฝ = ๐ถ1๐‘’12

โˆš2Simplifying

1 โˆ’316+716โˆ’98

arctan (1) = ๐ถ1๐‘’12

โˆš2

๐ถ1 = ๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’98

arctan (1)๏ฟฝ

๐ถ1 = ๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

= 0.31431

Hence

๐‘ฆ๐‘œ๐‘ข๐‘ก1 โˆผ โˆ’๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

๏ฟฝ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘ฅ โˆ’

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 +

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โˆ’98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  +๏ฟฝ

2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

๐‘’๐‘ฅ22

๏ฟฝ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โˆผ๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

๏ฟฝ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ โˆ’

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘ฅ โˆ’

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 +

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โˆ’98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

๏ฟฝ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

153

Page 158: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Hence

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆผ ๐‘ฆ๐‘œ๐‘ข๐‘ก0 + ๐œ€๐‘ฆ๐‘œ๐‘ข๐‘ก1

โˆผ๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2+ ๐œ€

๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

๏ฟฝ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  + ๐‘‚ ๏ฟฝ๐œ€

2๏ฟฝ

โˆผ๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ1 + ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  + ๐‘‚ ๏ฟฝ๐œ€

2๏ฟฝ

(3A)

Now that we found ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ), we need to find ๐‘ฆ๐‘–๐‘› (๐‘ฅ) and then do the matching and the finduniform approximation. Since the boundary layer at ๐‘ฅ = 0, we introduce inner variable ๐œ‰ = ๐‘ฅ

๐œ€๐‘and then express the original ODE using this new variable. We also need to determine ๐‘ inthe above expression. Since ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. Hence ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and the ODE ๐œ€๐‘ฆโ€ฒโ€ฒ + ๏ฟฝ๐‘ฅ2 + 1๏ฟฝ ๐‘ฆโ€ฒ โˆ’ ๐‘ฅ3๐‘ฆ = 0 now becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ(๐œ‰๐œ€๐‘)2 + 1๏ฟฝ ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ (๐œ‰๐œ€๐‘)3 ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ๐œ‰2๐œ€๐‘ + ๐œ€โˆ’๐‘๏ฟฝ๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ ๐œ‰3๐œ€3๐‘๐‘ฆ = 0

The largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, ๐œ€โˆ’๐‘๏ฟฝ, therefore matching them gives ๐‘ = 1. The ODE nowbecomes

๐œ€โˆ’1๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ๐œ‰2๐œ€ + ๐œ€โˆ’1๏ฟฝ๐‘‘๐‘ฆ๐‘‘๐œ‰

โˆ’ ๐œ‰3๐œ€3๐‘ฆ = 0 (4)

Assuming that

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

And substituting the above into (4) gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐œ‰2๐œ€ + ๐œ€โˆ’1๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ โˆ’ ๐œ‰3๐œ€3 ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0 (4A)

Collecting terms in ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives

๐‘ฆโ€ฒโ€ฒ0 โˆฝ โˆ’๐‘ฆโ€ฒ0

154

Page 159: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Letting ๐‘ง = ๐‘ฆโ€ฒ0, the above becomes๐‘‘๐‘ง๐‘‘๐œ‰

โˆฝ โˆ’๐‘ง

๐‘‘๐‘ง๐‘งโˆฝ โˆ’๐‘‘๐œ‰

ln |๐‘ง| โˆฝ โˆ’๐œ‰ + ๐ถ1

๐‘ง โˆฝ ๐ถ1๐‘’โˆ’๐œ‰

Hence๐‘‘๐‘ฆ0๐‘‘๐œ‰

โˆฝ ๐ถ1๐‘’โˆ’๐œ‰

๐‘ฆ0 โˆฝ ๐ถ1๏ฟฝ๐‘’โˆ’๐œ‰๐‘‘๐œ‰ + ๐ถ2

โˆฝ โˆ’๐ถ1๐‘’โˆ’๐œ‰ + ๐ถ2 (5)

Applying boundary conditions ๐‘ฆ๐‘–๐‘›0 (0) = 1 gives

1 = โˆ’๐ถ1 + ๐ถ2

๐ถ2 = 1 + ๐ถ1

And (5) becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆฝ โˆ’๐ถ1๐‘’โˆ’๐œ‰ + (1 + ๐ถ1)

โˆฝ 1 + ๐ถ1 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ (6)

We now find ๐‘ฆ๐‘–๐‘›1 . Going back to (4) and collecting terms in ๐‘‚ (1) gives the ODE

๐‘ฆโ€ฒโ€ฒ1 โˆฝ ๐‘ฆโ€ฒ1This is the same ODE we solved above. But it will have di๏ฟฝerent B.C. Hence

๐‘ฆ๐‘–๐‘›1 โˆฝ โˆ’๐ถ3๐‘’โˆ’๐œ‰ + ๐ถ4

Applying boundary conditions ๐‘ฆ๐‘–๐‘›1 (0) = 0 gives

0 = โˆ’๐ถ3 + ๐ถ4

๐ถ3 = ๐ถ4

Therefore

๐‘ฆ๐‘–๐‘›1 โˆฝ โˆ’๐ถ3๐‘’โˆ’๐œ‰ + ๐ถ3

โˆฝ ๐ถ3 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

Now we have the leading order ๐‘ฆ๐‘–๐‘›

๐‘ฆ๐‘–๐‘› (๐œ‰) = ๐‘ฆ๐‘–๐‘›0 + ๐œ€๐‘ฆ๐‘–๐‘›1= 1 + ๐ถ1 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€๐ถ3 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ (7)

155

Page 160: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Now we are ready to do the matching between (7) and (3A)

lim๐œ‰โ†’โˆž

1 + ๐ถ1 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€๐ถ3 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ โˆผ

lim๐‘ฅโ†’0๏ฟฝ

2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ1 + ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Or

1+๐ถ1+๐œ€๐ถ3 โˆผ๏ฟฝ2๐‘’

lim๐‘ฅโ†’0

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2+๏ฟฝ2๐‘’๐œ€ lim๐‘ฅโ†’0

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

But lim๐‘ฅโ†’0๐‘’๐‘ฅ22

โˆš1+๐‘ฅ2โ†’ 1, lim๐‘ฅโ†’0

3๐‘ฅ

4๏ฟฝ1+๐‘ฅ2๏ฟฝ2 โ†’ 0 lim๐‘ฅโ†’0

7๐‘ฅ8๏ฟฝ1+๐‘ฅ2๏ฟฝ

โ†’ 0 therefore the above becomes

1 + ๐ถ1 + ๐œ€๐ถ3 โˆผ๏ฟฝ2๐‘’+๏ฟฝ2๐‘’๐œ€ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

Hence

1 + ๐ถ1 = ๏ฟฝ2๐‘’

๐ถ1 = ๏ฟฝ2๐‘’โˆ’ 1

๐ถ3 = ๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

This means that

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ 1 + ๐ถ1 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€๐ถ3 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

โˆผ 1 +โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ

2๐‘’โˆ’ 1โŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ1 โˆ’ ๐‘’

โˆ’๐œ‰๏ฟฝ + ๐œ€๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

Therefore

๐‘ฆuniform(๐‘ฅ) โˆผ ๐‘ฆ๐‘–๐‘› (๐œ‰) + ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

โˆผ 1 +โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ

2๐‘’โˆ’ 1โŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ1 โˆ’ ๐‘’

โˆ’๐œ‰๏ฟฝ + ๐œ€๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

+๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ1 + ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆ’โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ

2๐‘’+๏ฟฝ2๐‘’๐œ€ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

156

Page 161: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Or (replacing ๐œ‰ by ๐‘ฅ๐œ€ and simplifying)

๐‘ฆuniform(๐‘ฅ) โˆผ 1 +โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ

2๐‘’โˆ’ 1โŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ1 โˆ’ ๐‘’

โˆ’๐œ‰๏ฟฝ โˆ’ ๐‘’โˆ’๐œ‰๐œ€๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

+๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ1 + ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆ’๏ฟฝ2๐‘’

Or

๐‘ฆuniform(๐‘ฅ) โˆผ โˆ’๏ฟฝ2๐‘’๐‘’โˆ’๐œ‰ + ๐‘’โˆ’๐œ‰ โˆ’ ๐‘’โˆ’๐œ‰๐œ€

๏ฟฝ2๐‘’ ๏ฟฝ54โˆ’932๐œ‹๏ฟฝ

+๏ฟฝ2๐‘’

๐‘’๐‘ฅ22

โˆš1 + ๐‘ฅ2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ1 + ๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ54โˆ’932๐œ‹ โˆ’ ๐‘ฅ +

3๐‘ฅ

4 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ2 โˆ’

7๐‘ฅ8 ๏ฟฝ1 + ๐‘ฅ2๏ฟฝ

+98

arctan (๐‘ฅ)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

To check validity of the above solution, the approximate solution is plotted against thenumerical solution for di๏ฟฝerent values of ๐œ€ = {0.1, 0.05, 0.01}. This shows very good agreementwith the numerical solution. At ๐œ€ = 0.01 the solutions are almost the same.

ClearAll[x, y, ฯต];

ฯต = 0.01;

r =2

Exp[1];

ode = ฯต y''[x] + x2 + 1 y'[x] - x3 y[x] โฉต 0;

sol = First@NDSolve[{ode, y[0] โฉต 1, y[1] โฉต 1}, y, {x, 0, 1}];

p1 = Plot[Evaluate[y[x] /. sol], {x, 0, 1}];

mysol[x_, ฯต_] := -r Exp-x

ฯต + Exp

-x

ฯต - ฯต r

5

4-

9

32ฯ€ + r

Exp x2

2

1 + x2

1 + ฯต5

4-

9

32ฯ€ - x +

3 x

4 1 + x2

2-

7 x

8 1 + x2

+9

8ArcTan[x] ;

p2 = Plot[{Evaluate[y[x] /. sol], mysol[x, ฯต]}, {x, 0, 1}, Frame โ†’ True, PlotStyle โ†’ {Red, Blue},

FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"Comparing numerical and apprxoimation, using ฯต = ", N@ฯต}]}}, GridLines โ†’ Automatic,

GridLinesStyle โ†’ LightGray, PlotLegends โ†’ {"Approximation", "Numerical"}, BaseStyle โ†’ 14, ImageSize โ†’ 400]

157

Page 162: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[145]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using ฯต = 0.1

Approximation

Numerical

Out[153]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using ฯต = 0.05

Approximation

Numerical

158

Page 163: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Out[161]=

0.0 0.2 0.4 0.6 0.8 1.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

x

y(x)

Comparing numerical and apprxoimation, using ฯต = 0.01

Approximation

Numerical

3.3.6 problem 9.19

Problem Find lowest order uniform approximation to boundary value problem

๐œ€๐‘ฆโ€ฒโ€ฒ + (sin ๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ฆ sin (2๐‘ฅ) = 0๐‘ฆ (0) = ๐œ‹๐‘ฆ (๐œ‹) = 0

Solution

We expect a boundary layer at left end at ๐‘ฅ = 0. Therefore, we need to find ๐‘ฆ๐‘–๐‘› (๐œ‰) , ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) ,where ๐œ‰ is an inner variable defined by ๐œ‰ = ๐‘ฅ

๐œ€๐‘ .

159

Page 164: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

x0 ฯ€

ฮถ ฮท

leftboundarylayer

outer region

matching at these locations

rightboundarylayer

Finding ๐‘ฆ๐‘–๐‘› (๐œ‰)

At ๐‘ฅ = 0, we introduce inner variable ๐œ‰ = ๐‘ฅ๐œ€๐‘ and then express the original ODE using this

new variable. We also need to determine ๐‘ in the above expression. Since ๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then

๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. Hence ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Therefore ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and the ODE ๐œ€๐‘ฆโ€ฒโ€ฒ + (sin ๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ฆ sin (2๐‘ฅ) = 0 now becomes

๐œ€๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ (sin (๐œ‰๐œ€๐‘)) ๐œ€โˆ’๐‘ ๐‘‘๐‘ฆ๐‘‘๐œ‰

+ sin (2๐œ‰๐œ€๐‘) ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ (sin (๐œ‰๐œ€๐‘)) ๐œ€โˆ’๐‘ ๐‘‘๐‘ฆ๐‘‘๐œ‰

+ sin (2๐œ‰๐œ€๐‘) ๐‘ฆ = 0

160

Page 165: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Expanding the sin terms in the above, in Taylor series around zero, sin (๐‘ฅ) = ๐‘ฅ โˆ’ ๐‘ฅ3

3! +โ‹ฏ gives

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+โŽ›โŽœโŽœโŽœโŽ๐œ‰๐œ€๐‘ โˆ’

(๐œ‰๐œ€๐‘)3

3!+โ‹ฏ

โŽžโŽŸโŽŸโŽŸโŽ  ๐œ€โˆ’๐‘

๐‘‘๐‘ฆ๐‘‘๐œ‰

+โŽ›โŽœโŽœโŽœโŽ2๐œ‰๐œ€๐‘ โˆ’

(2๐œ‰๐œ€๐‘)3

3!+โ‹ฏ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2

+ ๏ฟฝ๐œ‰ โˆ’๐œ‰3๐œ€2๐‘

3!+โ‹ฏ๏ฟฝ

๐‘‘๐‘ฆ๐‘‘๐œ‰

+โŽ›โŽœโŽœโŽœโŽ2๐œ‰๐œ€๐‘ โˆ’

(2๐œ‰๐œ€๐‘)3

3!+โ‹ฏ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฆ = 0

Then the largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, 1๏ฟฝ, therefore 1 โˆ’ 2๐‘ = 0 or

๐‘ = 12

The ODE now becomes

๐‘ฆโ€ฒโ€ฒ + ๏ฟฝ๐œ‰ โˆ’๐œ‰3๐œ€3!

+โ‹ฏ๏ฟฝ ๐‘ฆโ€ฒ +

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ2๐œ‰โˆš๐œ€ โˆ’

๏ฟฝ2๐œ‰โˆš๐œ€๏ฟฝ3

3!+โ‹ฏ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘ฆ = 0 (1)

Assuming that

๐‘ฆ๐‘™๐‘’๐‘“๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Then (1) becomes

๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐œ‰ โˆ’๐œ‰3๐œ€3!

+โ‹ฏ๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ +

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ2๐œ‰โˆš๐œ€ โˆ’

๏ฟฝ2๐œ‰โˆš๐œ€๏ฟฝ3

3!+โ‹ฏ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

Collecting terms in ๐‘‚ (1) gives the balance

๐‘ฆโ€ฒโ€ฒ0 (๐œ‰) โˆผ โˆ’๐œ‰๐‘ฆโ€ฒ0 (๐œ‰)๐‘ฆ0 (0) = ๐œ‹

Assuming ๐‘ง = ๐‘ฆโ€ฒ0, then

๐‘งโ€ฒ โˆผ โˆ’๐œ‰๐‘ง๐‘‘๐‘ง๐‘ง

โˆผ โˆ’๐œ‰

ln |๐‘ง| โˆผ โˆ’๐œ‰2

2+ ๐ถ1

๐‘ง โˆผ ๐ถ1๐‘’โˆ’๐œ‰22

Therefore ๐‘ฆโ€ฒ0 โˆผ ๐ถ1๐‘’โˆ’๐œ‰22 . Hence

๐‘ฆ0 (๐œ‰) โˆผ ๐ถ1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐ถ2

With boundary conditions ๐‘ฆ (0) = ๐œ‹. Hence

๐œ‹ = ๐ถ2

161

Page 166: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And the solution becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ ๐ถ1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐œ‹ (2)

Now we need to find ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ). Assuming that

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Then ๐œ€๐‘ฆโ€ฒโ€ฒ + (sin ๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ฆ sin (2๐‘ฅ) = 0 becomes

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + sin (๐‘ฅ) ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + sin (2๐‘ฅ) ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0Collecting terms in ๐‘‚ (1) gives the balance

sin (๐‘ฅ) ๐‘ฆโ€ฒ0 (๐‘ฅ) โˆผ โˆ’ sin (2๐‘ฅ) ๐‘ฆ0 (๐‘ฅ)๐‘‘๐‘ฆ0๐‘ฆ0

โˆผ โˆ’sin (2๐‘ฅ)sin (๐‘ฅ) ๐‘‘๐‘ฅ

ln ๏ฟฝ๐‘ฆ0๏ฟฝ โˆผ โˆ’๏ฟฝsin (2๐‘ฅ)sin (๐‘ฅ) ๐‘‘๐‘ฅ

โˆผ โˆ’๏ฟฝ2 sin ๐‘ฅ cos ๐‘ฅ

sin (๐‘ฅ) ๐‘‘๐‘ฅ

โˆผ โˆ’๏ฟฝ2 cos ๐‘ฅ๐‘‘๐‘ฅ

โˆผ โˆ’2 sin ๐‘ฅ + ๐ถ5

Hence

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) โˆผ ๐ด๐‘’โˆ’2 sin ๐‘ฅ

๐‘ฆ0 (๐œ‹) = 0

Therefore ๐ด = 0 and ๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) = 0.Now that we found all solutions, we can do the matching.The matching on the left side gives

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› (๐œ‰) = lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐œ‰โ†’โˆž

๐ถ1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐œ‹ = lim

๐‘ฅโ†’0๐ถ5๐‘’โˆ’2 sin ๐‘ฅ

lim๐œ‰โ†’โˆž

๐ถ1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐œ‹ = 0 (3)

But

๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  =

๏ฟฝ๐œ‹2

erf ๏ฟฝ๐œ‰

โˆš2๏ฟฝ

162

Page 167: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

And lim๐œ‰โ†’โˆž erf ๏ฟฝ ๐œ‰

โˆš2๏ฟฝ = 1, hence (3) becomes

๐ถ1๏ฟฝ๐œ‹2+ ๐œ‹ = 0

๐ถ1 = โˆ’๐œ‹๏ฟฝ2๐œ‹

= โˆ’โˆš2๐œ‹ (4)

Therefore from (2)

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ โˆ’โˆš2๐œ‹๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐œ‹ (5)

Near ๐‘ฅ = ๐œ‹, using ๐œ‚ = ๐œ‹โˆ’๐‘ฅ๐œ€๐‘ . Expansion ๐‘ฆ

๐‘–๐‘› ๏ฟฝ๐œ‚๏ฟฝ โˆผ ๐‘ฆ0 ๏ฟฝ๐œ‚๏ฟฝ + ๐œ€๐‘ฆ1 ๏ฟฝ๐œ‚๏ฟฝ + ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ gives ๐‘ =12 . Hence

๐‘‚ (1) terms gives

๐‘ฆโ€ฒโ€ฒ0 ๏ฟฝ๐œ‚๏ฟฝ โˆผ ๐œ‚๐‘ฆโ€ฒ0 ๏ฟฝ๐œ‚๏ฟฝ

๐‘ฆ๐‘–๐‘›0 (0) = 0

๐‘ฆ๐‘–๐‘›0 ๏ฟฝ๐œ‚๏ฟฝ โˆผ ๐ท๏ฟฝ๐œ‚

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘ 

And matching on the right side gives

lim๐œ‚โ†’โˆž

๐‘ฆ๐‘–๐‘› ๏ฟฝ๐œ‚๏ฟฝ = lim๐‘ฅโ†’๐œ‹

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐œ‚โ†’โˆž

๐ท๏ฟฝ๐œ‚

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  = 0

๐ท = 0 (6)

Therefore the solution is

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ฆ๐‘–๐‘› (๐œ‰) + ๐‘ฆ๐‘–๐‘› ๏ฟฝ๐œ‚๏ฟฝ + ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

โˆผ โˆ’โˆš2๐œ‹๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 22 ๐‘‘๐‘  + ๐œ‹ + 0

โˆผ โˆ’โˆš2๐œ‹๏ฟฝ๐œ‹2

erf ๏ฟฝ๐œ‰

โˆš2๏ฟฝ + ๐œ‹

โˆผ โˆ’โˆš2๐œ‹๏ฟฝ๐œ‹2

erf ๏ฟฝ๐‘ฅ

โˆš2๐œ€๏ฟฝ + ๐œ‹

โˆผ ๐œ‹ โˆ’ ๐œ‹ erf ๏ฟฝ๐‘ฅ

โˆš2๐œ€๏ฟฝ (7)

The following plot compares exact solution with (7) for ๐œ€ = 0.1, 0.05. We see from theseresults, that as ๐œ€ decreased, the approximation solution improved.

163

Page 168: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

In[37]:= ClearAll[x, ฯต, y]

mySol[x_, ฯต_] := Pi - Pi Erfx

2 ฯต

;

ฯต = 0.1;

ode = ฯต y''[x] + Sin[x] y'[x] + y[x] Sin[2 x] โฉต 0;

sol = NDSolve[{ode, y[0] โฉต ฯ€, y'[ฯ€] โฉต 0}, y, {x, 0, ฯ€}];

Plot[{mySol[x, ฯต], Evaluate[y[x] /. sol]}, {x, 0, Pi}, Frame โ†’ True,

FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"Numerical vs. approximation for ฯต=", ฯต}]}}, GridLines โ†’ Automatic,

GridLinesStyle โ†’ LightGray, BaseStyle โ†’ 16, ImageSize โ†’ 500, PlotLegends โ†’ {"Approximation", "Numerical"},

PlotStyle โ†’ {Red, Blue}, PlotRange โ†’ All]

Out[42]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

x

y(x)

Numerical vs. approximation for ฯต=0.1

Approximation

Numerical

Out[54]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y(x)

Numerical vs. approximation for ฯต=0.05

Approximation

Numerical

164

Page 169: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7 key solution of selected problems

3.3.7.1 section 9 problem 9

Problem 9.9 asks us to use boundary layer theory to find the leading order solution to the initialvalue problem ฮตyโ€ฒโ€ฒ(x) + ayโ€ฒ(x) + by(x) = 0 with y(0) = yโ€ฒ(0) = 1 and a > 0. Then we are to compareto the exact solution. The problem is ambiguous as to whether a and b are functions or constants.For clarityโ€™s sake, we assume a and b are constants, but all the following work can be generalized fornonconstant a and b as well.

Since a > 0, the boundary layer occurs at x = 0, where the initial conditions are specified. We setx = ฮตฮพ,1 and then in the inner region,

1

ฮตyโ€ฒโ€ฒin(ฮพ) +

a

ฮตyโ€ฒin(ฮพ) + byin(ฮพ) = 0. (1)

Thus, to leading order, yโ€ฒโ€ฒin(ฮพ) โˆผ โˆ’ayโ€ฒin(ฮพ), which has solution yin(ฮพ) = C0 + C1eโˆ’aฮพ. Solving for C0 and

C1, we see that y(0) = 1 =โ‡’ C0 + C1 = 1, and

yโ€ฒ(x)

โˆฃโˆฃโˆฃโˆฃx=0

= 1 =โ‡’ yโ€ฒ(ฮพ)

โˆฃโˆฃโˆฃโˆฃฮพ=0

= ฮต =โ‡’ โˆ’aC1 = ฮต =โ‡’ C1 = โˆ’ฮต/a = O(ฮต).

This means that C1eโˆ’aฮพ = O(ฮต) shouldnโ€™t appear at this order in the expansion, and C1 = 0. We

should throw this information out because we have already thrown out information at O(ฮต) in solvingthe equation, and we have no guarantee that the O(ฮต) value for C1 is actually correct to O(ฮต).

So there is no boundary layer at leading order! The inner solution yin(x) = C0 = 1 does not changerapidly, and it will cancel when we match, just leaving the outer solution. This is okay and happensoccasionally when you get lucky.

In the outer region, we have yout โˆผ โˆ’ bayout, so yout(x) = Ceโˆ’bx/a + O(ฮต). Matching to the inner

solution, C = 1, so yuniform(x) = eโˆ’bx/a +O(ฮต). We note that yโ€ฒuniform(0) = โˆ’ ba6= 1 in general.

Although the problem does not ask for it, we can also go to the next order in our asymptoticexpansion. And even though no boundary layer appeared at leading order, one will appear at O(ฮต).

Going back to the inner region, let yin(ฮพ) = Y0(ฮพ) + ฮตY1(ฮพ) + O(ฮต2). We already computed thatY0(ฮพ) = 1. Now looking at (1) at O(1), Y โ€ฒโ€ฒ1 (ฮพ) +aY โ€ฒ1(ฮพ) + bY0(ฮพ) = 0 =โ‡’ Y โ€ฒโ€ฒ1 (ฮพ) +aY โ€ฒ1(ฮพ) = โˆ’b. Solving,Y1(ฮพ) = C2 + C3e

โˆ’aฮพ โˆ’ baฮพ. We have initial conditions Y1(0) = 0, but since yโ€ฒ(0) = 1 was not satisfied,

we note that Y โ€ฒ1(0) = 1. Thus, C2 + C3 = 0 and โˆ’aC3 โˆ’ ba

= 1, so

C3 = โˆ’1

aโˆ’ b

a2and C2 = โˆ’C3 =

1

a+

b

a2.

Therefore,

yin(ฮพ) = 1 + ฮต

((1

a+

b

a2

)(1โˆ’ eโˆ’aฮพ

)โˆ’ b

aฮพ

)+O(ฮต2),

so

yin(x) = 1 + ฮต

((1

a+

b

a2

)(1โˆ’ eโˆ’ax/ฮต

)โˆ’ b

a

x

ฮต

)+O(ฮต2).

Turning to the outer solution, let yout(x) = y0(x) + ฮตy1(x) + O(ฮต2). We already found that y0(x) =eโˆ’bx/a. At order ฮต, the outer equation reads:

yโ€ฒโ€ฒ0(x) + ayโ€ฒ1(x) + by1(x) = 0 =โ‡’ yโ€ฒ1(x) +b

ay1(x) = โˆ’1

aeโˆ’bx/a.

1We know that we can use ฮต instead of ฮตp for some unknown constant p because a is positive near zero, and p 6= 1 onlyoccurs when a(x)โ†’ 0 at the boundary layer.

1

165

Page 170: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

Therefore,

y1(x) = C4eโˆ’bx/a โˆ’ x

aeโˆ’bx/a,

andyout(x) = eโˆ’bx/a + ฮต

((C4 โˆ’

x

a

)eโˆ’bx/a

)+O(ฮต2).

Now we match. As xโ†’ 0+, the outer solution goes to

yout(x) โˆผ 1 + C4ฮต+O(ฮต2),

while as ฮพ โ†’โˆž, the inner solution approaches

yin(x) โˆผ 1 +

(1

a+

b

a2

)ฮต+O(ฮต2),

where I have cheated slightly.2 Matching,

C4 =1

a+

b

a2,

and thus,

yuniform(x) = eโˆ’bx/a + ฮต

(((1

a+

b

a2

)โˆ’ x

a

)eโˆ’bx/a โˆ’

(1

a+

b

a2

)eโˆ’ax/ฮต

)+O(ฮต2).

Let us now graphically compare the asymptotic solutions accurate to O(1) and O(ฮต) with the exactsolution:

yexact(x) =1

2โˆša2 โˆ’ 4bฮต

(โˆ’aeโˆ’(a/ฮต+

โˆša2โˆ’4bฮต/ฮต)x/2 โˆ’ 2ฮตeโˆ’(a/ฮต+

โˆša2โˆ’4bฮต/ฮต)x/2 +

โˆša2 โˆ’ 4bฮตeโˆ’(a/ฮต+

โˆša2โˆ’4bฮต/ฮต)x/2

+aeโˆ’(a/ฮตโˆ’โˆša2โˆ’4bฮต/ฮต)x/2 + 2ฮตeโˆ’(a/ฮตโˆ’

โˆša2โˆ’4bฮต/ฮต)x/2 +

โˆša2 โˆ’ 4bฮตeโˆ’(a/ฮตโˆ’

โˆša2โˆ’4bฮต/ฮต)x/2

).

For simplicity, take a = b = 1.

2I ignored the term which was linear in ฮพ, which blows up as ฮพ โ†’โˆž. This term came from ignoring the outer expansion,which changes on the same order, and is called a secular term. This occurs because we ignored the outer expansion, as isconventional when working with the boundary layer, but the outer solution, when Taylor expanded about zero, matchesthis term exactly at order x, and so we do not have any problems. The outer solution changes at a slow rate compared toฮพ, and so the appearance of two time scales in the boundary layer causes problems with the match (which I swept underthe rug by cheating). This problem is therefore far better suited for multiscale methods, which form the subject matterof Chapter 11.

2

166

Page 171: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

For the first graph, ฮต = 0.1:

The blue curve represents the exact solution, the orange curve the uniform solution to leading order, andthe green curve the uniform solution accurate to O(ฮต). We see that the differences between the curvesremains small always, and that the higher order approximation is much closer to the exact solution. Theleading order solution never differs by more than about 0.1 โ‰ˆ ฮต, while the next order solution differsfrom the exact solution by a much smaller amount (approximately O(ฮต2)).

Now let ฮต = 0.05:

The color scheme is the same as before. We notice that the same qualitative observations from beforehold for this graph as well. The difference between the orange and blue curves is even half as much, ingood agreement with our O(ฮต) error estimation. This also validates our conclusion that the boundarylayer only appears at O(ฮต). It is somewhat more difficult to verify pictorially that the error for the greencurve is O(ฮต2), but it is also clear that the error in this plot is less than in the first plot, and by a greaterfactor than two.

3

167

Page 172: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.2 section 9 problem 15

168

Page 173: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

169

Page 174: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

170

Page 175: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

171

Page 176: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.3 section 9 problem 19

Here is an outline for the solution to BO 9.19.

The boundary value problem is

วซyโ€ฒโ€ฒ + sin(x)yโ€ฒ + 2 sin(x) cos(x)y = 0, y(0) = ฯ€, y(ฯ€) = 0

using sin(2x) = 2 sin(x) cos(x). Our heuristic argument based on the 1D advection-diffusion equation suggests a boundary layer on the left at x = 0. An outer expansionyout(x) โˆผ yo(x) + วซy1(x) +O(วซ2) gives

O(1) : yโ€ฒo โˆผ โˆ’2 cos(x)yo

with solution

yo(x) โˆผ A exp[โˆ’2 sin(x)]

which cannot satisfy y(ฯ€) = 0 unless A = 0 (see below).

For the inner solution near x = 0 let ฮพ = x/วซp. The expansion yin(ฮพ) โˆผ yo(ฮพ)+วซy1(ฮพ)+O(วซ2)leads to p = 1/2 and

O(1) : yโ€ฒโ€ฒo (ฮพ) โˆผ โˆ’ฮพyโ€ฒo(ฮพ), y(ฮพ = 0) = ฯ€

with solution

yo(ฮพ) โˆผ ฯ€ + C

โˆซ ฮพ

0

exp(โˆ’t2/2)dt

yo(ฮพ) โˆผ ฯ€ +โˆš2C

โˆซ ฮพ/โˆš2

0

exp(โˆ’s2)ds = ฯ€ +โˆš2C

โˆšฯ€

2erf(ฮพ/

โˆš2).

On the other side near x = ฯ€, let ฮท = (ฯ€โˆ’ x)/วซp. The expansion yin(ฮท) โˆผ yo(ฮท)+ วซy1(ฮท)+O(วซ2) leads to p = 1/2 and

O(1) : yโ€ฒโ€ฒo (ฮท) โˆผ ฮทyโ€ฒo(ฮท), y(ฮท = 0) = 0

using sin(ฯ€ โˆ’ วซ1/2ฮท) = sin(วซ1/2ฮท) โˆผ วซ1/2ฮท for วซ1/2ฮท โ†’ 0. Then

yo(ฮท) โˆผ D

โˆซ ฮท

0

exp(t2/2)dt

Now matching

limฮพโ†’โˆž

yin(ฮพ) = limxโ†’0

yout(x)

limฮทโ†’โˆž

yin(ฮท) = limxโ†’ฯ€

yout(x)

gives A = D = 0 and C = โˆ’โˆš2ฯ€. Thus we obtain

y(x) โˆผ ฯ€ โˆ’ ฯ€ erf(x/โˆš2วซ).

1

172

Page 177: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.4 section 9 problem 4b

NEEP 548: Engineering Analysis II 2/27/2011

Problem 9.4-b: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the boundary layer solution for

วซyโ€ฒโ€ฒ + (x2 + 1)yโ€ฒ โˆ’ x3y = 0 (1)

2 Solution

We can expect a boundary layer at x = 0.

2.1 Outer Solution

(x2 + 1)yโ€ฒo โˆ’ x3yo = 0

yโ€ฒo โˆ’

(

x3

x2 + 1

)

yo = 0

This is in a form that we can find an integrating factor for,

ยต = exp

(โˆซ

x3

x2 + 1dx

)

= exp

[

โˆ’1

2(ln[x2 + 1]โˆ’ x2)

]

= (x2 + 1)โˆ’1/2eโˆ’x2/2

=โ‡’ [yo(x2 + 1)โˆ’1/2eโˆ’x2/2]โ€ฒ = 0

yo = C1(x2 + 1)โˆ’1/2ex

2/2

B.C.: y(1) = 1 =โ‡’ 1 = C1(2)โˆ’1/2e1/2 =โ‡’ C1 =

โˆš2eโˆ’1/2. Therefore, the outer solution is:

yo =โˆš2eโˆ’1/2(x2 + 1)โˆ’1/2ex

2/2 (2)

1

173

Page 178: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

2.2 Inner Solution

Define ฮพ = x/วซ such that when x โˆผ วซ, ฮพ โˆผ 1

โˆ‚y

โˆ‚x=

dy

dฮพ

dฮพ

dx

โˆ‚2y

โˆ‚x2=

1

วซ2d2y

dฮพ2

Plug this into the D. E. to get,

1

วซ

d2y

dฮพ2+ วซฮพ2

dy

dฮพ+

1

วซ

dy

dฮพโˆ’ ฮพ2วซ2y = 0 (3)

The let the inner solution take the form,

yin = yo(ฮพ) + วซy1(ฮพ) + วซ2y2(ฮพ) + ...

Balance terms, order by order,

O

(

1

วซ

)

: yโ€ฒโ€ฒo + yโ€ฒo = 0 y(0) = 1

O(1) : yโ€ฒโ€ฒ1 + yโ€ฒ1 = 0 y(0) = 0

To the lowest order,

yโ€ฒโ€ฒin + yโ€ฒin = 0 let z = yโ€ฒin

=โ‡’ ln z = โˆ’ฮพ + C2

ln yโ€ฒin = โˆ’ฮพ + C2

yโ€ฒin = C3eโˆ’ฮพ

yin = C3eฮพ + C4

We can solve for one of the constants by imposing the boundary conditions, yin(0) = 1 =โ‡’ 1 =โˆ’C3 + C4 =โ‡’ C4 = 1 + C3

yin = 1 + C(

1โˆ’ eโˆ’ฮพ)

(4)

The other constant we get by matching the โ€˜outerโ€™ and โ€˜innerโ€™ solutions:

2

174

Page 179: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

limxโ†’0

yo = limฮพโ†’โˆž

yin

limxโ†’0

โˆš2eโˆ’1/2(x2 + 1)โˆ’1/2ex

2/2 = limฮพโ†’โˆž

[1 +C(1โˆ’ eโˆ’ฮพ)]

โˆš2eโˆ’1/2 = 1 +C

=โ‡’ C =โˆš2eโˆ’1/2 โˆ’ 1

Note: ymatch =โˆš2eโˆ’1/2

ytot = yin + yout โˆ’ ymatch (5)

ytot =โˆš2eโˆ’1/2(x2 + 1)โˆ’1/2ex

2/2 + eโˆ’x/วซ(1โˆ’โˆš2eโˆ’1/2) (6)

3

175

Page 180: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

3.3.7.5 section 9 problem 6

Here is an outline for the solution to BO 9.6.

Write the equation as

yโ€ฒ = (1 + วซxโˆ’2)y2 โˆ’ 2y + 1, y(1) = 1

and we want to solve this on 0 โ‰ค x โ‰ค 1. For the outer solution, the expansion yout(x) โˆผyo(x) + วซy1(x) +O(วซ2) gives

O(1) : yโ€ฒo โˆผ (yo โˆ’ 1)2, yo(1) = 1

O(วซ) : yโ€ฒ1โˆผ 2yoy1 + y2ox

โˆ’2โˆ’ 2y1, y1(1) = 0

with solutions

yo(x) โˆผ 1, y1(x) โˆผ 1โˆ’ xโˆ’1

valid away from zero. So yout(x) โˆผ 1 + วซ(1โˆ’ xโˆ’1) +O(วซ2).

For the inner solution let ฮพ = x/วซp. The expansion yout(ฮพ) โˆผ yo(ฮพ) + วซy1(ฮพ) +O(วซ2) leadsto ฮพ โˆ วซ (so we take ฮพ = วซ for convenience). The biggest terms are:

O(วซโˆ’1) : yโ€ฒo โˆผ y2oฮพโˆ’2

with solution

yo(ฮพ) โˆผ ฮพ(1โˆ’ Aฮพ)โˆ’1.

Now matching

limฮพโ†’โˆž

yo(ฮพ) +O(วซ) = limxโ†’0

yo(x) +O(วซ)

limฮพโ†’โˆž

ฮพ(1โˆ’ Aฮพ)โˆ’1 +O(วซ) = limxโ†’0

1 +O(วซ)

limฮพโ†’โˆž

โˆ’Aโˆ’1 +O(ฮพโˆ’1) +O(วซ) = limxโ†’0

1 +O(วซ)

gives A = โˆ’1 with matching region วซ โ‰ช x โ‰ช 1.

The next-order problem is

O(1) : yโ€ฒ1โˆผ y2o + 2yoy1ฮพ

โˆ’2โˆ’ 2yo + 1.

Use yo(ฮพ) from above and the integrating factor method to find

y1(ฮพ) โˆผ โˆ’ฮพ(1 + ฮพ)โˆ’2 + Cฮพ2(1 + ฮพ)โˆ’2.

Now matching

1

176

Page 181: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.3. HW3 CHAPTER 3. HWS

limฮพโ†’โˆž

yo(ฮพ) + วซy1(ฮพ) +O(วซ2) = limxโ†’0

yo(x) + วซy1(x) +O(วซ2)

limฮพโ†’โˆž

ฮพ(1 + ฮพ)โˆ’1 + วซ

(

Cฮพ2(1 + ฮพ)โˆ’2โˆ’ ฮพ(1 + ฮพ)โˆ’2

)

+O(วซ2) = limxโ†’0

1 + วซ

(

1โˆ’ xโˆ’1

)

+O(วซ2)

limฮพโ†’โˆž

1

1 + ฮพโˆ’1+ วซ

(

Cฮพ2(1 + ฮพ)โˆ’2โˆ’ ฮพ(1 + ฮพ)โˆ’2

)

+O(วซ2) = limxโ†’0

1 + วซโˆ’วซ

x+O(วซ2)

limฮพโ†’โˆž

1โˆ’ ฮพโˆ’1 +O(ฮพโˆ’2) + วซC +O(วซฮพโˆ’1) +O(วซ2) = limxโ†’0

1 + วซโˆ’วซ

x+O(วซ2)

and so we choose C = 1.

Question for you: what is the matching region? (I think วซ1/2 โ‰ช x โ‰ช 1). Is this correct?

Now we form the uniform approximation y โˆผ yin + yout โˆ’ ymatch +O(วซ2):

y โˆผ 1 + วซ(1โˆ’ xโˆ’1) + ฮพ(1 + ฮพ)โˆ’1 + วซ

(

ฮพ2(1 + ฮพ)โˆ’2โˆ’ ฮพ(1 + ฮพ)โˆ’2

)

โˆ’

(

1 + วซโˆ’วซ

x

)

+O(วซ2)

with ฮพ = x/วซ and simplify. Notice that there is no singularity at x = 0 the solution isuniformly valid on 0 โ‰ค x โ‰ค 1.

More questions for you: Does the solution above satisfy the initial condition y(1) = 1?If not, can you add an O(วซ2) correction so that y(1) = 1? Will you still have a solutionuniformly valid to O(วซ2)?

I encourage you to make plots so that you can visualize the solution!

2

177

Page 182: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

3.4 HW4

3.4.1 problem 10.5 (page 540)

problem Use WKB to obtain solution to

๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ + ๐‘ (๐‘ฅ) ๐‘ฆ = 0 (1)

with ๐‘Ž (๐‘ฅ) > 0, ๐‘ฆ (0) = ๐ด, ๐‘ฆ (1) = ๐ต correct to order ๐œ€.

solution

Assuming

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

Therefore

๐‘ฆโ€ฒ (๐‘ฅ) โˆผ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ) exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) โˆผ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ) exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ + ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2

exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ

Substituting the above into (1) and simplifying gives (writing = instead of โˆผ for simplicityfor now)

๐œ€โŽกโŽขโŽขโŽขโŽขโŽฃ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ) + ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ +

๐‘Ž๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ) + ๐‘ = 0

๐œ€๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ) +๐œ€๐›ฟ2 ๏ฟฝ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ +๐‘Ž๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ) + ๐‘ = 0

Expanding gives

๐œ€๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 + ๐›ฟ2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ

+๐œ€๐›ฟ2๏ฟฝ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ๏ฟฝ

+๐‘Ž๐›ฟ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ = 0

Simplifying

๏ฟฝ๐œ€๐›ฟ๐‘†โ€ฒโ€ฒ0 + ๐œ€๐‘†โ€ฒโ€ฒ1 + ๐œ€๐›ฟ๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ

+ ๏ฟฝ๐œ€๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+2๐œ€๐›ฟ๏ฟฝ๐‘†โ€ฒ0๐‘†โ€ฒ1๏ฟฝ + ๐œ€ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ

+ ๏ฟฝ๐‘Ž๐›ฟ๐‘†โ€ฒ0 + ๐‘Ž๐‘†โ€ฒ1 + ๐‘Ž๐›ฟ๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ = 0 (1A)

The largest terms in the left are ๐œ€๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2and ๐‘Ž

๐›ฟ๐‘†โ€ฒ0. By dominant balance these must be equal in

magnitude. Hence ๐œ€๐›ฟ2 = ๐‘‚๏ฟฝ

1๐›ฟ๏ฟฝ or ๐œ€

๐›ฟ = ๐‘‚ (1). Therefore ๐›ฟ is proportional to ๐œ€ and for simplicity

178

Page 183: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

๐œ€ is taken as equal to ๐›ฟ, hence (1A) becomes

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐œ€๐‘†โ€ฒโ€ฒ1 + ๐œ€2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ

+ ๏ฟฝ๐œ€โˆ’1 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐œ€ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ

+ ๏ฟฝ๐‘Ž๐œ€โˆ’1๐‘†โ€ฒ0 + ๐‘Ž๐‘†โ€ฒ1 + ๐‘Ž๐œ€๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ + ๐‘ = 0

Terms of ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ give

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๐‘Ž๐‘†โ€ฒ0 = 0 (2)

And terms of ๐‘‚ (1) give

๐‘†โ€ฒโ€ฒ0 + 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘Ž๐‘†โ€ฒ1 + ๐‘ = 0 (3)

And terms of ๐‘‚ (๐œ€) give

2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๐‘Ž๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ ๐‘†โ€ฒโ€ฒ1 = 0

๐‘†โ€ฒ2 = โˆ’๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ ๐‘†โ€ฒโ€ฒ1

๏ฟฝ๐‘Ž + 2๐‘†โ€ฒ0๏ฟฝ(4)

Starting with (2)

๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ0 + ๐‘Ž๏ฟฝ = 0

There are two cases to consider.

case 1 ๐‘†โ€ฒ0 = 0. This means that ๐‘†0 (๐‘ฅ) = ๐‘0. A constant. Using this result in (3) gives an ODEto solve for ๐‘†1 (๐‘ฅ)

๐‘Ž๐‘†โ€ฒ1 + ๐‘ = 0

๐‘†โ€ฒ1 = โˆ’๐‘ (๐‘ฅ)๐‘Ž (๐‘ฅ)

๐‘†1 โˆผ โˆ’๏ฟฝ๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐‘1

Using this result in (4) gives an ODE to solve for ๐‘†2 (๐‘ฅ)

๐‘†โ€ฒ2 = โˆ’๏ฟฝโˆ’ ๐‘(๐‘ฅ)

๐‘Ž(๐‘ฅ)๏ฟฝ2+ ๏ฟฝโˆ’ ๐‘(๐‘ฅ)

๐‘Ž(๐‘ฅ)๏ฟฝโ€ฒ

๐‘Ž (๐‘ฅ)

= โˆ’

๐‘2(๐‘ฅ)๐‘Ž2(๐‘ฅ) โˆ’ ๏ฟฝ

๐‘โ€ฒ(๐‘ฅ)๐‘Ž(๐‘ฅ) โˆ’

๐‘(๐‘ฅ)๐‘Žโ€ฒ(๐‘ฅ)๐‘Ž2(๐‘ฅ)

๏ฟฝ

๐‘Ž (๐‘ฅ)

= โˆ’๐‘2(๐‘ฅ)๐‘Ž2(๐‘ฅ) โˆ’

๐‘Ž(๐‘ฅ)๐‘โ€ฒ(๐‘ฅ)๐‘Ž2(๐‘ฅ) + ๐‘Žโ€ฒ(๐‘ฅ)๐‘(๐‘ฅ)

๐‘Ž2(๐‘ฅ)

๐‘Ž (๐‘ฅ)

=๐‘Ž (๐‘ฅ) ๐‘โ€ฒ (๐‘ฅ) โˆ’ ๐‘2 (๐‘ฅ) โˆ’ ๐‘Žโ€ฒ (๐‘ฅ) ๐‘ (๐‘ฅ)

๐‘Ž3 (๐‘ฅ)

179

Page 184: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Therefore

๐‘†2 = ๏ฟฝ๐‘ฅ

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก + ๐‘2

For case one, the solution becomes

๐‘ฆ1 (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

โˆผ exp ๏ฟฝ1๐œ€๏ฟฝ๐‘†0 (๐‘ฅ) + ๐œ€๐‘†1 (๐‘ฅ) + ๐œ€2๐‘†2 (๐‘ฅ)๏ฟฝ๏ฟฝ ๐œ€ โ†’ 0+

โˆผ exp ๏ฟฝ1๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐œ€๐‘†2 (๐‘ฅ)๏ฟฝ

โˆผ exp ๏ฟฝ1๐œ€๐‘0 โˆ’๏ฟฝ

๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐‘1 + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก + ๐‘2๏ฟฝ

โˆผ ๐ถ1 exp ๏ฟฝโˆ’๏ฟฝ๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ (5)

Where ๐ถ1 is a constant that combines all ๐‘’1๐œ€ ๐‘0+๐‘1+๐‘2 constants into one. Equation (5) gives

the first WKB solution of order ๐‘‚ (๐œ€) for case one. Case 2 now is considered.

case 2 In this case ๐‘†โ€ฒ0 = โˆ’๐‘Ž, therefore

๐‘†0 = โˆ’๏ฟฝ๐‘ฅ

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก + ๐‘0

Equation (3) now gives

๐‘†โ€ฒโ€ฒ0 + 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘Ž๐‘†โ€ฒ1 + ๐‘ = 0โˆ’๐‘Žโ€ฒ โˆ’ 2๐‘Ž๐‘†โ€ฒ1 + ๐‘Ž๐‘†โ€ฒ1 + ๐‘ = 0

โˆ’๐‘Ž๐‘†โ€ฒ1 = ๐‘Žโ€ฒ โˆ’ ๐‘

๐‘†โ€ฒ1 =๐‘ โˆ’ ๐‘Žโ€ฒ

๐‘Ž

๐‘†โ€ฒ1 =๐‘๐‘Žโˆ’๐‘Žโ€ฒ

๐‘ŽIntegrating the above results in

๐‘†1 = ๏ฟฝ๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก โˆ’ ln (๐‘Ž) + ๐‘1

180

Page 185: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

๐‘†2 (๐‘ฅ) is now found from (4)

๐‘†โ€ฒ2 = โˆ’๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ ๐‘†โ€ฒโ€ฒ1

๏ฟฝ๐‘Ž + 2๐‘†โ€ฒ0๏ฟฝ

= โˆ’๏ฟฝ ๐‘โˆ’๐‘Ž

โ€ฒ

๐‘Ž๏ฟฝ2+ ๏ฟฝ ๐‘โˆ’๐‘Ž

โ€ฒ

๐‘Ž๏ฟฝโ€ฒ

(๐‘Ž + 2 (โˆ’๐‘Ž))

= โˆ’๐‘2+(๐‘Žโ€ฒ)2โˆ’2๐‘๐‘Žโ€ฒ

๐‘Ž2 + ๐‘โ€ฒโˆ’๐‘Žโ€ฒโ€ฒ

๐‘Ž โˆ’ ๐‘Žโ€ฒ๐‘โˆ’(๐‘Žโ€ฒ)2

๐‘Ž2

โˆ’๐‘Ž

=๐‘2 + (๐‘Žโ€ฒ)2 โˆ’ 2๐‘๐‘Žโ€ฒ + ๐‘Ž๐‘โ€ฒ โˆ’ ๐‘Ž๐‘Žโ€ฒโ€ฒ โˆ’ ๐‘Žโ€ฒ๐‘ โˆ’ (๐‘Žโ€ฒ)2

๐‘Ž3

=๐‘2 โˆ’ 2๐‘๐‘Žโ€ฒ + ๐‘Ž๐‘โ€ฒ โˆ’ ๐‘Ž๐‘Žโ€ฒโ€ฒ โˆ’ ๐‘Žโ€ฒ๐‘

๐‘Ž3Hence

๐‘†2 = ๏ฟฝ๐‘ฅ

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก + ๐‘2

Therefore for this case the solution becomes

๐‘ฆ2 (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

โˆผ exp ๏ฟฝ1๐œ€๏ฟฝ๐‘†0 (๐‘ฅ) + ๐œ€๐‘†1 (๐‘ฅ) + ๐œ€2๐‘†2 (๐‘ฅ)๏ฟฝ๏ฟฝ ๐œ€ โ†’ 0+

โˆผ exp ๏ฟฝ1๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐œ€๐‘†2 (๐‘ฅ)๏ฟฝ

Or

๐‘ฆ2 (๐‘ฅ) โˆผ exp ๏ฟฝโˆ’1๐œ€ ๏ฟฝ

๐‘ฅ

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก + ๐‘0๏ฟฝ exp ๏ฟฝ๏ฟฝ

๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก โˆ’ ln (๐‘Ž) + ๐‘1๏ฟฝ

exp ๏ฟฝ๐œ€๏ฟฝ๐‘ฅ

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก + ๐‘2๏ฟฝ

Which simplifies to

๐‘ฆ2 (๐‘ฅ) โˆผ๐ถ2๐‘Ž

exp ๏ฟฝโˆ’1๐œ€ ๏ฟฝ

๐‘ฅ

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

(6)

Where ๐ถ2 is new constant that combines ๐‘0, ๐‘1, ๐‘2 constants. The general solution is linearcombinations of ๐‘ฆ1, ๐‘ฆ2

๐‘ฆ (๐‘ฅ) โˆผ ๐ด๐‘ฆ1 (๐‘ฅ) + ๐ต๐‘ฆ2 (๐‘ฅ)

181

Page 186: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Or

๐‘ฆ (๐‘ฅ) โˆผ ๐ถ1 exp ๏ฟฝโˆ’๏ฟฝ๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

+๐ถ2๐‘Ž (๐‘ฅ)

exp ๏ฟฝโˆ’1๐œ€ ๏ฟฝ

๐‘ฅ

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

Now boundary conditions are applied to find ๐ถ1, ๐ถ2. Using ๐‘ฆ (0) = ๐ด in the above gives

๐ด = ๐ถ1 +๐ถ2๐‘Ž (0)

(7)

And using ๐‘ฆ (1) = ๐ต gives

๐ต = ๐ถ1 exp ๏ฟฝโˆ’๏ฟฝ1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ1

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

+๐ถ2๐‘Ž (1)

exp ๏ฟฝโˆ’1๐œ€ ๏ฟฝ

1

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ1

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

Neglecting exponentially small terms involving ๐‘’โˆ’1๐œ€ the above becomes

๐ต = ๐ถ1 exp ๏ฟฝโˆ’๏ฟฝ1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก๏ฟฝ exp ๏ฟฝ๐œ€๏ฟฝ1

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

+๐ถ2๐‘Ž (1)

exp ๏ฟฝ๏ฟฝ1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก๏ฟฝ exp ๏ฟฝ๐œ€๏ฟฝ1

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ (8)

To simplify the rest of the solution which finds ๐ถ1, ๐ถ2, let

๐‘ง1 = ๏ฟฝ1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก

๐‘ง2 = ๏ฟฝ1

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก

๐‘ง3 = ๏ฟฝ1

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก

Hence (8) becomes

๐ต = ๐ถ1๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 +๐ถ2๐‘Ž (1)

๐‘’๐‘ง1๐‘’๐œ€๐‘ง3 (8A)

182

Page 187: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

From (7) ๐ถ2 = ๐‘Ž (0) (๐ด โˆ’ ๐ถ1). Substituting this in (8A) gives

๐ต = ๐ถ1๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 +๐‘Ž (0) (๐ด โˆ’ ๐ถ1)

๐‘Ž (1)๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

= ๐ถ1๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 +๐‘Ž (0)๐‘Ž (1)

๐ด๐‘’๐‘ง1๐‘’๐œ€๐‘ง3 โˆ’๐‘Ž (0)๐‘Ž (1)

๐ถ1๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐ต = ๐ถ1 ๏ฟฝ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’๐‘Ž (0)๐‘Ž (1)

๐‘’๐‘ง1๐‘’๐œ€๐‘ง3๏ฟฝ + ๐ด๐‘Ž (0)๐‘Ž (1)

๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐ถ1 =๐ต โˆ’ ๐ด ๐‘Ž(0)

๐‘Ž(1)๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž(0)๐‘Ž(1)๐‘’

๐‘ง1๐‘’๐œ€๐‘ง3

=๐‘Ž (1) ๐ต โˆ’ ๐ด๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘Ž (1) ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3(9)

Using (7), now ๐ถ2 is found

๐ด = ๐ถ1 +๐ถ2๐‘Ž (0)

๐ด =๐‘Ž (1) ๐ต โˆ’ ๐ด๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘Ž (1) ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3+

๐ถ2๐‘Ž (0)

๐ถ2 = ๐‘Ž (0) ๏ฟฝ๐ด โˆ’๐‘Ž (1) ๐ต โˆ’ ๐ด๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘Ž (1) ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3 ๏ฟฝ(10)

The constants ๐ถ1, ๐ถ2, are now found, hence the solution is now complete.

Summary of solution

๐‘ฆ (๐‘ฅ) โˆผ ๐ถ1 exp ๏ฟฝโˆ’๏ฟฝ๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

+๐ถ2๐‘Ž (๐‘ฅ)

exp ๏ฟฝโˆ’1๐œ€ ๏ฟฝ

๐‘ฅ

0๐‘Ž (๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

๐‘ฅ

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก + ๐œ€๏ฟฝ๐‘ฅ

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก๏ฟฝ

Where

๐ถ1 =๐‘Ž (1) ๐ต โˆ’ ๐ด๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘Ž (1) ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐ถ2 = ๐‘Ž (0) ๏ฟฝ๐ด โˆ’๐‘Ž (1) ๐ต โˆ’ ๐ด๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3

๐‘Ž (1) ๐‘’โˆ’๐‘ง1๐‘’๐œ€๐‘ง2 โˆ’ ๐‘Ž (0) ๐‘’๐‘ง1๐‘’๐œ€๐‘ง3 ๏ฟฝ

And

๐‘ง1 = ๏ฟฝ1

0

๐‘ (๐‘ก)๐‘Ž (๐‘ก)

๐‘‘๐‘ก

๐‘ง2 = ๏ฟฝ1

0

๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘2 (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก

๐‘ง3 = ๏ฟฝ1

0

๐‘2 (๐‘ก) โˆ’ 2๐‘ (๐‘ก) ๐‘Žโ€ฒ (๐‘ก) + ๐‘Ž (๐‘ก) ๐‘โ€ฒ (๐‘ก) โˆ’ ๐‘Ž (๐‘ก) ๐‘Žโ€ฒโ€ฒ (๐‘ก) โˆ’ ๐‘Žโ€ฒ (๐‘ก) ๐‘ (๐‘ก)๐‘Ž3 (๐‘ก)

๐‘‘๐‘ก

183

Page 188: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

3.4.2 problem 10.6

problem Use second order WKB to derive formula which is more accurate than (10.1.31)

for the ๐‘›๐‘กโ„Ž eigenvalue of the Sturm-Liouville problem in 10.1.27. Let ๐‘„ (๐‘ฅ) = (๐‘ฅ + ๐œ‹)4 andcompare your formula with value of ๐ธ๐‘› in table 10.1

solution

Problem 10.1.27 is

๐‘ฆโ€ฒโ€ฒ + ๐ธ๐‘„ (๐‘ฅ) ๐‘ฆ = 0

With ๐‘„ (๐‘ฅ) = (๐‘ฅ + ๐œ‹)4 and boundary conditions ๐‘ฆ (0) = 0, ๐‘ฆ (๐œ‹) = 0. Letting

๐ธ =1๐œ€

Then the ODE becomes

๐œ€๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) + (๐‘ฅ + ๐œ‹)4 ๐‘ฆ (๐‘ฅ) = 0 (1)

Physical optics approximation is obtained when ๐œ† โ†’ โˆž or ๐œ€ โ†’ 0+. Since the ODE is linear,and the highest derivative is now multiplied by a very small parameter ๐œ€, WKB can be usedto solve it. Assuming the solution is

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

Then

๐‘ฆโ€ฒ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2

+ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ)๏ฟฝ

Substituting these into (1) and canceling the exponential terms gives

๐œ€โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2

+1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ)โŽžโŽŸโŽŸโŽŸโŽŸโŽ  โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4

๐œ€๐›ฟ2๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ +

๐œ€๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 + ๐›ฟ2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4

๐œ€๐›ฟ2๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+ ๐›ฟ ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ + ๐›ฟ2 ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ +

๐œ€๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 + ๐›ฟ2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4

๏ฟฝ๐œ€๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+๐œ€๐›ฟ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ + ๐œ€ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ + ๏ฟฝ

๐œ€๐›ฟ๐‘†โ€ฒโ€ฒ0 + ๐œ€2๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4 (2)

The largest term in the left side is ๐œ€๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2. By dominant balance, this term has the same

order of magnitude as right side โˆ’ (๐‘ฅ + ๐œ‹)4. Hence ๐›ฟ2 is proportional to ๐œ€ and for simplicity,๐›ฟ can be taken equal to โˆš๐œ€ or

๐›ฟ = โˆš๐œ€

184

Page 189: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Equation (2) becomes

๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ โˆš๐œ€ ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ + ๐œ€ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ + ๏ฟฝโˆš๐œ€๐‘†โ€ฒโ€ฒ0 + ๐œ€๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4

Balance of ๐‘‚ (1) gives

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ โˆ’ (๐‘ฅ + ๐œ‹)4 (3)

And Balance of ๐‘‚๏ฟฝโˆš๐œ€๏ฟฝ gives

2๐‘†โ€ฒ1๐‘†โ€ฒ0 โˆผ โˆ’๐‘†โ€ฒโ€ฒ0 (4)

Balance of ๐‘‚ (๐œ€) gives

2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โˆผ โˆ’๐‘†โ€ฒโ€ฒ1 (5)

Equation (3) is solved first in order to find ๐‘†0 (๐‘ฅ). Therefore

๐‘†โ€ฒ0 โˆผ ยฑ๐‘– (๐‘ฅ + ๐œ‹)2

Hence

๐‘†0 (๐‘ฅ) โˆผ ยฑ๐‘–๏ฟฝ๐‘ฅ

0(๐‘ก + ๐œ‹)2 ๐‘‘๐‘ก + ๐ถยฑ

โˆผ ยฑ๐‘– ๏ฟฝ๐‘ก3

3+ ๐œ‹๐‘ก2 + ๐œ‹2๐‘ก๏ฟฝ

๐‘ฅ

0+ ๐ถยฑ

โˆผ ยฑ๐‘– ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ + ๐ถยฑ (6)

๐‘†1 (๐‘ฅ) is now found from (4), and since ๐‘†โ€ฒโ€ฒ0 = ยฑ2๐‘– (๐‘ฅ + ๐œ‹) therefore

๐‘†โ€ฒ1 โˆผ โˆ’12๐‘†โ€ฒโ€ฒ0๐‘†โ€ฒ0

โˆผ โˆ’12ยฑ2๐‘– (๐‘ฅ + ๐œ‹)ยฑ๐‘– (๐‘ฅ + ๐œ‹)2

โˆผ โˆ’1

๐‘ฅ + ๐œ‹Hence

๐‘†1 (๐‘ฅ) โˆผ โˆ’๏ฟฝ๐‘ฅ

0

1๐‘ก + ๐œ‹

๐‘‘๐‘ก

โˆผ โˆ’ ln ๏ฟฝ๐œ‹ + ๐‘ฅ๐œ‹

๏ฟฝ (7)

๐‘†2 (๐‘ฅ) is now solved from from (5)

2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โˆผ โˆ’๐‘†โ€ฒโ€ฒ1

๐‘†โ€ฒ2 โˆผโˆ’๐‘†โ€ฒโ€ฒ1 โˆ’ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2

2๐‘†โ€ฒ0

185

Page 190: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Since ๐‘†โ€ฒ1 โˆผ โˆ’ 1๐‘ฅ+๐œ‹ , then ๐‘†

โ€ฒโ€ฒ1 โˆผ 1

(๐‘ฅ+๐œ‹)2and the above becomes

๐‘†โ€ฒ2 โˆผโˆ’ 1(๐‘ฅ+๐œ‹)2

โˆ’ ๏ฟฝโˆ’ 1๐‘ฅ+๐œ‹

๏ฟฝ2

2 ๏ฟฝยฑ๐‘– (๐‘ฅ + ๐œ‹)2๏ฟฝ

โˆผโˆ’ 1(๐‘ฅ+๐œ‹)2

โˆ’ 1(๐‘ฅ+๐œ‹)2

ยฑ2๐‘– (๐‘ฅ + ๐œ‹)2

โˆผ ยฑ๐‘–1

(๐‘ฅ + ๐œ‹)4

Hence

๐‘†2 โˆผ ยฑ๐‘– ๏ฟฝ๏ฟฝ๐‘ฅ

0

1(๐‘ก + ๐œ‹)4

๐‘‘๐‘ก๏ฟฝ + ๐‘˜ยฑ

โˆผ ยฑ๐‘–3 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ + ๐‘˜ยฑ

Therefore the solution becomes

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1

โˆš๐œ€๏ฟฝ๐‘†0 (๐‘ฅ) + โˆš๐œ€๐‘†1 (๐‘ฅ) + ๐œ€๐‘†2 (๐‘ฅ)๏ฟฝ๏ฟฝ

โˆผ exp ๏ฟฝ1

โˆš๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + โˆš๐œ€๐‘†2 (๐‘ฅ)๏ฟฝ

But ๐ธ = 1๐œ€ , hence โˆš๐œ€ =

1

โˆš๐ธ, and the above becomes

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝโˆš๐ธ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) +1

โˆš๐ธ๐‘†2 (๐‘ฅ)๏ฟฝ

Therefore

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝยฑ๐‘–โˆš๐ธ ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ + ๐ถยฑ โˆ’ ln ๏ฟฝ๐œ‹ + ๐‘ฅ

๐œ‹๏ฟฝ ยฑ ๐‘–

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ + ๐‘˜ยฑ๏ฟฝ

Which can be written as

๐‘ฆ (๐‘ฅ) โˆผ ๏ฟฝ๐œ‹ + ๐‘ฅ๐œ‹

๏ฟฝโˆ’1๐ถ exp ๏ฟฝ๐‘– ๏ฟฝโˆš๐ธ ๏ฟฝ

๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ๏ฟฝ๏ฟฝ

โˆ’ ๐ถ ๏ฟฝ๐œ‹ + ๐‘ฅ๐œ‹

๏ฟฝโˆ’1

exp ๏ฟฝโˆ’๐‘– ๏ฟฝโˆš๐ธ ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ๏ฟฝ๏ฟฝ

Where all constants combined into ยฑ๐ถ. In terms of sin / cos the above becomes

๐‘ฆ (๐‘ฅ) โˆผ๐œ‹๐ด๐œ‹ + ๐‘ฅ

cos ๏ฟฝโˆš๐ธ ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ๏ฟฝ

+๐œ‹๐ต๐œ‹ + ๐‘ฅ

sin ๏ฟฝโˆš๐ธ ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ๏ฟฝ (8)

186

Page 191: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

Boundary conditions ๐‘ฆ (0) = 0 gives

0 โˆผ ๐ด cos ๏ฟฝ0 +1

โˆš๐ธ๏ฟฝ1๐œ‹3 โˆ’

1๐œ‹3 ๏ฟฝ๏ฟฝ + ๐ต sin ๏ฟฝ0 +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1๐œ‹3 ๏ฟฝ๏ฟฝ

โˆผ ๐ด

Hence solution in (8) reduces to

๐‘ฆ (๐‘ฅ) โˆผ๐œ‹๐ต๐œ‹ + ๐‘ฅ

sin ๏ฟฝโˆš๐ธ ๏ฟฝ๐‘ฅ3

3+ ๐œ‹๐‘ฅ2 + ๐œ‹2๐‘ฅ๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐‘ฅ)3

๏ฟฝ๏ฟฝ

Applying B.C. ๐‘ฆ (๐œ‹) = 0 gives

0 โˆผ๐œ‹๐ต๐œ‹ + ๐œ‹

sin ๏ฟฝโˆš๐ธ ๏ฟฝ๐œ‹3

3+ ๐œ‹๐œ‹2 + ๐œ‹2๐œ‹๏ฟฝ +

1

โˆš๐ธ13 ๏ฟฝ

1๐œ‹3 โˆ’

1(๐œ‹ + ๐œ‹)3

๏ฟฝ๏ฟฝ

โˆผ๐ต2

sin ๏ฟฝโˆš๐ธ ๏ฟฝ73๐œ‹3๏ฟฝ +

1

โˆš๐ธ๏ฟฝ7

24๐œ‹3 ๏ฟฝ๏ฟฝ

For non trivial solution, therefore

๏ฟฝ๐ธ๐‘› ๏ฟฝ73๐œ‹3๏ฟฝ +

1

โˆš๐ธ๐‘›๏ฟฝ7

24๐œ‹3 ๏ฟฝ = ๐‘›๐œ‹ ๐‘› = 1, 2, 3,โ‹ฏ

Solving for โˆš๐ธ๐‘›. Let โˆš๐ธ๐‘› = ๐‘ฅ, then the above becomes

๐‘ฅ2 ๏ฟฝ73๐œ‹3๏ฟฝ + ๏ฟฝ

724๐œ‹6 ๏ฟฝ = ๐‘ฅ๐‘›๐œ‹

๐‘ฅ2 โˆ’37๐œ‹2๐‘ฅ๐‘› +

18๐œ‹6 = 0

Solving using quadratic formula and taking the positive root, since ๐ธ๐‘› > 0 gives

๐‘ฅ =1

28๐œ‹3 ๏ฟฝโˆš2โˆš18๐œ‹2๐‘›2 โˆ’ 49 + 6๐œ‹๐‘›๏ฟฝ ๐‘› = 1, 2, 3,โ‹ฏ

๏ฟฝ๐ธ๐‘› =1

28๐œ‹3 ๏ฟฝโˆš2โˆš18๐œ‹2๐‘›2 โˆ’ 49 + 6๐œ‹๐‘›๏ฟฝ

๐ธ๐‘› = ๏ฟฝโˆš2โˆš18๐œ‹2๐‘›2 โˆ’ 49 + 6๐œ‹๐‘›๏ฟฝ2

Table 10.1 is now reproduced to compare the above more accurate ๐ธ๐‘›. The following tableshows the actual ๐ธ๐‘› values obtained this more accurate method. Values computed fromabove formula are in column 3.

187

Page 192: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.4. HW4 CHAPTER 3. HWS

In[207]:= sol = x /. Last@Solvex2 -3

7 Pi2x n +

1

8 Pi^6โฉต 0, x

Out[207]=3 n ฯ€ +

-49+18 n2 ฯ€2

2

14 ฯ€3

In[244]:= lam[n_] := (Evaluate@sol)^2

nPoints = {1, 2, 3, 4, 5, 10, 20, 40};

book = {0.00188559, 0.00754235, 0.0169703, 0.0301694, 0.0471397, 0.188559, 0.754235, 3.01694};

exact = {0.00174401, 0.00734865, 0.0167524, 0.0299383, 0.0469006, 0.188395, 0.753977, 3.01668};

hw = Table[N@(lam[n]), {n, nPoints}];

data = Table[{nPoints[[i]], book[[i]], hw[[i]], exact[[i]]}, {i, 1, Length[nPoints]}];

data = Join[{{"n", "En using S0+S1 (book)", "En using S0+S1+S2 (HW)", "Exact"}}, data];

Style[Grid[data, Frame โ†’ All], 18]

Out[251]=

n En using S0+S1 (book) En using S0+S1+S2 (HW) Exact

1 0.0018856 0.0016151 0.001744

2 0.0075424 0.00728 0.0073487

3 0.01697 0.016709 0.016752

4 0.030169 0.029909 0.029938

5 0.04714 0.046879 0.046901

10 0.18856 0.1883 0.1884

20 0.75424 0.75398 0.75398

40 3.0169 3.0167 3.0167

The following table shows the relative error in place of the actual values of ๐ธ๐‘› to bettercompare how more accurate the result obtained in this solution is compared to the bookresult

In[252]:= data = Table[{nPoints[[i]],

100* Abs@(exact[[i]] - book[[i]])/ exact[[i]],

100* Abs@(exact[[i]] - hw[[i]])/ exact[[i]]}, {i, 1, Length[nPoints]}];

data = Join[{{"n", "En using S0+S1 (book) Rel error", "En using S0+S1+S2 (HW) Rel error"}}, data];

Style[Grid[data, Frame โ†’ All], 18]

Out[254]=

n En using S0+S1 (book) Rel error En using S0+S1+S2 (HW) Rel error

1 8.1181 7.3927

2 2.6359 0.9343

3 1.3007 0.2576

4 0.77192 0.098497

5 0.5098 0.045387

10 0.087051 0.051101

20 0.034219 0.00021643

40 0.0086187 0.000055619

The above shows clearly that adding one more term in the WKB series resulted in moreaccurate eigenvalue estimate.

188

Page 193: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

3.5 HW5

NE548 Problem: Similarity solution for the 1D homogeneous heat equation

Due Thursday April 13, 2017

1. (a) Non-dimensionalize the 1D homogeneous heat equation:

โˆ‚u(x, t)

โˆ‚t= ฮฝ

โˆ‚2u(x, t)

โˆ‚x2(1)

with โˆ’โˆž < x < โˆž, and u(x, t) bounded as x โ†’ ยฑโˆž.

(b) Show that the non-dimensional equations motivate a similarity variable ฮพ = x/t1/2.

(c) Find a similarity solution u(x, t) = H(ฮพ) by solving the appropriate ODE for H(ฮพ).

(d) Show that the similarity solution is related to the solution we found in class on 4/6/17for initial condition

u(x, 0) = 0, x < 0 u(x, 0) = C, x > 0.

1

solution

3.5.1 Part a

Let ๏ฟฝ๏ฟฝ be the non-dimensional space coordinate and ๐‘ก the non-dimensional time coordinate.Therefore we need

๏ฟฝ๏ฟฝ =๐‘ฅ๐‘™0

๐‘ก =๐‘ก๐‘ก0

๏ฟฝ๏ฟฝ =๐‘ข๐‘ข0

Where ๐‘™0 is the physical characteristic length scale (even if this infinitely long domain, ๐‘™0is given) whose dimensions is [๐ฟ] and ๐‘ก0 of dimensions [๐‘‡] is the characteristic time scaleand ๏ฟฝ๏ฟฝ (๏ฟฝ๏ฟฝ, ๐‘ก) is the new dependent variable, and ๐‘ข0 characteristic value of ๐‘ข to scale against(typically this is the initial conditions) but this will cancel out. We now rewrite the PDE๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 in terms of the new dimensionless variables.

๐œ•๐‘ข๐œ•๐‘ก

=๐œ•๐‘ข๐œ•๏ฟฝ๏ฟฝ

๐œ•๏ฟฝ๏ฟฝ๐œ• ๐‘ก๐œ• ๐‘ก๐œ•๐‘ก

= ๐‘ข0๐œ•๏ฟฝ๏ฟฝ๐œ• ๐‘ก

1๐‘ก0

(1)

189

Page 194: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

And๐œ•๐‘ข๐œ•๐‘ฅ

=๐œ•๐‘ข๐œ•๏ฟฝ๏ฟฝ

๐œ•๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ๐œ•๐‘ฅ

= ๐‘ข0๐œ•๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ

1๐‘™0

And๐œ•2๐‘ข๐œ•๐‘ฅ2

= ๐‘ข0๐œ•2๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ2

1๐‘™20

(2)

Substituting (1) and (2) into ๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 gives

๐‘ข0๐œ•๏ฟฝ๏ฟฝ๐œ• ๐‘ก

1๐‘ก0= ๐œ๐‘ข0

๐œ•2๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ2

1๐‘™20

๐œ•๏ฟฝ๏ฟฝ๐œ• ๐‘ก

= ๏ฟฝ๐œ๐‘ก0๐‘™20๏ฟฝ๐œ•2๏ฟฝ๏ฟฝ๐œ•๏ฟฝ๏ฟฝ2

The above is now non-dimensional. Since ๐œ has units ๏ฟฝ๐ฟ2

๐‘‡ ๏ฟฝ and๐‘ก0๐‘™20also has units ๏ฟฝ ๐‘‡๐ฟ2 ๏ฟฝ, therefore

the product ๐œ ๐‘ก0๐‘™20is non-dimensional quantity.

If we choose ๐‘ก0 to have same magnitude (not units) as ๐‘™20, i.e. ๐‘ก0 = ๐‘™20, then๐‘ก0๐‘™20= 1 (with units

๏ฟฝ ๐‘‡๐ฟ2 ๏ฟฝ) and now we obtain the same PDE as the original, but it is non-dimensional. Where

now ๏ฟฝ๏ฟฝ โ‰ก ๏ฟฝ๏ฟฝ ( ๐‘ก, ๏ฟฝ๏ฟฝ).

3.5.2 Part (b)

I Will use the Buckingham ๐œ‹ theorem for finding expression for the solution in the form

๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘“ (๐œ‰) where ๐œ‰ is the similarity variable. Starting with ๐œ•๐‘ข๐œ•๐‘ก = ๐œ๐œ•2๐‘ข

๐œ•๐‘ฅ2 , in this PDE, thedi๏ฟฝusion substance is heat with units of Joule ๐ฝ. Hence the concentration of heat, whichis what ๐‘ข represents, will have units of [๐‘ข] = ๐ฝ

๐ฟ3 . (heat per unit volume). From physics, weexpect the solution ๐‘ข (๐‘ฅ, ๐‘ก) to depend on ๐‘ฅ, ๐‘ก, ๐œ and initial conditions ๐‘ข0 as these are the onlyrelevant quantities involved that can a๏ฟฝect the di๏ฟฝusion. Therefore, by Buckingham theoremwe say

๐‘ข โ‰ก ๐‘“ (๐‘ฅ, ๐‘ก, ๐œ, ๐‘ข0) (1)

190

Page 195: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

We have one dependent quantity ๐‘ข and 4 independent quantities.The units of each of theabove quantities is

[๐‘ข] =๐ฝ๐ฟ3

[๐‘ฅ] = ๐ฟ[๐‘ก] = ๐‘‡

[๐œ] =๐ฟ2

๐‘‡

[๐‘ข0] =๐ฝ๐ฟ3

Hence using Buckingham theorem, we write

[๐‘ข] = ๏ฟฝ๐‘ฅ๐‘Ž๐‘ก๐‘๐œ๐‘๐‘ข๐‘‘0๏ฟฝ (2)

We now determine ๐‘Ž, ๐‘, ๐‘, ๐‘‘, by dimensional analysis. The above is

๐ฝ๐ฟ3

= ๐ฟ๐‘Ž๐‘‡๐‘ ๏ฟฝ๐ฟ2

๐‘‡ ๏ฟฝ๐‘

๏ฟฝ๐ฝ๐ฟ3 ๏ฟฝ

๐‘‘

(๐ฝ) ๏ฟฝ๐ฟโˆ’3๏ฟฝ = ๏ฟฝ๐ฟ๐‘Ž+2๐‘โˆ’3๐‘‘๏ฟฝ ๏ฟฝ๐‘‡๐‘โˆ’๐‘๏ฟฝ ๏ฟฝ๐ฝ๐‘‘๏ฟฝ

Comparing powers of same units on both sides, we see that

๐‘‘ = 1๐‘ โˆ’ ๐‘ = 0

๐‘Ž + 2๐‘ โˆ’ 3๐‘‘ = โˆ’3

From second equation above, ๐‘ = ๐‘, hence third equation becomes

๐‘Ž + 2๐‘ โˆ’ 3๐‘‘ = โˆ’3๐‘Ž + 2๐‘ = 0

Since ๐‘‘ = 1. Hence

๐‘ = โˆ’๐‘Ž2

๐‘ = โˆ’๐‘Ž2

Therefore, now that we found all the powers, (we have one free power ๐‘Ž which we can setto any value), then from equation (1)

[๐‘ข] = ๏ฟฝ๐‘ฅ๐‘Ž๐‘ก๐‘๐œ๐‘๐‘ข๐‘‘0๏ฟฝ๐‘ข๐‘ข0

= ๏ฟฝ๏ฟฝ = ๐‘ฅ๐‘Ž๐‘ก๐‘๐œ๐‘

Therefore ๏ฟฝ๏ฟฝ is function of all the variables in the RHS. Let this function be ๐‘“ (This is thesame as ๐ป in problem statement). Hence the above becomes

๏ฟฝ๏ฟฝ = ๐‘“ ๏ฟฝ๐‘ฅ๐‘Ž๐‘กโˆ’๐‘Ž2๐œโˆ’

๐‘Ž2 ๏ฟฝ

= ๐‘“ ๏ฟฝ๐‘ฅ๐‘Ž

๐œ๐‘Ž2 ๐‘ก

๐‘Ž2๏ฟฝ

191

Page 196: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Since ๐‘Ž is free variable, we can choose

๐‘Ž = 1 (2)

And obtain

๏ฟฝ๏ฟฝ โ‰ก ๐‘“ ๏ฟฝ๐‘ฅ

โˆš๐œ๐‘ก๏ฟฝ (3)

In the above ๐‘ฅ

โˆš๐œ๐‘กis now non-dimensional quantity, which we call, the similarity variable

๐œ‰ =๐‘ฅ

โˆš๐œ๐‘ก(4)

Notice that another choice of ๐‘Ž in (2), for example ๐‘Ž = 2 would lead to ๐œ‰ = ๐‘ฅ2

๐œ๐‘ก instead of๐œ‰ = ๐‘ฅ

โˆš๐œ๐‘กbut we will use the latter for the rest of the problem.

3.5.3 Part (c)

Using ๐‘ข โ‰ก ๐‘“ (๐œ‰) where ๐œ‰ = ๐‘ฅ

โˆš๐œ๐‘กthen

๐œ•๐‘ข๐œ•๐‘ก

=๐‘‘๐‘“๐‘‘๐œ‰๐œ•๐œ‰๐œ•๐‘ก

=๐‘‘๐‘“๐‘‘๐œ‰

๐œ•๐œ•๐‘ก ๏ฟฝ

๐‘ฅ

โˆš๐œ๐‘ก๏ฟฝ

= โˆ’12๐‘‘๐‘“๐‘‘๐œ‰

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฅ

โˆš๐œ๐‘ก32

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

And๐œ•๐‘ข๐œ•๐‘ฅ

=๐‘‘๐‘“๐‘‘๐œ‰๐œ•๐œ‰๐œ•๐‘ฅ

=๐‘‘๐‘“๐‘‘๐œ‰

๐œ•๐œ•๐‘ฅ ๏ฟฝ

๐‘ฅ

โˆš๐œ๐‘ก๏ฟฝ

=๐‘‘๐‘“๐‘‘๐œ‰

1

โˆš๐œ๐‘ก

192

Page 197: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

And๐œ•2๐‘ข๐œ•๐‘ฅ2

=๐œ•๐œ•๐‘ฅ ๏ฟฝ

๐‘‘๐‘“๐‘‘๐œ‰

1

โˆš๐œ๐‘ก๏ฟฝ

=1

โˆš๐œ๐‘ก๐œ•๐œ•๐‘ฅ ๏ฟฝ

๐‘‘๐‘“๐‘‘๐œ‰๏ฟฝ

=1

โˆš๐œ๐‘ก๏ฟฝ๐‘‘2๐‘“๐‘‘๐œ‰2

๐œ•๐œ‰๐œ•๐‘ฅ๏ฟฝ

=1

โˆš๐œ๐‘ก๏ฟฝ๐‘‘2๐‘“๐‘‘๐œ‰2

1

โˆš๐œ๐‘ก๏ฟฝ

=1๐œ๐‘ก๐‘‘2๐‘“๐‘‘๐œ‰2

Hence the PDE ๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 becomes

โˆ’12๐‘‘๐‘“๐‘‘๐œ‰

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฅ

โˆš๐œ๐‘ก32

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  = ๐œ

1๐œ๐‘ก๐‘‘2๐‘“๐‘‘๐œ‰2

1๐‘ก๐‘‘2๐‘“๐‘‘๐œ‰2

+12

๐‘ฅ

โˆš๐œ๐‘ก32

๐‘‘๐‘“๐‘‘๐œ‰

= 0

๐‘‘2๐‘“๐‘‘๐œ‰2

+12๐‘ฅ

โˆš๐œ๐‘ก๐‘‘๐‘“๐‘‘๐œ‰

= 0

But ๐‘ฅ

โˆš๐œ๐‘ก= ๐œ‰, hence we obtain the required ODE as

๐‘‘2๐‘“ (๐œ‰)๐‘‘๐œ‰2

+12๐œ‰๐‘‘๐‘“ (๐œ‰)๐‘‘๐œ‰

= 0

๐‘“โ€ฒโ€ฒ +๐œ‰2๐‘“โ€ฒ = 0

We now solve the above ODE for ๐‘“ (๐œ‰). Let ๐‘“โ€ฒ = ๐‘ง, then the ODE becomes

๐‘งโ€ฒ +๐œ‰2๐‘ง = 0

Integrating factor is ๐œ‡ = ๐‘’โˆซ๐œ‰2 ๐‘‘๐œ‰ = ๐‘’

๐œ‰24 , hence

๐‘‘๐‘‘๐œ‰๏ฟฝ๐‘ง๐œ‡๏ฟฝ = 0

๐‘ง๐œ‡ = ๐‘1

๐‘ง = ๐‘1๐‘’โˆ’๐œ‰24

Therefore, since ๐‘“โ€ฒ = ๐‘ง, then

๐‘“โ€ฒ = ๐‘1๐‘’โˆ’๐œ‰24

193

Page 198: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.5. HW5 CHAPTER 3. HWS

Integrating gives

๐‘“ (๐œ‰) = ๐‘2 + ๐‘1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 24 ๐‘‘๐‘ 

3.5.4 Part (d)

For initial conditions of step function

๐‘ข (๐‘ฅ, 0) =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ0 ๐‘ฅ < 0๐ถ ๐‘ฅ > 0

The solution found in class was

๐‘ข (๐‘ฅ, ๐‘ก) =๐ถ2+๐ถ2

erf ๏ฟฝ๐‘ฅ

โˆš4๐œ๐‘ก๏ฟฝ (1)

Where erf ๏ฟฝ ๐‘ฅ

โˆš4๐œ๐‘ก๏ฟฝ = 2

โˆš๐œ‹โˆซ

๐‘ฅโˆš4๐œ๐‘ก

0๐‘’โˆ’๐‘ง2๐‘‘๐‘ง. The solution found in part (c) earlier is

๐‘“ (๐œ‰) = ๐‘1๏ฟฝ๐œ‰

0๐‘’โˆ’๐‘ 24 ๐‘‘๐‘  + ๐‘2

Let ๐‘  = โˆš4๐‘ง, then๐‘‘๐‘ ๐‘‘๐‘ง = โˆš4, when ๐‘  = 0, ๐‘ง = 0 and when ๐‘  = ๐œ‰, ๐‘ง = ๐œ‰

โˆš4, therefore the integral

becomes

๐‘“ (๐œ‰) = ๐‘1โˆš4๏ฟฝ๐œ‰โˆš4

0๐‘’โˆ’๐‘ง2๐‘‘๐‘ง + ๐‘2

But 2

โˆš๐œ‹โˆซ

๐œ‰โˆš4

0๐‘’โˆ’๐‘ง2๐‘‘๐‘ง = erf ๏ฟฝ ๐œ‰

โˆš4๏ฟฝ, hence โˆซ

๐œ‰โˆš4

0๐‘’โˆ’๐‘ง2๐‘‘๐‘ง = โˆš๐œ‹

2 erf ๏ฟฝ ๐œ‰

โˆš4๏ฟฝ and the above becomes

๐‘“ (๐œ‰) = ๐‘1โˆš๐œ‹ erf ๏ฟฝ๐œ‰

โˆš4๏ฟฝ + ๐‘2

= ๐‘3 erf ๏ฟฝ๐œ‰

โˆš4๏ฟฝ + ๐‘2

Since ๐œ‰ = ๐‘ฅ

โˆš๐œ๐‘ก, then above becomes, when converting back to ๐‘ข (๐‘ฅ, ๐‘ก)

๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘3 erf ๏ฟฝ๐‘ฅ

โˆš4๐œ๐‘ก๏ฟฝ + ๐‘2 (2)

Comparing (1) and (2), we see they are the same. Constants of integration are arbitraryand can be found from initial conditions.

194

Page 199: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6 HW6

3.6.1 Problem 1

NE548 Problems

Due Tuesday April 25, 2017

1. Use the Method of Images to solve

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2+Q(x, t), x > 0

(a)u(0, t) = 0, u(x, 0) = 0.

(b)u(0, t) = 1, u(x, 0) = 0.

(c)ux(0, t) = A(t), u(x, 0) = f(x).

2. (a) Solve by the Method of Characteristics:

โˆ‚2u

โˆ‚t2= c2

โˆ‚2u

โˆ‚x2, x โ‰ฅ 0, t โ‰ฅ 0

u(x, 0) = f(x),โˆ‚u(x, 0)

โˆ‚t= g(x),

โˆ‚u(0, t)

โˆ‚x= h(t)

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to helpconstruct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(x) = 1 for 4 โ‰ค x โ‰ค 5 and f(x) = 0otherwise.

1

Note, I will use ๐‘˜ in place of ๐œˆ since easier to type.

3.6.1.1 Part (a)

๐œ•๐‘ข๐œ•๐‘ก

= ๐‘˜๐œ•2๐‘ข๐œ•๐‘ฅ2

+ ๐‘„ (๐‘ฅ, ๐‘ก)

๐‘ฅ > 0๐‘ข (0, ๐‘ก) = 0๐‘ข (๐‘ฅ, 0) = 0

Multiplying both sides by ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) and integrating over the domain gives (where in thefollowing ๐บ is used instead of ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) for simplicity).

๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ข๐‘ก ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐‘ฅ๐‘ฅ๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘„๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ (1)

For the integral on the LHS, we apply integration by parts once to move the time derivativefrom ๐‘ข to ๐บ

๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ข๐‘ก ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ก๐‘ข ๐‘‘๐‘ก๐‘‘๐‘ฅ

195

Page 200: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

And the first integral in the RHS of (1) gives, after doing integration by parts two times

๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐‘ฅ๐‘ฅ๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก โˆ’๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐‘ฅ๐บ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= ๏ฟฝโˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก โˆ’ ๏ฟฝ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก โˆ’๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ๏ฟฝ

= ๏ฟฝโˆž

๐‘ก=0๏ฟฝ[๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 โˆ’ [๐‘ข๐บ๐‘ฅ]

โˆž๐‘ฅ=0๏ฟฝ ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= ๏ฟฝโˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ โˆ’ ๐‘ข๐บ๐‘ฅ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= โˆ’๏ฟฝโˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

Hence (1) becomes

๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅโˆ’๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ก๐‘ข ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ โˆ’ ๐‘ข๐บ๐‘ฅ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก+๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ+๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

Or

๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0โˆ’๐บ๐‘ก๐‘ข โˆ’ ๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ = โˆ’๏ฟฝ

โˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

(2)

We now want to choose ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) such that

โˆ’๐บ๐‘ก๐‘ข โˆ’ ๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0)โˆ’๐บ๐‘ก๐‘ข = ๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ + ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0) (3)

This way, the LHS of (2) becomes ๐‘ข (๐‘ฅ0, ๐‘ก0). Hence (2) now becomes

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (4)

We now need to find the Green function which satisfies (3). But (3) is equivalent to solutionof problem of

โˆ’๐บ๐‘ก๐‘ข = ๐‘˜๐‘ข๐บ๐‘ฅ๐‘ฅ

๐บ (๐‘ฅ, 0) = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0)โˆ’โˆž < ๐‘ฅ < โˆž

๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0 ๐‘ก > ๐‘ก0๐บ (ยฑโˆž, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0๐บ (๐‘ฅ, ๐‘ก0; ๐‘ฅ0, ๐‘ก0) = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0)

But the above problem has a known fundamental solution which we found, but for theforward heat PDE instead of the reverse heat PDE. The fundamental solution to the forwardheat PDE is

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก0 โ‰ค ๐‘ก

196

Page 201: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Hence for the reverse heat PDE the above becomes

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0 (5)

The above is the infinite space Green function and what we will use in (4). Now we goback to (4) and simplify the boundary conditions term. Starting with the term โˆซโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ.

Since ๐บ (๐‘ฅ,โˆž; ๐‘ฅ0, ๐‘ก0) = 0 then upper limit is zero. At ๐‘ก = 0 we are given that ๐‘ข (๐‘ฅ, 0) = 0, hencethis whole term is zero. So now (4) simplifies to

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (6)

We are told that ๐‘ข (0, ๐‘ก) = 0. Hence

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = (๐‘ข (โˆž, ๐‘ก) ๐บ๐‘ฅ (โˆž, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (โˆž, ๐‘ก) ๐บ (โˆž, ๐‘ก)) โˆ’ (๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก))

= (๐‘ข (โˆž, ๐‘ก) ๐บ๐‘ฅ (โˆž, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (โˆž, ๐‘ก) ๐บ (โˆž, ๐‘ก)) + ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก)

We also know that ๐บ (ยฑโˆž, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0, Hence ๐บ (โˆž) = 0 and also ๐บ๐‘ฅ (โˆž) = 0, hence the abovesimplifies

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก)

To make ๐บ (0, ๐‘ก) = 0 we place an image impulse at โˆ’๐‘ฅ0 with negative value to the impulse at๐‘ฅ0. This will make ๐บ at ๐‘ฅ = 0 zero.

xx = 0x0

โˆ’x0

+

โˆ’

Therefore the Green function to use is, from (5) becomes

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0

Therefore the solution, from (4) becomes

๐‘ข (๐‘ฅ0, ๐‘ก0) = ๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก๐‘‘๐‘ฅ (7)

Switching the order of ๐‘ฅ0, ๐‘ก0 with ๐‘ฅ, ๐‘ก gives

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0 (8)

Notice, for the terms (๐‘ฅ0 โˆ’ ๐‘ฅ)2 , (๐‘ฅ0 + ๐‘ฅ)

2, since they are squared, the order does not matter,so we might as well write the above as

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0 (8)

197

Page 202: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6.1.2 Part (b)

๐œ•๐‘ข๐œ•๐‘ก

= ๐‘˜๐œ•2๐‘ข๐œ•๐‘ฅ2

+ ๐‘„ (๐‘ฅ, ๐‘ก)

๐‘ฅ > 0๐‘ข (0, ๐‘ก) = 1๐‘ข (๐‘ฅ, 0) = 0

Everything follows the same as in part (a) up to the point where boundary condition termsneed to be evaluated.

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (4)

Where

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0 (5)

Starting with the term โˆซโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ. Since ๐บ (๐‘ฅ,โˆž; ๐‘ฅ0, ๐‘ก0) = 0 then upper limit is zero. At

๐‘ก = 0 we are given that ๐‘ข (๐‘ฅ, 0) = 0, hence this whole term is zero. So now (4) simplifies to

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (6)

Now

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = (๐‘ข (โˆž, ๐‘ก) ๐บ๐‘ฅ (โˆž, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (โˆž, ๐‘ก) ๐บ (โˆž, ๐‘ก)) โˆ’ (๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก))

We are told that ๐‘ข (0, ๐‘ก) = 1, we also know that ๐บ (ยฑโˆž, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0, Hence ๐บ (โˆž, ๐‘ก) = 0 andalso ๐บ๐‘ฅ (โˆž, ๐‘ก) = 0, hence the above simplifies

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = โˆ’๐บ๐‘ฅ (0, ๐‘ก) + ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก)

To make ๐บ (0) = 0 we place an image impulse at โˆ’๐‘ฅ0 with negative value to the impulse at๐‘ฅ0. This is the same as part(a)

xx = 0x0

โˆ’x0

+

โˆ’

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0

Now the boundary terms reduces to just

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = โˆ’๐บ๐‘ฅ (0, ๐‘ก)

We need now to evaluate ๐บ๐‘ฅ (0, ๐‘ก), the only remaining term. Since we know what ๐บ (๐‘ฅ, ๐‘ก) from198

Page 203: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

the above, then

๐œ•๐œ•๐‘ฅ๐บ (๐‘ฅ, ๐‘ก) =

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)2๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  +

2 (๐‘ฅ + ๐‘ฅ0)4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

And at ๐‘ฅ = 0 the above simplifies to

๐บ๐‘ฅ (0, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ

๐‘ฅ02๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

exp ๏ฟฝโˆ’๐‘ฅ20

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ +

๐‘ฅ02๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

exp ๏ฟฝโˆ’๐‘ฅ20

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ๏ฟฝ

=1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ

๐‘ฅ0๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

exp ๏ฟฝโˆ’๐‘ฅ20

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ๏ฟฝ

Hence the complete solution becomes from (4)

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= โˆ’๏ฟฝ๐‘ก0

๐‘ก=0โˆ’๐บ๐‘ฅ (0, ๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

Substituting ๐บ and ๐บ๐‘ฅ in the above gives

๐‘ข (๐‘ฅ0, ๐‘ก0) = ๏ฟฝ๐‘ก0

๐‘ก=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ

๐‘ฅ0๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

exp ๏ฟฝโˆ’๐‘ฅ20

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ๏ฟฝ ๐‘‘๐‘ก

+๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก๐‘‘๐‘ฅ

Switching the order of ๐‘ฅ0, ๐‘ก0 with ๐‘ฅ, ๐‘ก

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝ๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ

๐‘ฅ๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

exp ๏ฟฝโˆ’๐‘ฅ2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ๏ฟฝ ๐‘‘๐‘ก0

+๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0 (7)

But

๏ฟฝ๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ

๐‘ฅ๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

exp ๏ฟฝโˆ’๐‘ฅ2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ๏ฟฝ ๐‘‘๐‘ก0 = erfc ๏ฟฝ

๐‘ฅ2โˆš๐‘ก

๏ฟฝ

Hence (7) becomes

๐‘ข (๐‘ฅ, ๐‘ก) = erfc ๏ฟฝ๐‘ฅ2โˆš๐‘ก

๏ฟฝ +๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  โˆ’ exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

The only di๏ฟฝerence between this solution and part(a) solution is the extra term erfc ๏ฟฝ ๐‘ฅ2โˆš๐‘ก๏ฟฝ

due to having non-zero boundary conditions in this case.

199

Page 204: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

3.6.1.3 part(c)

๐œ•๐‘ข๐œ•๐‘ก

= ๐‘˜๐œ•2๐‘ข๐œ•๐‘ฅ2

+ ๐‘„ (๐‘ฅ, ๐‘ก)

๐‘ฅ > 0๐œ•๐‘ข (0, ๐‘ก)๐œ•๐‘ฅ

= ๐ด (๐‘ก)

๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ)

Everything follows the same as in part (a) up to the point where boundary condition termsneed to be evaluated.

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (4)

Starting with the term โˆซโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ. Since ๐บ (๐‘ฅ,โˆž; ๐‘ฅ0, ๐‘ก0) = 0 then upper limit is zero. At

๐‘ก = 0 we are given that ๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ), hence

๏ฟฝโˆž

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ฅ=0โˆ’๐‘ข (๐‘ฅ, 0) ๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ

= ๏ฟฝโˆž

๐‘ฅ=0โˆ’๐‘“ (๐‘ฅ)๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ

Looking at the second term in RHS of (4)

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = (๐‘ข (โˆž, ๐‘ก) ๐บ๐‘ฅ (โˆž, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (โˆž, ๐‘ก) ๐บ (โˆž, ๐‘ก)) โˆ’ (๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก))

We are told that ๐‘ข๐‘ฅ (0, ๐‘ก) = ๐ด (๐‘ก), we also know that ๐บ (ยฑโˆž, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0, Hence ๐บ (โˆž, ๐‘ก) = 0 andalso ๐บ๐‘ฅ (โˆž, ๐‘ก) = 0. The above simplifies

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = โˆ’ (๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) โˆ’ ๐ด (๐‘ก) ๐บ (0, ๐‘ก)) (5)

We see now from the above, that to get rid of the ๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) term (since we do not knowwhat ๐‘ข (0, ๐‘ก) is), then we now need

๐บ๐‘ฅ (0, ๐‘ก) = 0

This means we need an image at โˆ’๐‘ฅ0 which is of same sign as at +๐‘ฅ0 as shown in this diagram

xx = 0x0โˆ’x0

++

Which means the Green function we need to use is the sum of the Green function solutionsfor the infinite domain problem

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0 (6)

200

Page 205: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

The above makes ๐บ๐‘ฅ (0, ๐‘ก) = 0 and now equation (5) reduces to

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]โˆž๐‘ฅ=0 = ๐ด (๐‘ก) ๐บ (0, ๐‘ก)

= ๐ด (๐‘ก)โŽ›โŽœโŽœโŽœโŽ

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (โˆ’๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

=๐ด (๐‘ก)

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝexp ๏ฟฝ

โˆ’๐‘ฅ204๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

๏ฟฝ + exp ๏ฟฝโˆ’๐‘ฅ20

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)๏ฟฝ๏ฟฝ

=๐ด (๐‘ก)

โˆš๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)exp ๏ฟฝ

โˆ’๐‘ฅ204๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

๏ฟฝ

We now know all the terms needed to evaluate the solution. From (4)

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝโˆž

๐‘ฅ=0โˆ’๐‘“ (๐‘ฅ)๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0๐ด (๐‘ก) ๐บ (0, ๐‘ก) ๐‘‘๐‘ก +๏ฟฝ

โˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (7)

Using the Green function we found in (6), then (7) becomes

๐‘ข (๐‘ฅ0, ๐‘ก0) = ๏ฟฝโˆž

๐‘ฅ=0๐‘“ (๐‘ฅ)

1

โˆš4๐œ‹๐‘˜๐‘ก0

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐‘ฅ

โˆ’๏ฟฝ๐‘ก0

๐‘ก=0

๐ด (๐‘ก)

โˆš๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)exp ๏ฟฝ

โˆ’๐‘ฅ204๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

๏ฟฝ ๐‘‘๐‘ก

+๏ฟฝโˆž

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐‘˜ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

Changing the roles of ๐‘ฅ, ๐‘ก and ๐‘ฅ0, ๐‘ก0 the above becomes

๐‘ข (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜๐‘ก๏ฟฝ

โˆž

๐‘ฅ0=0๐‘“ (๐‘ฅ0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐‘ฅ0

โˆ’๏ฟฝ๐‘ก

๐‘ก0=0

๐ด (๐‘ก0)

โˆš๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)exp ๏ฟฝ

โˆ’๐‘ฅ2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ ๐‘‘๐‘ก0

+๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

Summary

๐‘ข (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐‘˜๐‘กฮ”1 โˆ’ ฮ”2 + ฮ”3

Where

ฮ”1 = ๏ฟฝโˆž

๐‘ฅ0=0๐‘“ (๐‘ฅ0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐‘ฅ0

ฮ”2 = ๏ฟฝ๐‘ก

๐‘ก0=0

๐ด (๐‘ก0)

โˆš๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)exp ๏ฟฝ

โˆ’๐‘ฅ2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)๏ฟฝ ๐‘‘๐‘ก0

ฮ”3 = ๏ฟฝโˆž

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0

1

โˆš4๐œ‹๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 + ๐‘ฅ)

2

4๐‘˜ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

201

Page 206: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Where ฮ”1 comes from the initial conditions and ฮ”2 comes from the boundary conditionsand ฮ”3 comes from for forcing function. It is also important to note that ฮ”1 is valid for only๐‘ก > 0 and not for ๐‘ก = 0.

3.6.2 Problem 2

NE548 Problems

Due Tuesday April 25, 2017

1. Use the Method of Images to solve

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2+Q(x, t), x > 0

(a)u(0, t) = 0, u(x, 0) = 0.

(b)u(0, t) = 1, u(x, 0) = 0.

(c)ux(0, t) = A(t), u(x, 0) = f(x).

2. (a) Solve by the Method of Characteristics:

โˆ‚2u

โˆ‚t2= c2

โˆ‚2u

โˆ‚x2, x โ‰ฅ 0, t โ‰ฅ 0

u(x, 0) = f(x),โˆ‚u(x, 0)

โˆ‚t= g(x),

โˆ‚u(0, t)

โˆ‚x= h(t)

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to helpconstruct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(x) = 1 for 4 โ‰ค x โ‰ค 5 and f(x) = 0otherwise.

1

3.6.2.1 Part (a)

The general solution we will use as starting point is

๐‘ข (๐‘ฅ, ๐‘ก) = ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) + ๐บ (๐‘ฅ + ๐‘๐‘ก)

Where ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) is the right moving wave and ๐บ (๐‘ฅ + ๐‘๐‘ก) is the left moving wave. Applying๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ) gives

๐‘“ (๐‘ฅ) = ๐น (๐‘ฅ) + ๐บ (๐‘ฅ) (1)

And๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ก

=๐‘‘๐น

๐‘‘ (๐‘ฅ โˆ’ ๐‘๐‘ก)๐œ• (๐‘ฅ โˆ’ ๐‘๐‘ก)

๐œ•๐‘ก+

๐‘‘๐บ๐‘‘ (๐‘ฅ + ๐‘๐‘ก)

๐œ• (๐‘ฅ + ๐‘๐‘ก)๐œ•๐‘ก

= โˆ’๐‘๐นโ€ฒ + ๐‘๐บโ€ฒ

Hence from second initial conditions we obtain

๐‘” (๐‘ฅ) = โˆ’๐‘๐นโ€ฒ + ๐‘๐บโ€ฒ (2)

Equation (1) and (2) are for valid only for positive argument, which means for ๐‘ฅ โ‰ฅ ๐‘๐‘ก.๐บ (๐‘ฅ + ๐‘๐‘ก) has positive argument always since ๐‘ฅ โ‰ฅ 0 and ๐‘ก โ‰ฅ 0, but ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) can have negativeargument when ๐‘ฅ < ๐‘๐‘ก. For ๐‘ฅ < ๐‘๐‘ก, we will use the boundary conditions to define ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก).Therefore for ๐‘ฅ โ‰ฅ ๐‘๐‘ก we solve (1,2) for ๐บ, ๐น and find

๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) =12๐‘“ (๐‘ฅ โˆ’ ๐‘๐‘ก) โˆ’

12๐‘ ๏ฟฝ

๐‘ฅโˆ’๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘  (2A)

๐บ (๐‘ฅ + ๐‘๐‘ก) =12๐‘“ (๐‘ฅ + ๐‘๐‘ก) +

12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘  (2B)

202

Page 207: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

This results in

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘ฅ โˆ’ ๐‘๐‘ก)

2+12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ โ‰ฅ ๐‘๐‘ก (3)

The solution (3) is only valid for arguments that are positive. This is not a problem for๐บ (๐‘ฅ + ๐‘๐‘ก) since its argument is always positive. But for ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) its argument can becomenegative when 0 < ๐‘ฅ < ๐‘๐‘ก. So we need to obtain a new solution for ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) for the case when๐‘ฅ < ๐‘๐‘ก. First we find ๐œ•๐‘ข(๐‘ฅ,๐‘ก)

๐œ•๐‘ฅ

๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ

=๐‘‘๐น

๐‘‘ (๐‘ฅ โˆ’ ๐‘๐‘ก)๐œ• (๐‘ฅ โˆ’ ๐‘๐‘ก)๐œ•๐‘ฅ

+๐‘‘๐บ

๐‘‘ (๐‘ฅ + ๐‘๐‘ก)๐œ• (๐‘ฅ + ๐‘๐‘ก)๐œ•๐‘ฅ

=๐‘‘๐น (๐‘ฅ โˆ’ ๐‘๐‘ก)๐‘‘ (๐‘ฅ โˆ’ ๐‘๐‘ก)

+๐‘‘๐บ (๐‘ฅ + ๐‘๐‘ก)๐‘‘ (๐‘ฅ + ๐‘๐‘ก)

Hence at ๐‘ฅ = 0

โ„Ž (๐‘ก) =๐‘‘๐น (โˆ’๐‘๐‘ก)๐‘‘ (โˆ’๐‘๐‘ก)

+๐‘‘๐บ (๐‘๐‘ก)๐‘‘ (๐‘๐‘ก)

๐‘‘๐น (โˆ’๐‘๐‘ก)๐‘‘ (โˆ’๐‘๐‘ก)

= โ„Ž (๐‘ก) โˆ’๐‘‘๐บ (๐‘๐‘ก)๐‘‘ (๐‘๐‘ก)

(4)

Let ๐‘ง = โˆ’๐‘๐‘ก, therefore (4) becomes, where ๐‘ก = โˆ’๐‘ง๐‘ also

๐‘‘๐น (๐‘ง)๐‘‘๐‘ง

= โ„Ž ๏ฟฝโˆ’๐‘ง๐‘๏ฟฝ โˆ’

๐‘‘๐บ (โˆ’๐‘ง)๐‘‘ (โˆ’๐‘ง)

๐‘ง < 0

๐‘‘๐น (๐‘ง)๐‘‘๐‘ง

= โ„Ž ๏ฟฝโˆ’๐‘ง๐‘๏ฟฝ +

๐‘‘๐บ (โˆ’๐‘ง)๐‘‘๐‘ง

๐‘ง < 0

To find ๐น (๐‘ง), we integrate the above which gives

๏ฟฝ๐‘ง

0

๐‘‘๐น (๐‘ )๐‘‘๐‘ 

๐‘‘๐‘  = ๏ฟฝ๐‘ง

0โ„Ž ๏ฟฝโˆ’

๐‘ ๐‘๏ฟฝ ๐‘‘๐‘  +๏ฟฝ

๐‘ง

0

๐‘‘๐บ (โˆ’๐‘ )๐‘‘๐‘ 

๐‘‘๐‘ 

๐น (๐‘ง) โˆ’ ๐น (0) = ๏ฟฝ๐‘ง

0โ„Ž ๏ฟฝโˆ’

๐‘ ๐‘๏ฟฝ ๐‘‘๐‘  + ๐บ (โˆ’๐‘ง) โˆ’ ๐บ (0)

Ignoring the constants of integration ๐น (0) , ๐บ (0) gives

๐น (๐‘ง) = ๏ฟฝ๐‘ง

0โ„Ž ๏ฟฝโˆ’

๐‘ ๐‘๏ฟฝ ๐‘‘๐‘  + ๐บ (โˆ’๐‘ง) (4A)

Replacing ๐‘ง = ๐‘ฅ โˆ’ ๐‘๐‘ก in the above gives

๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) = ๏ฟฝ๐‘ฅโˆ’๐‘๐‘ก

0โ„Ž ๏ฟฝโˆ’

๐‘ ๐‘๏ฟฝ ๐‘‘๐‘  + ๐บ (๐‘๐‘ก โˆ’ ๐‘ฅ)

Let ๐‘Ÿ = โˆ’ ๐‘ ๐‘ then when ๐‘  = 0, ๐‘Ÿ = 0 and when ๐‘  = ๐‘ฅ โˆ’ ๐‘๐‘ก then ๐‘Ÿ = โˆ’๐‘ฅโˆ’๐‘๐‘ก

๐‘ = ๐‘๐‘กโˆ’๐‘ฅ๐‘ . And ๐‘‘๐‘Ÿ

๐‘‘๐‘  = โˆ’1๐‘ .

Using these the integral in the above becomes

๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) = ๏ฟฝ๐‘๐‘กโˆ’๐‘ฅ๐‘

0โ„Ž (๐‘Ÿ) (โˆ’๐‘๐‘‘๐‘Ÿ) + ๐บ (๐‘๐‘ก โˆ’ ๐‘ฅ)

= โˆ’๐‘๏ฟฝ๐‘กโˆ’ ๐‘ฅ

๐‘

0โ„Ž (๐‘Ÿ) ๐‘‘๐‘Ÿ + ๐บ (๐‘๐‘ก โˆ’ ๐‘ฅ) (5)

203

Page 208: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

The above is ๐น (โ‹…) when its argument are negative. But in the above ๐บ (๐‘๐‘ก โˆ’ ๐‘ฅ) is the same aswe found above in (2b), which just replace it argument in 2B which was ๐‘ฅ+ ๐‘๐‘ก with ๐‘๐‘ก โˆ’ ๐‘ฅ andobtain

๐บ (๐‘๐‘ก โˆ’ ๐‘ฅ) =12๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ) +

12๐‘ ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก

Therefore (5) becomes

๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) = โˆ’๐‘๏ฟฝ๐‘กโˆ’ ๐‘ฅ

๐‘

0โ„Ž (๐‘Ÿ) ๐‘‘๐‘Ÿ +

12๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ) +

12๐‘ ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก (7)

Hence for ๐‘ฅ < ๐‘๐‘ก

๐‘ข (๐‘ฅ, ๐‘ก) = ๐น (๐‘ฅ โˆ’ ๐‘๐‘ก) + ๐บ (๐‘ฅ + ๐‘๐‘ก) (8)

But in the above ๐บ (๐‘ฅ + ๐‘๐‘ก) do not change, and we use the same solution for ๐บ for ๐‘ฅ โ‰ฅ ๐‘๐‘กwhich is in (2B), given again below

๐บ (๐‘ฅ + ๐‘๐‘ก) =12๐‘“ (๐‘ฅ + ๐‘๐‘ก) +

12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘  (9)

Hence, plugging (7,9) into (8) gives

๐‘ข (๐‘ฅ, ๐‘ก) = โˆ’๐‘๏ฟฝ๐‘๐‘กโˆ’๐‘ฅ๐‘

0โ„Ž (๐‘ ) ๐‘‘๐‘  +

12๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ) +

12๐‘ ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  +

12๐‘“ (๐‘ฅ + ๐‘๐‘ก) +

12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก

= โˆ’๐‘๏ฟฝ๐‘๐‘กโˆ’๐‘ฅ๐‘

0โ„Ž (๐‘ ) ๐‘‘๐‘  +

๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ) + ๐‘“ (๐‘ฅ + ๐‘๐‘ก)2

+12๐‘ ๏ฟฝ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  +๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ

The above for ๐‘ฅ < ๐‘๐‘ก. Therefore the full solution is

๐‘ข (๐‘ฅ, ๐‘ก) =

โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ

๐‘“(๐‘ฅ+๐‘๐‘ก)+๐‘“(๐‘ฅโˆ’๐‘๐‘ก)2 + 1

2๐‘โˆซ๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ โ‰ฅ ๐‘๐‘ก

โˆ’๐‘โˆซ๐‘กโˆ’ ๐‘ฅ

๐‘0

โ„Ž (๐‘ ) ๐‘‘๐‘  + ๐‘“(๐‘๐‘กโˆ’๐‘ฅ)+๐‘“(๐‘ฅ+๐‘๐‘ก)2 + 1

2๐‘๏ฟฝโˆซ๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  + โˆซ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ ๐‘ฅ < ๐‘๐‘ก

(10)

3.6.2.2 Part(b)

From (10) above, for โ„Ž (๐‘ก) = 0 the solution becomes

๐‘ข (๐‘ฅ, ๐‘ก) =

โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ

๐‘“(๐‘ฅ+๐‘๐‘ก)+๐‘“(๐‘ฅโˆ’๐‘๐‘ก)2 + 1

2๐‘โˆซ๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ โ‰ฅ ๐‘๐‘ก

๐‘“(๐‘๐‘กโˆ’๐‘ฅ)+๐‘“(๐‘ฅ+๐‘๐‘ก)2 + 1

2๐‘๏ฟฝโˆซ๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  + โˆซ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ ๐‘ฅ < ๐‘๐‘ก

(1)

The idea of symmetry is to obtain the same solution (1) above but by starting from dโ€™Almbertsolution (which is valid only for positive arguments)

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘ฅ โˆ’ ๐‘๐‘ก)

2+12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ > ๐‘๐‘ก (1A)

But by using ๐‘“๐‘’๐‘ฅ๐‘ก, ๐‘”๐‘’๐‘ฅ๐‘ก in the above instead of ๐‘“, ๐‘”, where the dโ€™Almbert solution becomesvalid for ๐‘ฅ < ๐‘๐‘ก when using ๐‘“๐‘’๐‘ฅ๐‘ก, ๐‘”๐‘’๐‘ฅ๐‘ก

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ฅ + ๐‘๐‘ก) + ๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ฅ โˆ’ ๐‘๐‘ก)

2+12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘”๐‘’๐‘ฅ๐‘ก (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก (2)

204

Page 209: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

Then using (1A) and (2) we show it is the same as (1). We really need to show that (2) leadsto the second part of (1), since (1A) is the same as first part of (1).

The main issue is how to determine ๐‘“๐‘’๐‘ฅ๐‘ก, ๐‘”๐‘’๐‘ฅ๐‘ก and determine if they should be even or oddextension of ๐‘“, ๐‘” . From boundary conditions, in part (a) equation (4A) we found that

๐น (๐‘ง) = ๏ฟฝ๐‘ง

0โ„Ž ๏ฟฝโˆ’

๐‘ ๐‘๏ฟฝ ๐‘‘๐‘  + ๐บ (โˆ’๐‘ง)

But now โ„Ž (๐‘ก) = 0, hence

๐น (๐‘ง) = ๐บ (โˆ’๐‘ง) (3)

Now, looking at the first part of the solution in (1). we see that for positive argument thesolution has ๐‘“ (๐‘ฅ โˆ’ ๐‘๐‘ก) for ๐‘ฅ > ๐‘๐‘ก and it has ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ) when ๐‘ฅ < ๐‘๐‘ก. So this leads us to pick ๐‘“๐‘’๐‘ฅ๐‘กbeing even as follows. Let

๐‘ง = ๐‘ฅ โˆ’ ๐‘๐‘ก

Then we see that

๐‘“ (๐‘ฅ โˆ’ ๐‘๐‘ก) = ๐‘“ (โˆ’ (๐‘ฅ โˆ’ ๐‘๐‘ก))๐‘“ (๐‘ง) = ๐‘“ (โˆ’๐‘ง)

Therefore we need ๐‘“๐‘’๐‘ฅ๐‘ก to be an even function.

๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ง) =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘“ (๐‘ง) ๐‘ง > 0๐‘“ (โˆ’๐‘ง) ๐‘ง < 0

But since ๐น (๐‘ง) = ๐บ (โˆ’๐‘ง) from (3), then ๐‘”๐‘’๐‘ฅ๐‘ก is also even function, which means

๐‘”๐‘’๐‘ฅ๐‘ก (๐‘ง) =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘” (๐‘ง) ๐‘ง > 0๐‘” (โˆ’๐‘ง) ๐‘ง < 0

Now that we found ๐‘“๐‘’๐‘ฅ๐‘ก, ๐‘”๐‘’๐‘ฅ๐‘ก extensions, we go back to (2). For negative argument

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ฅ + ๐‘๐‘ก) + ๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ฅ โˆ’ ๐‘๐‘ก)

2+12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘”๐‘’๐‘ฅ๐‘ก (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก

Since ๐‘“๐‘’๐‘ฅ๐‘ก, ๐‘”๐‘’๐‘ฅ๐‘ก are even, then using ๐‘”๐‘’๐‘ฅ๐‘ก (๐‘ง) = ๐‘” (โˆ’๐‘ง) since now ๐‘ง < 0 and using ๐‘“๐‘’๐‘ฅ๐‘ก (๐‘ง) = ๐‘“ (โˆ’๐‘ง)since now ๐‘ง < 0 the above becomes

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“ (โˆ’ (๐‘ฅ + ๐‘๐‘ก)) + ๐‘“ (โˆ’ (๐‘ฅ โˆ’ ๐‘๐‘ก))

2+12๐‘ ๏ฟฝ

๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘”๐‘’๐‘ฅ๐‘ก (๐‘ ) ๐‘‘๐‘  ๐‘ฅ < ๐‘๐‘ก

But ๐‘“ (โˆ’ (๐‘ฅ + ๐‘๐‘ก)) = ๐‘“ (๐‘ฅ + ๐‘๐‘ก) since even and ๐‘“ (โˆ’ (๐‘ฅ โˆ’ ๐‘๐‘ก)) = ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ), hence the above becomes

๐‘ข (๐‘ฅ, ๐‘ก) ==๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ)

2+12๐‘ ๏ฟฝ๏ฟฝ

0

๐‘ฅโˆ’๐‘๐‘ก๐‘” (โˆ’๐‘ ) ๐‘‘๐‘  +๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ ๐‘ฅ < ๐‘๐‘ก

Let ๐‘Ÿ = โˆ’๐‘ , then ๐‘‘๐‘Ÿ๐‘‘๐‘  = โˆ’1. When ๐‘  = ๐‘ฅ โˆ’ ๐‘๐‘ก, ๐‘Ÿ = ๐‘๐‘ก โˆ’ ๐‘ฅ and when ๐‘  = 0, ๐‘Ÿ = 0. Then the first

205

Page 210: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

integral on the RHS above becomes

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ)

2+12๐‘ ๏ฟฝ๏ฟฝ

0

๐‘๐‘กโˆ’๐‘ฅ๐‘” (๐‘Ÿ) (โˆ’๐‘‘๐‘Ÿ) +๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ

=๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ)

2+12๐‘ ๏ฟฝ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘Ÿ) ๐‘‘๐‘Ÿ +๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ

Relabel ๐‘Ÿ back to ๐‘ , then

๐‘ข (๐‘ฅ, ๐‘ก) =๐‘“ (๐‘ฅ + ๐‘๐‘ก) + ๐‘“ (๐‘๐‘ก โˆ’ ๐‘ฅ)

2+12๐‘ ๏ฟฝ๏ฟฝ

๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  +๏ฟฝ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ ๐‘ฅ < ๐‘๐‘ก (5)

Looking at (5) we see that this is the same solution in (1) for the case of ๐‘ฅ < ๐‘๐‘ก. Hence (1A)and (5) put together give

๐‘ข (๐‘ฅ, ๐‘ก) =

โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ

๐‘“(๐‘ฅ+๐‘๐‘ก)+๐‘“(๐‘ฅโˆ’๐‘๐‘ก)2 + 1

2๐‘โˆซ๐‘ฅ+๐‘๐‘ก

๐‘ฅโˆ’๐‘๐‘ก๐‘” (๐‘ ) ๐‘‘๐‘  ๐‘ฅ โ‰ฅ ๐‘๐‘ก

๐‘“(๐‘๐‘กโˆ’๐‘ฅ)+๐‘“(๐‘ฅ+๐‘๐‘ก)2 + 1

2๐‘๏ฟฝโˆซ๐‘๐‘กโˆ’๐‘ฅ

0๐‘” (๐‘ ) ๐‘‘๐‘  + โˆซ

๐‘ฅ+๐‘๐‘ก

0๐‘” (๐‘ ) ๐‘‘๐‘ ๏ฟฝ ๐‘ฅ < ๐‘๐‘ก

(1)

Which is same solution obtain in part(a).

3.6.2.3 Part(c)

For ๐‘” (๐‘ฅ) = 0, โ„Ž (๐‘ก) = 0 and ๐‘“ (๐‘ฅ) as given, the solution in equation (10) in part(a) becomes

๐‘ข (๐‘ฅ, ๐‘ก) =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

๐‘“(๐‘ฅ+๐‘๐‘ก)+๐‘“(๐‘ฅโˆ’๐‘๐‘ก)2 ๐‘ฅ โ‰ฅ ๐‘๐‘ก

๐‘“(๐‘๐‘กโˆ’๐‘ฅ)+๐‘“(๐‘ฅ+๐‘๐‘ก)2 ๐‘ฅ < ๐‘๐‘ก

(10)

A small program we written to make few sketches important time instantces. The left movingwave ๐บ (๐‘ฅ + ๐‘๐‘ก) hits the boundary at ๐‘ฅ = 0 but do not reflect now as the case with Dirichletboundary conditions, but instead it remains upright and turns around as shown.

206

Page 211: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

time = 0.00

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.25

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.40

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.55

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.59

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 0.80

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 1.20

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 2.50

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 3.90

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 4.20

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 5.40

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

time = 7.00

2 4 6 8 10 120.0

0.2

0.4

0.6

0.8

1.0

207

Page 212: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

3.6. HW6 CHAPTER 3. HWS

208

Page 213: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 4

Study notes

Local contents4.1 question asked 2/7/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2104.2 note on Airy added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2114.3 note p1 added 2/3/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134.4 note added 1/31/2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204.5 note p3 figure 3.4 in text (page 92) reproduced in color . . . . . . . . . . . . . . . 2254.6 note p4 added 2/15/17 animations of the solutions to ODE from lecture 2/9/17

for small parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2274.7 note p5 added 2/15/17 animation figure 9.5 in text page 434 . . . . . . . . . . . . 2314.8 note p7 added 2/15/17, boundary layer problem solved in details . . . . . . . . . 2374.9 note p9. added 2/24/17, asking question about problem in book . . . . . . . . . . 2434.10 note p11. added 3/7/17, Showing that scaling for normalization is same for any ๐‘› 2454.11 note p12. added 3/8/17, comparing exact solution to WKB solution using Math-

ematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2474.12 Convert ODE to Liouville form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2524.13 note p13. added 3/15/17, solving ๐œ–2๐‘ฆโ€ณ(๐‘ฅ) = (๐‘Ž + ๐‘ฅ + ๐‘ฅ2)๐‘ฆ(๐‘ฅ) in Maple . . . . . . . . 254

209

Page 214: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.1. question asked 2/7/2017 CHAPTER 4. STUDY NOTES

4.1 question asked 2/7/2017

Book at page 80 says "it is usually true that ๐‘†โ€ฒโ€ฒ โ‹˜ (๐‘†โ€ฒ)2" as ๐‘ฅ โ†’ ๐‘ฅ0. What are the exceptionsto this? Since it is easy to find counter examples.

For ๐‘ฆโ€ฒโ€ฒ = โˆš๐‘ฅ๐‘ฆ, as ๐‘ฅ โ†’ 0+. Using ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ) and substituting, gives the ODE

๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= โˆš๐‘ฅ (1)

If we follow the book, and drop ๐‘†โ€ฒโ€ฒ0 relative to (๐‘†โ€ฒ)2 then

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= ๐‘ฅ

12

๐‘†โ€ฒ0 = ๐œ”๐‘ฅ14

So, lets check the assumption. Since ๐‘†โ€ฒโ€ฒ0 = ๐œ”14๐‘ฅ

โˆ’ 34 . Therefore (ignoring all multiplicative

constants)

๐‘†โ€ฒโ€ฒ0?โ‹˜ ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2

1

๐‘ฅ34

?โ‹˜ ๐‘ฅ

12

No. Did not check out. Since when ๐‘ฅ โ†’ 0+ the LHS blow up while the RHS goes to zero.So in this example, this "rule of thumb" did not work out, and it is the other way around.Assuming I did not make a mistake, when the book says "it is usually true", it will good toknow under what conditions is this true or why did the book say this?

This will help in solving these problem.

210

Page 215: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.2. note on Airy added 1/31/2017 CHAPTER 4. STUDY NOTES

4.2 note on Airy added 1/31/2017

Note on using CAS for working with book AiryAI/AiryBI

termsCAS such as Mathematica or Maple can actually handle very large numbers. It is possible to calculate

individual terms of the Airy series given by the book (but no sum it). Calculating individual terms, up to

10 million terms for x=1,100 and x=10000 is shown below as illustration. It takes few minutes to do each

term

define small function to calculate one term

bookAi[x_Integer, n_Integer] :=

3-2

3x3 n

9n Factorial[n] Gamman + 2 3- 3

-4

3x3 n+1

9n Factorial[n] Gamman + 4 3;

This is for x=1, N=10,000,000

In[3]:= bookAi[1, 10 000 000] // N

Out[3]= 5.7642115 ร— 10-140 856 542

This is for x=100, N=10,000,000

In[4]:= bookAi[100, 10 000 000] // N

Out[4]= 5.7583009 ร— 10-80 856 542

This is for x=10,000 and N=10,000,000

In[5]:= Timing[bookAi[10000, 10 000000] // N]

Out[5]= 582.3829332, 5.167240 ร— 10-20 856 542

The above took 582 seconds to complete! The largest number it can handle on my PC is

In[6]:= $MaxNumber

Out[6]= 1.605216761933662 ร— 101355718576 299 609

Let compare the above to Gamma[10,000,000]

In[8]:= Gamma[10 000000.0]

Out[8]= 1.2024234 ร— 1065657052

In[9]:= Gamma[10 000000.0] < $MaxNumber

Out[9]= True

We see that Gamma[10,000,000] is much less than the largest number it can handle. Here is Gamma

Printed by Wolfram Mathematica Student Edition

211

Page 216: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.2. note on Airy added 1/31/2017 CHAPTER 4. STUDY NOTES

for 10 billion

In[10]:= Gamma[10 000000 000.0]

Out[10]= 2.3258 ร— 1095657055176

And 10 billion Factorial

In[11]:= Factorial[10 000000 000.0]

Out[11]= 2.3258 ร— 1095657055186

So CAS can handle these terms. But not the complete series summation as given in

the book

2 airy.nb

Printed by Wolfram Mathematica Student Edition

212

Page 217: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

4.3 note p1 added 2/3/2017

Current rules I am using in simplifications are

1. ๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ1

2. ๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2

3. ๐‘†0 โ‹™ ๐‘†1

4. (๐‘†0)๐‘› โ‹™ ๐‘†(๐‘›)0 (the first is power, the second is derivative order).

Verify the above are valid for ๐‘ฅ โ†’ 0+ and well for ๐‘ฅ โ†’ โˆž. What can we say about (๐‘†โ€ฒ)compared to (๐‘†โ€ฒ)2?

4.3.1 problem (a), page 88

๐‘ฆโ€ฒโ€ฒ =1๐‘ฅ5๐‘ฆ

Irregular singular point at ๐‘ฅ โ†’ 0+. Let ๐‘ฆ = ๐‘’๐‘†0(๐‘ฅ) and the above becomes

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘†โ€ฒ0๐‘’๐‘†

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ0 ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0

Substituting back into ๐‘‘2

๐‘‘๐‘ฅ2๐‘ฆ = ๐‘ฅโˆ’5๐‘ฆ gives

๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘† = ๐‘ฅโˆ’5๐‘’๐‘†0(๐‘ฅ)

๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2= ๐‘ฅโˆ’5

Before solving for ๐‘†0, we can do one more simplification. Using the approximation that

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0 for ๐‘ฅ โ†’ ๐‘ฅ0, the above becomes

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ ๐‘ฅโˆ’5

213

Page 218: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Now we are ready to solve for ๐‘†0

๐‘†โ€ฒ0 โˆผ ๐œ”๐‘ฅโˆ’52

๐‘†0 โˆผ ๐œ”๏ฟฝ๐‘ฅโˆ’52๐‘‘๐‘ฅ

โˆผ ๐œ”๐‘ฅโˆ’

32

โˆ’32

โˆผ โˆ’23๐œ”๐‘ฅโˆ’

32

To find leading behavior, let

๐‘† (๐‘ฅ) = ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ)

Then ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ) and hence now

๐‘ฆโ€ฒ (๐‘ฅ) = (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))โ€ฒ ๐‘’๐‘†0+๐‘†1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2๐‘’๐‘†0+๐‘†1 + (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ ๐‘’๐‘†0+๐‘†1

Using the above, the ODE ๐‘‘2

๐‘‘๐‘ฅ2๐‘ฆ = ๐‘ฅโˆ’5๐‘ฆ now becomes

๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2๐‘’๐‘†0+๐‘†1 + (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ ๐‘’๐‘†0+๐‘†1 โˆผ ๐‘ฅโˆ’5๐‘’๐‘†0+๐‘†1

๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2+ (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ โˆผ ๐‘ฅโˆ’5

๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ2+ ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 โˆผ ๐‘ฅโˆ’5

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 โˆผ ๐‘ฅโˆ’5

But ๐‘†โ€ฒ0 = ๐œ”๐‘ฅโˆ’ 52 , found before, hence ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2= ๐‘ฅโˆ’5 and the above simplifies to

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 = 0

Using approximation ๐‘†โ€ฒ0๐‘†โ€ฒ1 โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2the above simplifies to

2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 = 0

Finally, using approximation ๐‘†โ€ฒโ€ฒ0 โ‹™ ๐‘†โ€ฒโ€ฒ1 , the above becomes

2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 = 0

๐‘†โ€ฒ1 โˆผ โˆ’๐‘†โ€ฒโ€ฒ02๐‘†โ€ฒ0

๐‘†1 โˆผ โˆ’12

ln ๐‘†โ€ฒ0 + ๐‘

๐‘†โ€ฒ1 โˆผ โˆ’12

ln ๐‘ฅโˆ’52 + ๐‘

๐‘†โ€ฒ1 โˆผ54

ln ๐‘ฅ + ๐‘

214

Page 219: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Hence, the leading behavior is

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ)

= exp ๏ฟฝโˆ’23๐œ”๐‘ฅโˆ’

32 +

54

ln ๐‘ฅ + ๐‘๏ฟฝ

= ๐‘๐‘ฅ54 exp ๏ฟฝโˆ’๐œ”

23๐‘ฅโˆ’

32 ๏ฟฝ (1)

To verify, using the formula 3.4.28, which is

๐‘ฆ (๐‘ฅ) โˆผ ๐‘๐‘„1โˆ’๐‘›2๐‘› exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘„ (๐‘ก)

1๐‘› ๐‘‘๐‘ก๏ฟฝ

In this case, ๐‘› = 2, since the ODE ๐‘ฆโ€ฒโ€ฒ = ๐‘ฅโˆ’5๐‘ฆ is second order. Here we have ๐‘„ (๐‘ฅ) = ๐‘ฅโˆ’5,therefore, plug-in into the above gives

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ ๏ฟฝ๐‘ฅโˆ’5๏ฟฝ1โˆ’24 exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๏ฟฝ๐‘กโˆ’5๏ฟฝ

12 ๐‘‘๐‘ก๏ฟฝ

โˆผ ๐‘ ๏ฟฝ๐‘ฅโˆ’5๏ฟฝโˆ’14 exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘กโˆ’

52๐‘‘๐‘ก๏ฟฝ

โˆผ ๐‘๐‘ฅ54 exp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๐œ”

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๐‘ฅโˆ’

32

โˆ’32

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โˆผ ๐‘๐‘ฅ54 exp ๏ฟฝโˆ’๐œ”

23๐‘ฅโˆ’

32 ๏ฟฝ (2)

Comparing (1) and (2), we see they are the same.

4.3.2 problem (b), page 88

๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘ฅ๐‘ฆ

Irregular singular point at ๐‘ฅ โ†’ +โˆž. Let ๐‘ฆ = ๐‘’๐‘†0(๐‘ฅ) and the above becomes

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)

๐‘ฆโ€ฒ (๐‘ฅ) = ๐‘†โ€ฒ0๐‘’๐‘†0

๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ0 ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝ ๐‘’๐‘†0

๐‘ฆโ€ฒโ€ฒโ€ฒ = ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๏ฟฝโ€ฒ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๏ฟฝ ๐‘†โ€ฒ0๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + 2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 ๏ฟฝ ๐‘’๐‘†0 + ๏ฟฝ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3๏ฟฝ ๐‘’๐‘†0

= ๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3๏ฟฝ ๐‘’๐‘†0

215

Page 220: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Substituting back into ๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘ฅ๐‘ฆ gives

๏ฟฝ๐‘†โ€ฒโ€ฒโ€ฒ0 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3๏ฟฝ ๐‘’๐‘†0 = ๐‘ฅ๐‘’๐‘†0(๐‘ฅ)

๐‘†โ€ฒโ€ฒโ€ฒ0 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3= ๐‘ฅ

Before solving for ๐‘†0, we can do one more simplification. Using the approximation that

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ0 for ๐‘ฅ โ†’ ๐‘ฅ0, the above becomes

3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โˆผ ๐‘ฅ

In addition, since ๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒโ€ฒ0 then we can use the approximation ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 and the above

becomes

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โˆผ ๐‘ฅ

๐‘†โ€ฒ0 โˆผ ๐œ”๐‘ฅ13

๐‘†0 โˆผ ๐œ”๏ฟฝ๐‘ฅ13๐‘‘๐‘ฅ

๐‘†0 โˆผ ๐œ”34๐‘ฅ43

To find leading behavior, let

๐‘† (๐‘ฅ) = ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ)

Then ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ) and hence now

๐‘ฆโ€ฒ (๐‘ฅ) = (๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ))โ€ฒ ๐‘’๐‘†0+๐‘†1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๏ฟฝ(๐‘†0 + ๐‘†1)โ€ฒ๏ฟฝ2๐‘’๐‘†0+๐‘†1 + (๐‘†0 + ๐‘†1)

โ€ฒโ€ฒ ๐‘’๐‘†0+๐‘†1

= ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ2๐‘’๐‘†0+๐‘†1 + ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

= ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1๏ฟฝ ๐‘’๐‘†0+๐‘†1 + ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

= ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

216

Page 221: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

We can take the third derivative

๐‘ฆโ€ฒโ€ฒโ€ฒ (๐‘ฅ) โˆผ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ

โ€ฒ๐‘’๐‘†0+๐‘†1

+ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ (๐‘†0 + ๐‘†1)

โ€ฒ ๐‘’๐‘†0+๐‘†1

โˆผ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 2๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 2๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

+ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2๐‘†โ€ฒ0๐‘†โ€ฒ1 + ๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๏ฟฝ๐‘†โ€ฒ0 + ๐‘†โ€ฒ1๏ฟฝ ๐‘’๐‘†0+๐‘†

โˆผ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 2๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 2๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

+ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 2 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

+ ๏ฟฝ๐‘†โ€ฒ1 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 2๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ ๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

โˆผ ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 2๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 2๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 2๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

+ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ ๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ0 + ๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

โˆผ ๏ฟฝ3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 + ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3๏ฟฝ ๐‘’๐‘†0+๐‘†1

โˆผ ๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 ๏ฟฝ ๐‘’๐‘†0+๐‘†1

Lets go ahead and plug-in this into the ODE

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 + ๐‘†โ€ฒโ€ฒโ€ฒ0 + ๐‘†โ€ฒโ€ฒโ€ฒ1 โˆผ ๐‘ฅ

Now we do some simplification. ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ0 and ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3โ‹™ ๐‘†โ€ฒโ€ฒโ€ฒ1 , hence above becomes

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1 โˆผ ๐‘ฅ

Also, since ๐‘†โ€ฒโ€ฒ0 โ‹™ ๐‘†โ€ฒโ€ฒ1 then 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 โ‹™ 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ1

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 + 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1 โˆผ ๐‘ฅ

Also, since ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โ‹™ ๐‘†โ€ฒโ€ฒ0 then 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 โ‹™ 3๐‘†โ€ฒโ€ฒ0 ๐‘†โ€ฒ1

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 + 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1 โˆผ ๐‘ฅ

Also since ๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒโ€ฒ1 then 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ 3๐‘†โ€ฒ1๐‘†โ€ฒโ€ฒ1

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ3+ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 โˆผ ๐‘ฅ

But ๐‘†โ€ฒ0 โˆผ ๐‘ฅ13 hence๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

3โˆผ ๐‘ฅ and the above simplies to

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ3+ 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 = 0

217

Page 222: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

Using 3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โ‹™ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

3since ๐‘†โ€ฒ0 โ‹™ ๐‘†โ€ฒ1 then

3๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2+ 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 = 0

Using 3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 โ‹™ ๐‘†โ€ฒ0 ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2since ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2โ‹™ ๐‘†โ€ฒ0 then

3 ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2๐‘†โ€ฒ1 + 3๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0 = 0

No more simplification. We are ready to solve for ๐‘†1.

๐‘†โ€ฒ1 โˆผโˆ’๐‘†โ€ฒ0๐‘†โ€ฒโ€ฒ0๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2

โˆผโˆ’๐‘†โ€ฒโ€ฒ0๐‘†โ€ฒ0

Hence

๐‘†1 โˆผ โˆ’๏ฟฝ๐‘†โ€ฒโ€ฒ0๐‘†โ€ฒ0๐‘‘๐‘ฅ

โˆผ โˆ’ ln ๐‘†โ€ฒ0 + ๐‘

Since ๐‘†โ€ฒ0 โˆผ ๐‘ฅ13 then the above becomes

๐‘†1 โˆผ โˆ’ ln ๐‘ฅ13 + ๐‘

๐‘†1 โˆผ โˆ’13

ln ๐‘ฅ + ๐‘

Hence, the leading behavior is

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†0(๐‘ฅ)+๐‘†1(๐‘ฅ)

= exp ๏ฟฝ๐œ”34๐‘ฅ43 โˆ’

13

ln ๐‘ฅ + ๐‘๏ฟฝ

= ๐‘๐‘ฅโˆ’13 exp ๏ฟฝ๐œ”

34๐‘ฅ43 ๏ฟฝ (1)

To verify, using the formula 3.4.28, which is

๐‘ฆ (๐‘ฅ) โˆผ ๐‘๐‘„1โˆ’๐‘›2๐‘› exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ๐‘„ (๐‘ก)

1๐‘› ๐‘‘๐‘ก๏ฟฝ

In this case, ๐‘› = 3, since the ODE ๐‘ฆโ€ฒโ€ฒโ€ฒ = ๐‘ฅ๐‘ฆ is third order. Here we have ๐‘„ (๐‘ฅ) = ๐‘ฅ, therefore,

218

Page 223: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.3. note p1 added 2/3/2017 CHAPTER 4. STUDY NOTES

plug-in into the above gives

๐‘ฆ (๐‘ฅ) โˆผ ๐‘ (๐‘ฅ)1โˆ’36 exp ๏ฟฝ๐œ”๏ฟฝ

๐‘ฅ(๐‘ก)

13 ๐‘‘๐‘ก๏ฟฝ

โˆผ ๐‘๐‘ฅโˆ’13 exp ๏ฟฝ๐œ”

43๐‘ฅ43 ๏ฟฝ

Comparing (1) and (2), we see they are the same.

219

Page 224: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

4.4 note added 1/31/2017

This note solves in details the ODE

๐‘ฅ3๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) = ๐‘ฆ (๐‘ฅ)

Using asymptoes method using what is called the dominant balance submethod where it isassumed that ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ).

4.4.1 Solution

๐‘ฅ = 0 is an irregular singular point. The solution is assumeed to be ๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ). Therefore๐‘ฆโ€ฒ = ๐‘†โ€ฒ๐‘’๐‘†(๐‘ฅ) and ๐‘ฆโ€ฒโ€ฒ = ๐‘†โ€ฒโ€ฒ๐‘’๐‘†(๐‘ฅ) + (๐‘†โ€ฒ)2 ๐‘’๐‘†(๐‘ฅ) and the given ODE becomes

๐‘ฅ3 ๏ฟฝ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2๏ฟฝ = 1 (1)

Assuming that

๐‘†โ€ฒ (๐‘ฅ) โˆผ ๐‘๐‘ฅ๐›ผ

Hence ๐‘†โ€ฒโ€ฒ โˆผ ๐‘๐›ผ๐‘ฅ๐›ผโˆ’1. and (1) becomes

๐‘ฅ3 ๏ฟฝ๐‘๐›ผ๐‘ฅ๐›ผโˆ’1 + (๐‘๐‘ฅ๐›ผ)2๏ฟฝ โˆผ 1๐‘๐›ผ๐‘ฅ๐›ผ+2 + ๐‘2๐‘ฅ2๐›ผ+3 โˆผ 1

Term ๐‘๐›ผ๐‘ฅ๐›ผ+2 โ‹™ ๐‘2๐‘ฅ2๐›ผ+3, hence we set ๐›ผ = โˆ’32 to remove the subdominant term. Therefore

the above becomes, after substituting for the found ๐›ผ๐‘ฅโ†’0

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆ’32๐‘๐‘ฅ

12 + ๐‘2 โˆผ 1

๐‘2 = 1

Therefore ๐‘ = ยฑ1. The result so far is ๐‘†โ€ฒ (๐‘ฅ) โˆผ ๐‘๐‘ฅโˆ’32 . Now another term is added. Let

๐‘†โ€ฒ (๐‘ฅ) โˆผ ๐‘๐‘ฅโˆ’32 + ๐ด (๐‘ฅ)

Now we will try to find ๐ด (๐‘ฅ). Hence ๐‘†โ€ฒโ€ฒ (๐‘ฅ) โˆผ โˆ’32 ๐‘๐‘ฅ

โˆ’52 +๐ดโ€ฒ and ๐‘ฅ3 ๏ฟฝ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2๏ฟฝ = 1 now becomes

๐‘ฅ3 ๏ฟฝโˆ’32๐‘๐‘ฅ

โˆ’52 + ๐ดโ€ฒ + ๏ฟฝ๐‘๐‘ฅ

โˆ’32 + ๐ด๏ฟฝ

2

๏ฟฝ โˆผ 1

๐‘ฅ3 ๏ฟฝโˆ’32๐‘๐‘ฅ

โˆ’52 + ๐ดโ€ฒ + ๐‘2๐‘ฅโˆ’3 + ๐ด2 + 2๐ด๐‘๐‘ฅ

โˆ’32 ๏ฟฝ โˆผ 1

๏ฟฝโˆ’32๐‘๐‘ฅ

12 + ๐‘ฅ3๐ดโ€ฒ + ๐‘2 + ๐‘ฅ3๐ด2 + 2๐ด๐‘๐‘ฅ

32 ๏ฟฝ โˆผ 1

Since ๐‘2 = 1 from the above, thenโˆ’32๐‘๐‘ฅ

12 + ๐‘ฅ3๐ดโ€ฒ + ๐‘ฅ3๐ด2 + 2๐ด๐‘๐‘ฅ

32 โˆผ 0

220

Page 225: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

Dominant balance says to keep dominant term (but now looking at those terms in ๐ด only).From the above, since ๐ดโ‹™ ๐ด2 and ๐ด โ‹™ ๐ดโ€ฒ then from the above, we can cross out ๐ด2 and๐ดโ€ฒ resulting in

โˆ’32๐‘๐‘ฅ

12 + 2๐ด๐‘๐‘ฅ

32 โˆผ 0

Hence we just need to find ๐ด to balance the aboveโˆ’32๐‘๐‘ฅ

12 + 2๐ด๐‘๐‘ฅ

32 โˆผ 0

2๐ด๐‘๐‘ฅ32 โˆผ

32๐‘๐‘ฅ

12

๐ด โˆผ34๐‘ฅ

We found ๐ด (๐‘ฅ) for the second term. Therefore, so far we have

๐‘†โ€ฒ (๐‘ฅ) = ๐‘๐‘ฅโˆ’32 +

34๐‘ฅ

Or

๐‘† (๐‘ฅ) = โˆ’2๐‘๐‘ฅโˆ’12 +

34

ln ๐‘ฅ + ๐ถ0

But ๐ถ0 can be dropped (subdominant to ln ๐‘ฅ when ๐‘ฅ โ†’ 0) and so far then we can write thesolution as

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ)๐‘Š(๐‘ฅ)

= ๐‘’๐‘†(๐‘ฅ)โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= exp ๏ฟฝโˆ’2๐‘๐‘ฅโˆ’12 +

34

ln ๐‘ฅ๏ฟฝโˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= ๐‘’โˆ’2๐‘๐‘ฅโˆ’12 ๐‘ฅ

34

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= ๐‘’โˆ’ 2๐‘โˆš๐‘ฅ

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ+ 3

4

= ๐‘’ยฑ 2โˆš๐‘ฅ

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ+ 3

4

Since ๐‘ = ยฑ1. We can now try adding one more term to ๐‘† (๐‘ฅ). Let

๐‘†โ€ฒ (๐‘ฅ) = ๐‘๐‘ฅโˆ’32 +

34๐‘ฅ+ ๐ต (๐‘ฅ)

Hence

๐‘†โ€ฒโ€ฒ =โˆ’32๐‘๐‘ฅ

โˆ’52 โˆ’

34๐‘ฅ2

+ ๐ตโ€ฒ (๐‘ฅ)

221

Page 226: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

And ๐‘ฅ3 ๏ฟฝ๐‘†โ€ฒโ€ฒ + (๐‘†โ€ฒ)2๏ฟฝ โˆผ 1 now becomes

๐‘ฅ3โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝโˆ’32๐‘๐‘ฅ

โˆ’52 โˆ’

34๐‘ฅ2

+ ๐ตโ€ฒ (๐‘ฅ)๏ฟฝ + ๏ฟฝ๐‘๐‘ฅโˆ’32 +

34๐‘ฅ+ ๐ต (๐‘ฅ)๏ฟฝ

2โŽžโŽŸโŽŸโŽŸโŽŸโŽ  โˆผ 1

๐‘ฅ3 ๏ฟฝ๐‘2

๐‘ฅ3โˆ’316๐‘ฅโˆ’2 + 2๐‘๐ต๐‘ฅโˆ’

32 +

32๐ต๐‘ฅโˆ’1 + ๐ต2 + ๐ตโ€ฒ๏ฟฝ โˆผ 1

โŽ›โŽœโŽœโŽœโŽœโŽ=1โž๐‘2 โˆ’

316๐‘ฅ + 2๐‘๐ต๐‘ฅ

32 +

32๐ต๐‘ฅ2 + ๐‘ฅ3๐ต2 + ๐‘ฅ3๐ตโ€ฒ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  โˆผ 1

โˆ’316๐‘ฅ + 2๐‘๐ต๐‘ฅ

32 +

32๐ต๐‘ฅ2 + ๐‘ฅ3๐ต2 + ๐‘ฅ3๐ตโ€ฒ โˆผ 0

From the above, since ๐ต (๐‘ฅ) โ‹™ ๐ต2 (๐‘ฅ) and ๐ต (๐‘ฅ) โ‹™ ๐ตโ€ฒ (๐‘ฅ) and for small ๐‘ฅ, then we can crossout terms with ๐ต2 and ๐ตโ€ฒ from above, and we are left with

โˆ’316๐‘ฅ + 2๐‘๐ต๐‘ฅ

32 +

32๐ต๐‘ฅ2 โˆฝ 0

Between 2๐‘๐ต๐‘ฅ32 and 3

2๐ต๐‘ฅ2, for small ๐‘ฅ, then 2๐‘๐ต๐‘ฅ

32 โ‹™ 3

2๐ต๐‘ฅ2, so we can cross out 3

2๐ต๐‘ฅ2 from

above

โˆ’316๐‘ฅ + 2๐‘๐ต๐‘ฅ

32 โˆฝ 0

2๐‘๐ต๐‘ฅ32 โˆฝ

316๐‘ฅ

๐ต โˆฝ332๐‘

๐‘ฅโˆ’12

We found ๐ต (๐‘ฅ), Hence now we have

๐‘†โ€ฒ (๐‘ฅ) = ๐‘๐‘ฅโˆ’32 +

34๐‘ฅ+

332๐‘

๐‘ฅโˆ’12

Or

๐‘† (๐‘ฅ) = โˆ’2๐‘๐‘ฅโˆ’12 +

34

ln ๐‘ฅ + 316๐‘

๐‘ฅ12 + ๐ถ1

But ๐ถ1 can be dropped (subdominant to ln ๐‘ฅ when ๐‘ฅ โ†’ 0) and so far then we can write thesolution as

๐‘ฆ (๐‘ฅ) = ๐‘’๐‘†(๐‘ฅ)๐‘Š(๐‘ฅ)

= ๐‘’๐‘†(๐‘ฅ)โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= exp ๏ฟฝโˆ’2๐‘๐‘ฅโˆ’12 +

34

ln ๐‘ฅ + 316๐‘

๐‘ฅ12 ๏ฟฝ

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= ๐‘’โˆ’2๐‘๐‘ฅโˆ’12 + 3

16๐‘๐‘ฅ12 ๐‘ฅ

34

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ

= ๐‘’โˆ’2๐‘๐‘ฅโˆ’12 + 3

16๐‘๐‘ฅ12

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ+ 3

4

222

Page 227: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

For ๐‘ = 1

๐‘ฆ1 (๐‘ฅ) = ๐‘’โˆ’2๐‘ฅ

โˆ’12 + 3

16๐‘ฅ12

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ+ 3

4

For ๐‘ = โˆ’1

๐‘ฆ2 (๐‘ฅ) = ๐‘’2๐‘ฅ

โˆ’12 โˆ’ 3

16๐‘ฅ12

โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘›๐‘ฅ๐‘›๐‘Ÿ+ 3

4

Hence

๐‘ฆ (๐‘ฅ) โˆผ ๐ด๐‘ฆ1 (๐‘ฅ) + ๐ต๐‘ฆ2 (๐‘ฅ)

Reference

1. Page 80-82 Bender and Orszag textbook.

2. Lecture notes, Lecture 5, Tuesday Janurary 31, 2017. EP 548, University of Wisconsin,Madison by Professor Smith.

3. Lecture notes from http://www.damtp.cam.ac.uk/

223

Page 228: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.4. note added 1/31/2017 CHAPTER 4. STUDY NOTES

224

Page 229: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.5. note p3 figure 3.4 in text (page 92) . . . CHAPTER 4. STUDY NOTES

4.5 note p3 ๏ฟฝgure 3.4 in text (page 92) reproduced incolor

figure 3.4 in text (page 92) was not too clear (it is black and white in my text book that I am using). So I

reproduced it in color. This type of plot is needed to check what happens with the improvement in

approximation for problem 3.42 (a) as more terms are added to leading behavior.

It is done in Wolfram Mathematica. Used 300 terms to find y(x). We see the red line, which is leading

behavior/y(x) ratio going to 1 for large x as would be expected.

In[1]:= leading[x] := 1 2 Pi^-1 2 x^-1 4 Exp2 x^1 2;

y[x_, max_] := Sumx^n Factorial[n]^2, {n, 0, max};

LogLinearPlotEvaluateleading[x] y[x, 300], y[x, 10] y[x, 300], {x, 0.001, 70 000},

PlotRange โ†’ All, Frame โ†’ True, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

PlotLegends โ†’ {"leading behavior/y(x)", "truncated Taylor/y(x)"}, FrameLabel โ†’

{{None, None}, {"x", "Reproducing figure 3.4 in text book"}}, PlotStyle โ†’ {Red, Blue}

Out[3]=

0.01 1 100 104

0.0

0.5

1.0

1.5

x

Reproducing figure 3.4 in text book

leading behavior/y(x)

truncated Taylor/y(x)

Printed by Wolfram Mathematica Student Edition

225

Page 230: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.5. note p3 figure 3.4 in text (page 92) . . . CHAPTER 4. STUDY NOTES

226

Page 231: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

4.6 note p4 added 2/15/17 animations of the solutions toODE from lecture 2/9/17 for small parameter

These are small animations of the solutions to the 2 ODEโ€™s from lecture 2/9/17 for the small parameter.

Nasser M. Abbasi

2/20/2017, EP 548, Univ. Wisconsin Madison.

Manipulate

Labeled

Plot-1 + โ…‡x/z

-1 + โ…‡1

z

, {x, 0, 2}, PlotRange โ†’ {{0, 1.1}, {0, 1}},

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray, PlotStyle โ†’ Red,

Row[{"solution to ", TraditionalForm[ฯต y''[x] - y'[x] โฉต 0]}], Top,

{{z, 0.1, "ฯต"}, .1, 0.001, -0.001, Appearance โ†’ "Labeled"}

ฯต 0.1

solution to ฯต yโ€ฒโ€ฒ(x) - yโ€ฒ(x) 0

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

For eps*yโ€™โ€™+y=0 ode, we notice global variations showing up in frequency as well as in amplitude as

eps become very small

Printed by Wolfram Mathematica Student Edition

227

Page 232: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

Manipulate

Labeled

Plot

Sin x

z

Sin 1

z

, {x, 0, 2}, PlotRange โ†’ {{0, 2}, {-10, 10}},

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray, PlotStyle โ†’ Red,

Style[Row[{"solution to ", TraditionalForm[z y''[x] + y[x] โฉต 0]}], 16], Top,

{{z, 0.01, "ฯต"}, 0.01, 0.0001, -0.0001}

ฯต

solution to 0.01 yโ€ฒโ€ฒ(x) + y(x) 0

0.5 1.0 1.5 2.0

-10

-5

0

5

10

2 p4.nb

Printed by Wolfram Mathematica Student Edition

228

Page 233: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

First animation

second animation

229

Page 234: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.6. note p4 added 2/15/17 animations of . . . CHAPTER 4. STUDY NOTES

230

Page 235: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

4.7 note p5 added 2/15/17 animation ๏ฟฝgure 9.5 in textpage 434

Animation of figure 9.5Nasser M. Abbasi, Feb 2017, EP 548 course

Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the

exact solution for ฯตyโ€ฒโ€ฒ+(1+x)yโ€ฒ+y=0 for different orders. Orders are given in text up y0,y1,y2,y3. We

see the error is smaller when order increases as what one would expect.

The percentage error is largest around x=0.1 than other regions. Why? Location of matching between

yin and yout. Due

to approximation made when doing matching? But all boundary layer solutions underestimate the exact

solution since error is negative.

The red color is the most accurate. 3rd order.

First animation

In[45]:= Clear["Global`*"];

yout[x_] := 2 1 + x;

yin[x_, eps_] :=

Plot[2 - Exp[-x / eps], {x, 0, 1}, AxesOrigin โ†’ {0, 1}, PlotStyle โ†’ Black];

p1 = Plot[yout[x], {x, 0, 1}, PlotStyle โ†’ Blue];

combine[x_, eps_] := Plot[yout[x] - Exp[-x / eps], {x, 0, 1}, PlotStyle โ†’ {Thick, Red},

AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray];

Animate

GridTraditionalForm

NumberForm[eps, {Infinity, 4}] HoldFormy''[x] + 1 + x y'[x] + y[x] โฉต 0,

{Show[

Legended[combine[x, eps], Style["combinbed solution", Red]],

Legended[p1, Style["Outer solution", Blue]],

Legended[yin[x, eps], Style["Inner solution", Black]]

, PlotRange โ†’ {{0, 1}, {1, 2}}, ImageSize โ†’ 400]

}, {eps, 0.001, .1, .00001}

Printed by Wolfram Mathematica Student Edition

231

Page 236: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

second animation, y0 vs. exactIn[51]:= Clear["Global`*"];

yout[x_] := 2 1 + x;

sol =

y[x] /. First@DSolveฯต y''[x] + 1 + x y'[x] + y[x] โฉต 0, y[0] โฉต 1, y[1] โฉต 1, y[x], x;

exact[x_, ฯต_] := Evaluate@sol;

yin[x_, eps_] :=

Plot[2 - Exp[-x / eps], {x, 0, 1}, AxesOrigin โ†’ {0, 1}, PlotStyle โ†’ Black];

p1 = Plot[yout[x], {x, 0, 1}, PlotStyle โ†’ Blue];

combine[x_, eps_] := Plot[yout[x] - Exp[-x / eps], {x, 0, 1}, PlotStyle โ†’ {Thick, Red},

AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray];

Animate

Grid

TraditionalForm

NumberForm[ฯต, {Infinity, 4}] HoldFormy''[x] + 1 + x y'[x] + y[x] โฉต 0,

{Row[{"exact solution ", TraditionalForm[sol]}]},

{Show[

Legended[combine[x, ฯต], Style["Boundary layer solution, zero order", Red]],

Legended[Plot[Evaluate@exact[x, ฯต], {x, 0, 1}, AxesOrigin โ†’ {0, 0}, PlotStyle โ†’ Blue],

Style["Exact analytical solution", Blue]]

, PlotRange โ†’ {{0, 1}, {1, 2}}, ImageSize โ†’ 400]

}, {ฯต, 0.0001, .1, .00001}

2 p5.nb

Printed by Wolfram Mathematica Student Edition

232

Page 237: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

add more terms

In[60]:= Clear["Global`*"];

sol =

y[x] /. First@DSolveฯต y''[x] + 1 + x y'[x] + y[x] โฉต 0, y[0] โฉต 1, y[1] โฉต 1, y[x], x;

exact[x_, ฯต_] := Evaluate@sol;

boundary0[x_, eps_] :=2

1 + x- Exp[-x / eps] ;

boundary1[x_, eps_] :=

2

1 + x- Exp[-x / eps] + eps

2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] ;

boundary2[x_, eps_] :=2

1 + x- Exp[-x / eps] +

eps2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] +

eps26

1 + x5-

1

2 1 + x3-

1

4 1 + x-

1

8(x / eps)4 -

3

4(x / eps)2 +

21

4Exp[-x / eps] ;

boundary3[x_, eps_] :=2

1 + x- Exp[-x / eps] +

eps2

1 + x3-

1

2 1 + x+

1

2(x / eps)2 -

3

2Exp[-x / eps] +

eps26

1 + x5-

1

2 1 + x3-

1

4 1 + x-

1

8(x / eps)4 -

3

4(x / eps)2 +

21

4Exp[-x / eps] +

eps330

1 + x7-

3

2 1 + x5-

1

4 1 + x3-

5

16 1 + x+

1

48(x / eps)6 -

3

16(x / eps)4 +

21

8(x / eps)2 -

1949

72Exp[-x / eps] ;

p5.nb 3

Printed by Wolfram Mathematica Student Edition

233

Page 238: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

In[67]:= Animate

ex = exact[x, ฯต];

Grid

{Style[

"percentage relative error, exact vs. boundary layer for different order", 14]},

Show

LegendedPlot100 *boundary3[x, ฯต] - ex

ex, {x, 0, 1},

PlotStyle โ†’ {Thick, Red}, AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic,

GridLinesStyle โ†’ LightGray, PlotRange โ†’ {Automatic, {-4, .5}}, Frame โ†’ True,

Epilog โ†’ Text[Style[Row[{"ฯต = ", NumberForm[ฯต, {Infinity, 4}]}], 16], {.8, -3}],

Style"Boundary layer 3rd order error", Red,

LegendedPlot100 *boundary2[x, ฯต] - ex

ex, {x, 0, 1}, PlotStyle โ†’ {Thick, Black},

AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

Style"Boundary layer 2nd order error", Black,

LegendedPlot100 *boundary1[x, ฯต] - ex

ex, {x, 0, 1}, PlotStyle โ†’ {Thick, Blue},

AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

Style"Boundary layer 1st order error", Blue,

LegendedPlot100 *boundary0[x, ฯต] - ex

ex, {x, 0, 1}, PlotStyle โ†’ {Thick, Magenta},

AxesOrigin โ†’ {0, 1}, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

Style["Boundary layer 0 order error", Magenta]

, PlotRange โ†’ {{0, 1}, {-4, .5}}, ImageSize โ†’ 400

, {ฯต, 0.001, .1, .0001}

4 p5.nb

Printed by Wolfram Mathematica Student Edition

234

Page 239: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

Out[67]=

ฯต

percentage relative error, exact vs. boundary layer for different order

0.0 0.2 0.4 0.6 0.8 1.0-4

-3

-2

-1

0

ฯต = 0.0656

Boundary layer 3rd order error

Boundary layer 2nd order error

Boundary layer 1st order errorBoundary layer 0 order error

p5.nb 5

Printed by Wolfram Mathematica Student Edition

235

Page 240: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.7. note p5 added 2/15/17 animation . . . CHAPTER 4. STUDY NOTES

Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the exactsolution for ๐œ–๐‘ฆโ€ณ+(1+๐‘ฅ)๐‘ฆโ€ฒ+๐‘ฆ = 0 for di๏ฟฝerent orders. Orders are given in text up ๐‘ฆ0, ๐‘ฆ1, ๐‘ฆ2, ๐‘ฆ3.We see the error is smaller when the order increases as what one would expect.

The percentage error is largest around ๐‘ฅ = 0.1 than other regions. Why? Location of matchingis between ๐‘ฆ๐‘–๐‘› and ๐‘ฆ๐‘œ๐‘ข๐‘ก. Due to approximation made when doing matching? But all boundarylayer solutions underestimate the exact solution since error is negative.

The red color is the most accurate. 3rd order.

First animation

second animation

third animation

236

Page 241: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

4.8 note p7 added 2/15/17, boundary layer problemsolved in details

This note solves

๐œ€๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) + (1 + ๐‘ฅ) ๐‘ฆโ€ฒ (๐‘ฅ) + ๐‘ฆ (๐‘ฅ) = 0๐‘ฆ (0) = 1๐‘ฆ (1) = 1

Where ๐œ€ is small parameter, using boundary layer theory.

4.8.0.1 Solution

Since (1 + ๐‘ฅ) > 0 in the domain, we expect boundary layer to be on the left. Let ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) bethe solution in the outer region. Starting with ๐‘ฆ (๐‘ฅ) = โˆ‘โˆž

๐‘›=0 ๐œ€๐‘›๐‘ฆ๐‘› and substituting back into

the ODE gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + (1 + ๐‘ฅ) ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

๐‘‚ (1) terms

Collecting all terms with zero powers of ๐œ€(1 + ๐‘ฅ) ๐‘ฆโ€ฒ0 + ๐‘ฆ0 = 0

The above is solved using the right side conditions, since this is where the outer region islocated. Solving the above using ๐‘ฆ0 (1) = 1 gives

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) =2

1 + ๐‘ฅNow we need to find ๐‘ฆ๐‘–๐‘› (๐‘ฅ). To do this, we convert the ODE using transformation ๐œ‰ = ๐‘ฅ

๐œ€ .

Hence ๐‘‘๐‘ฆ๐‘‘๐‘ฅ = ๐‘‘๐‘ฆ

๐‘‘๐œ‰๐‘‘๐œ‰๐‘‘๐‘ฅ = ๐‘‘๐‘ฆ

๐‘‘๐œ‰1๐œ€ . Hence the operator ๐‘‘

๐‘‘๐‘ฅ โ‰ก 1๐œ€

๐‘‘๐‘‘๐œ‰ . This means the operator ๐‘‘2

๐‘‘๐‘ฅ2 โ‰ก

๏ฟฝ1๐œ€

๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ1

๐œ€๐‘‘๐‘‘๐œ‰๏ฟฝ = 1

๐œ€2๐‘‘2

๐‘‘๐œ‰2 . The ODE becomes

๐œ€1๐œ€2๐‘‘2๐‘ฆ (๐œ‰)๐‘‘๐œ‰2

+ (1 + ๐œ‰๐œ€)1๐œ€๐‘‘๐‘ฆ (๐œ‰)๐‘‘๐œ‰

+ ๐‘ฆ (๐œ‰) = 0

1๐œ€๐‘ฆโ€ฒโ€ฒ + ๏ฟฝ

1๐œ€+ ๐œ‰๏ฟฝ ๐‘ฆโ€ฒ + ๐‘ฆ = 0

Plugging ๐‘ฆ (๐œ‰) = โˆ‘โˆž๐‘›=0 ๐œ€

๐‘›๐‘ฆ (๐œ‰)๐‘› into the above gives

1๐œ€๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ

1๐œ€+ ๐œ‰๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

1๐œ€๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ +

1๐œ€๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๐œ‰ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

237

Page 242: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

Collecting all terms with smallest power of ๐œ€ , which is ๐œ€โˆ’1 in this case, gives1๐œ€๐‘ฆโ€ฒโ€ฒ0 +

1๐œ€๐‘ฆโ€ฒ0 = 0

๐‘ฆโ€ฒโ€ฒ0 + ๐‘ฆโ€ฒ0 = 0

Let ๐‘ง = ๐‘ฆโ€ฒ0, the above becomes

๐‘งโ€ฒ + ๐‘ง = 0

๐‘‘ ๏ฟฝ๐‘’๐œ‰๐‘ง๏ฟฝ = 0๐‘’๐œ‰๐‘ง = ๐‘๐‘ง = ๐‘๐‘’โˆ’๐œ‰

Hence ๐‘ฆโ€ฒ0 (๐œ‰) = ๐‘๐‘’โˆ’๐œ‰. Integrating

๐‘ฆ๐‘–๐‘›0 (๐œ‰) = โˆ’๐‘๐‘’โˆ’๐œ‰ + ๐‘1 (1A)

Since ๐‘ is arbitrary constant, the negative sign can be removed, giving

๐‘ฆ๐‘–๐‘›0 (๐œ‰) = ๐‘๐‘’โˆ’๐œ‰ + ๐‘1 (1A)

This is the lowest order solution for the inner ๐‘ฆ๐‘–๐‘› (๐œ‰). We have two boundary conditions, butwe can only use the left side one, where ๐‘ฆ๐‘–๐‘› (๐œ‰) lives. Hence using ๐‘ฆ0 (๐œ‰ = 0) = 1, the abovebecomes

1 = ๐‘ + ๐‘1๐‘1 = 1 โˆ’ ๐‘

The solution (1A) becomes

๐‘ฆ0 (๐œ‰) = ๐‘๐‘’โˆ’๐œ‰ + (1 โˆ’ ๐‘)

= 1 + ๐‘ ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

Let ๐‘ = ๐ด0 to match the book notation.

๐‘ฆ0 (๐œ‰) = 1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

To find ๐ด0, we match ๐‘ฆ๐‘–๐‘›0 (๐œ‰) with ๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ)

lim๐œ‰โ†’โˆž

1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ = lim๐‘ฅโ†’0+

21 + ๐‘ฅ

1 โˆ’ ๐ด0 = 2๐ด0 = โˆ’1

Hence

๐‘ฆ๐‘–๐‘›0 (๐œ‰) = 2 โˆ’ ๐‘’โˆ’๐œ‰

๐‘‚ (๐œ€) terms

We now repeat the process to find ๐‘ฆ๐‘–๐‘›1 (๐œ‰) and ๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ) . Starting with ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + (1 + ๐‘ฅ) ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

238

Page 243: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

Collecting all terms with ๐œ€1 now

๐œ€๐‘ฆโ€ฒโ€ฒ0 + (1 + ๐‘ฅ) ๐œ€๐‘ฆโ€ฒ1 + ๐œ€๐‘ฆ1 = 0๐‘ฆโ€ฒโ€ฒ0 + (1 + ๐‘ฅ) ๐‘ฆโ€ฒ1 + ๐‘ฆ1 = 0

But we know ๐‘ฆ0 =2

1+๐‘ฅ , from above. Hence ๐‘ฆโ€ฒโ€ฒ0 =4

(1+๐‘ฅ)3and the above becomes

(1 + ๐‘ฅ) ๐‘ฆโ€ฒ1 + ๐‘ฆ1 = โˆ’4

(1 + ๐‘ฅ)3

๐‘ฆโ€ฒ1 +๐‘ฆ11 + ๐‘ฅ

= โˆ’4

(1 + ๐‘ฅ)4

Integrating factor ๐œ‡ = ๐‘’โˆซ1

1+๐‘ฅ๐‘‘๐‘ฅ = ๐‘’ln(1+๐‘ฅ) = 1 + ๐‘ฅ and the above becomes

๐‘‘๐‘‘๐‘ฅ๏ฟฝ๐œ‡๐‘ฆ1๏ฟฝ = โˆ’๐œ‡

4(1 + ๐‘ฅ)4

๐‘‘๐‘‘๐‘ฅ๏ฟฝ(1 + ๐‘ฅ) ๐‘ฆ1๏ฟฝ = โˆ’

4(1 + ๐‘ฅ)3

Integrating

(1 + ๐‘ฅ) ๐‘ฆ1 = โˆ’๏ฟฝ4

(1 + ๐‘ฅ)3๐‘‘๐‘ฅ + ๐‘

=2

(1 + ๐‘ฅ)2+ ๐‘

Hence

๐‘ฆ1 (๐‘ฅ) =2

(1 + ๐‘ฅ)3+

๐‘1 + ๐‘ฅ

Applying ๐‘ฆ (1) = 0 (notice the boundary condition now becomes ๐‘ฆ (1) = 0 and not ๐‘ฆ (1) = 1,since we have already used ๐‘ฆ (1) = 1 to find leading order). From now on, all boundaryconditions will be ๐‘ฆ (1) = 0.

0 =2

(1 + 1)3+

๐‘1 + 1

๐‘ = โˆ’12

Hence

๐‘ฆ1 (๐‘ฅ) =2

(1 + ๐‘ฅ)3โˆ’12

1(1 + ๐‘ฅ)

Now we need to find ๐‘ฆ๐‘–๐‘›1 (๐œ‰). To do this, starting from

1๐œ€๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ

1๐œ€+ ๐œ‰๏ฟฝ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

1๐œ€๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ +

1๐œ€๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๐œ‰ ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0

239

Page 244: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

But now collecting all terms with ๐‘‚ (1) order, (last time, we collected terms with ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ ).

๐‘ฆโ€ฒโ€ฒ1 + ๐‘ฆโ€ฒ1 + ๐œ‰๐‘ฆโ€ฒ0 + ๐‘ฆ0 = 0๐‘ฆโ€ฒโ€ฒ1 + ๐‘ฆโ€ฒ1 = โˆ’๐œ‰๐‘ฆโ€ฒ0 โˆ’ ๐‘ฆ0 (1)

But we found ๐‘ฆ๐‘–๐‘›0 earlier which was

๐‘ฆ๐‘–๐‘›0 (๐œ‰) = 1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

Hence ๐‘ฆโ€ฒ0 = โˆ’๐ด0๐‘’โˆ’๐œ‰ and the ODE (1) becomes

๐‘ฆโ€ฒโ€ฒ1 + ๐‘ฆโ€ฒ1 = ๐œ‰๐ด0๐‘’โˆ’๐œ‰ โˆ’ ๏ฟฝ1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ๏ฟฝ

We need to solve this with boundary conditions ๐‘ฆ1 (0) = 0. (again, notice change in B.C. aswas mentioned above). The solution is

๐‘ฆ1 (๐œ‰) = โˆ’๐œ‰ + ๐ด0 ๏ฟฝ๐œ‰ โˆ’12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ + ๐ด1 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

= โˆ’๐œ‰ + ๐ด0 ๏ฟฝ๐œ‰ โˆ’12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ โˆ’ ๐ด1 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

Since ๐ด1 is arbitrary constant, and to match the book, we can call ๐ด2 = โˆ’๐ด1 and thenrename ๐ด2 back to ๐ด1 and obtain

๐‘ฆ1 (๐œ‰) = โˆ’๐œ‰ + ๐ด0 ๏ฟฝ๐œ‰ โˆ’12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ + ๐ด1 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ

This is to be able to follow the book. Therefore, this is what we have so far

๐‘ฆ๐‘œ๐‘ข๐‘ก = ๐‘ฆ๐‘œ๐‘ข๐‘ก0 + ๐œ€๐‘ฆ๐‘œ๐‘ข๐‘ก1

=2

1 + ๐‘ฅ+ ๐œ€ ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)๏ฟฝ

And

๐‘ฆ๐‘–๐‘› (๐œ‰) = ๐‘ฆ๐‘–๐‘›0 + ๐œ€๐‘ฆ๐‘–๐‘›1

= ๏ฟฝ1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ๏ฟฝ + ๐œ€ ๏ฟฝโˆ’๐œ‰ + ๐ด0 ๏ฟฝ๐œ‰ โˆ’12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ + ๐ด1 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ๏ฟฝ

= ๐ด0๐‘’โˆ’๐œ‰ โˆ’ ๐œ‰๐œ€ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐œ€๐ด1๐‘’โˆ’๐œ‰ + ๐œ‰๐œ€๐ด0 โˆ’12๐œ‰2๐œ€๐ด0๐‘’โˆ’๐œ‰ + 1

To find ๐ด0, ๐ด1, we match ๐‘ฆ๐‘–๐‘› with ๐‘ฆ๐‘œ๐‘ข๐‘ก, therefore

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› = lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก

Or

lim๐œ‰โ†’โˆž

๏ฟฝ๐ด0๐‘’โˆ’๐œ‰ โˆ’ ๐œ‰๐œ€ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐œ€๐ด1๐‘’โˆ’๐œ‰ + ๐œ‰๐œ€๐ด0 โˆ’12๐œ‰2๐œ€๐ด0๐‘’โˆ’๐œ‰ + 1๏ฟฝ =

lim๐‘ฅโ†’0

21 + ๐‘ฅ

+ ๐œ€ ๏ฟฝ2

(1 + ๐‘ฅ)3โˆ’

12 (1 + ๐‘ฅ)๏ฟฝ

Which simplifies to

โˆ’๐œ‰๐œ€ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐œ‰๐œ€๐ด0 + 1 = lim๐‘ฅโ†’0

21 + ๐‘ฅ

+ ๐œ€ ๏ฟฝ2

(1 + ๐‘ฅ)3โˆ’

12 (1 + ๐‘ฅ)๏ฟฝ

240

Page 245: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

It is easier now to convert the LHS to use ๐‘ฅ instead of ๐œ‰ so we can compare. Since ๐œ‰ = ๐‘ฅ๐œ€ ,

then the above becomes

โˆ’๐‘ฅ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐‘ฅ๐ด0 + 1 = lim๐‘ฅโ†’0

21 + ๐‘ฅ

+ ๐œ€ ๏ฟฝ2

(1 + ๐‘ฅ)3โˆ’

12 (1 + ๐‘ฅ)๏ฟฝ

Using Taylor series on the RHS

1 โˆ’ ๐ด0 โˆ’ ๐‘ฅ + ๐ด0๐‘ฅ + ๐ด1๐œ€ = lim๐‘ฅโ†’0

2 ๏ฟฝ1 โˆ’ ๐‘ฅ + ๐‘ฅ2 +โ‹ฏ๏ฟฝ

+ 2๐œ€ ๏ฟฝ1 โˆ’ ๐‘ฅ + ๐‘ฅ2 +โ‹ฏ๏ฟฝ ๏ฟฝ1 โˆ’ ๐‘ฅ + ๐‘ฅ2 +โ‹ฏ๏ฟฝ ๏ฟฝ1 โˆ’ ๐‘ฅ + ๐‘ฅ2 +โ‹ฏ๏ฟฝ โˆ’๐œ€2๏ฟฝ1 โˆ’ ๐‘ฅ + ๐‘ฅ2 +โ‹ฏ๏ฟฝ

Since we have terms on the the LHS of only ๐‘‚ (1) ,๐‘‚ (๐‘ฅ) , ๐‘‚ (๐œ€), then we need to keep at leastterms with ๐‘‚ (1) ,๐‘‚ (๐‘ฅ) , ๐‘‚ (๐œ€) on the RHS and drop terms with ๐‘‚๏ฟฝ๐‘ฅ2๏ฟฝ , ๐‘‚ (๐œ€๐‘ฅ) , ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ to be ableto do the matching. So in the above, RHS simplifies to

โˆ’๐‘ฅ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐‘ฅ๐ด0 + 1 = 2 (1 โˆ’ ๐‘ฅ) + 2๐œ€ โˆ’๐œ€2

โˆ’๐‘ฅ โˆ’ ๐œ€๐ด1 โˆ’ ๐ด0 + ๐‘ฅ๐ด0 + 1 = 2 โˆ’ 2๐‘ฅ + 2๐œ€ โˆ’๐œ€2

โˆ’๐œ€๐ด1 โˆ’ ๐ด0 + ๐‘ฅ (๐ด0 โˆ’ 1) + 1 = 2 โˆ’ 2๐‘ฅ +32๐œ€

Comparing, we see that

๐ด0 โˆ’ 1 = โˆ’2๐ด0 = โˆ’1

We notice this is the same ๐ด0 we found for the lowest order. This is how it should always comeout. If we get di๏ฟฝerent value, it means we made mistake. We could also match โˆ’๐ด0 + 1 = 2which gives ๐ด0 = โˆ’1 as well. Finally

โˆ’๐œ€๐ด1 =32๐œ€

๐ด1 = โˆ’32

So we have used matching to find all the constants for ๐‘ฆ๐‘–๐‘›. Here is the final solution so far

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =

๐‘ฆ0๏ฟฝ21+ ๐‘ฅ

+ ๐œ€

๐‘ฆ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)๏ฟฝ

๐‘ฆ๐‘–๐‘› (๐œ‰) =

๐‘ฆ0๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ1 + ๐ด0 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ + ๐œ€

๐‘ฆ1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆ’๐œ‰ + ๐ด0 ๏ฟฝ๐œ‰ โˆ’

12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ + ๐ด1 ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ๏ฟฝ

= 1 โˆ’ ๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ + ๐œ€ ๏ฟฝโˆ’๐œ‰ โˆ’ ๏ฟฝ๐œ‰ โˆ’12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ โˆ’

32๏ฟฝ๐‘’โˆ’๐œ‰ โˆ’ 1๏ฟฝ๏ฟฝ

=32๐œ€ โˆ’ ๐‘’โˆ’๐œ‰ โˆ’ 2๐œ‰๐œ€ โˆ’

32๐œ€๐‘’โˆ’๐œ‰ +

12๐œ‰2๐œ€๐‘’โˆ’๐œ‰ + 2

241

Page 246: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.8. note p7 added 2/15/17, boundary layer . . . CHAPTER 4. STUDY NOTES

In terms of ๐‘ฅ, since Since ๐œ‰ = ๐‘ฅ๐œ€ the above becomes

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =32๐œ€ โˆ’ ๐‘’โˆ’

๐‘ฅ๐œ€ โˆ’ 2๐‘ฅ โˆ’

32๐œ€๐‘’โˆ’

๐‘ฅ๐œ€ +

12๐‘ฅ2

๐œ€๐‘’โˆ’

๐‘ฅ๐œ€ + 2

= 2 โˆ’ 2๐‘ฅ +32๐œ€ + ๐‘’โˆ’

๐‘ฅ๐œ€ ๏ฟฝ12๐‘ฅ2

๐œ€โˆ’32๐œ€ โˆ’ 1๏ฟฝ

Hence

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š = ๐‘ฆ๐‘–๐‘› + ๐‘ฆ๐‘œ๐‘ข๐‘ก โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„ŽWhere

๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž = lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘›

= 2 โˆ’ 2๐‘ฅ +32๐œ€

Hence

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š = 2 โˆ’ 2๐‘ฅ +32๐œ€ + ๐‘’โˆ’

๐‘ฅ๐œ€ ๏ฟฝ12๐‘ฅ2

๐œ€โˆ’32๐œ€ โˆ’ 1๏ฟฝ +

21 + ๐‘ฅ

+ ๐œ€ ๏ฟฝ2

(1 + ๐‘ฅ)3โˆ’

12 (1 + ๐‘ฅ)๏ฟฝ

โˆ’ ๏ฟฝ2 โˆ’ 2๐‘ฅ +32๐œ€๏ฟฝ

= ๐‘’โˆ’๐‘ฅ๐œ€ ๏ฟฝ12๐‘ฅ2

๐œ€โˆ’32๐œ€ โˆ’ 1๏ฟฝ +

21 + ๐‘ฅ

+ ๐œ€ ๏ฟฝ2

(1 + ๐‘ฅ)3โˆ’

12 (1 + ๐‘ฅ)๏ฟฝ

= ๏ฟฝ2

1 + ๐‘ฅโˆ’ ๐‘’โˆ’

๐‘ฅ๐œ€ +

12๐‘ฅ2

๐œ€๐‘’โˆ’

๐‘ฅ๐œ€ ๏ฟฝ + ๐œ€ ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)โˆ’32๐‘’โˆ’

๐‘ฅ๐œ€ ๏ฟฝ

Which is the same as

๐‘ฆ๐‘ข๐‘›๐‘–๐‘“๐‘œ๐‘Ÿ๐‘š = ๏ฟฝ2

1 + ๐‘ฅโˆ’ ๐‘’โˆ’๐œ‰ +

12๐‘ฅ2

๐œ€๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€ ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)โˆ’32๐‘’โˆ’๐œ‰๏ฟฝ

= ๏ฟฝ2

1 + ๐‘ฅโˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€ ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)โˆ’32๐‘’โˆ’๐œ‰ +

12๐œ‰2๐‘’โˆ’๐œ‰๏ฟฝ

= ๏ฟฝ2

1 + ๐‘ฅโˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐œ€ ๏ฟฝ

2(1 + ๐‘ฅ)3

โˆ’1

2 (1 + ๐‘ฅ)+ ๏ฟฝ

12๐œ‰2 โˆ’

32๏ฟฝ๐‘’โˆ’๐œ‰๏ฟฝ (1)

Comparing (1) above, with book result in first line of 9.3.16, page 433, we see the sameresult.

4.8.0.2 References

1. Advanced Mathematica methods, Bender and Orszag. Chapter 9.

2. Lecture notes. Feb 16, 2017. By Professor Smith. University of Wisconsin. NE 548

242

Page 247: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.9. note p9. added 2/24/17, asking . . . CHAPTER 4. STUDY NOTES

4.9 note p9. added 2/24/17, asking question aboutproblem in book

How did the book, on page 429, near the end, arrive at ๐ด1 = โˆ’๐‘’ ? I am not able to see it.This is what I tried. The book does things little di๏ฟฝerent than what we did in class. Thebook does not do

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก

But instead, book replaces ๐‘ฅ in the ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) solution already obtained, with ๐œ‰๐œ€, and rewrites๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ), which is what equation (9.2.14) is. So following this, I am trying to verify the bookresult for ๐ด1 = โˆ’๐‘’, but do not see how. Using the book notation, of using ๐‘‹ in place of ๐œ‰,we have

๐‘Œ1 (๐‘‹) = (๐ด1 + ๐ด0) ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘‹๏ฟฝ โˆ’ ๐‘’๐‘‹

Which is the equation in the book just below 9.2.14. The goal now is to find ๐ด1. Book alreadyfound ๐ด0 = ๐‘’ earlier. So we write

lim๐‘‹โ†’โˆž

๐‘Œ1(๐‘‹)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(๐ด1 + ๐ด0) ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘‹๏ฟฝ โˆ’ ๐‘’๐‘‹ โˆผ ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐‘‹โ†’โˆž

(๐ด1 + ๐ด0) ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘‹๏ฟฝ โˆ’ ๐‘’๐‘‹ โˆผ ๐‘’ ๏ฟฝ1 โˆ’ ๐œ€๐‘‹ +๐œ€2๐‘‹2

2!โˆ’โ‹ฏ๏ฟฝ

So far so good. But now the book says "comparing ๐‘Œ1 (๐‘ฅ) when ๐‘‹ โ†’ โˆž with the second termin 9.2.14 gives ๐ด1 = โˆ’๐‘’". But how? If we take ๐‘‹ โ†’ โˆž on the LHS above, we get

lim๐‘‹โ†’โˆž

(๐ด1 + ๐ด0) โˆ’ ๐‘’๐‘‹ โˆผ ๐‘’ ๏ฟฝ1 โˆ’ ๐œ€๐‘‹ +๐œ€๐‘‹2

2!โˆ’โ‹ฏ๏ฟฝ

But ๐ด0 = ๐‘’, so

lim๐‘‹โ†’โˆž

๐ด1 + ๐‘’ โˆ’ ๐‘’๐‘‹ โˆผ ๐‘’ โˆ’ ๐‘’๐œ€๐‘‹ + ๐‘’๐œ€๐‘‹2

2!โˆ’โ‹ฏ

lim๐‘‹โ†’โˆž

๐ด1 โˆ’ ๐‘’๐‘‹ โˆผ โˆ’๐‘’๐œ€๐‘‹ + ๐‘’๐œ€๐‘‹2

2!โˆ’โ‹ฏ

How does the above says that ๐ด1 = โˆ’๐‘’ ? If we move โˆ’๐‘’๐‘‹ to the right sides, it becomes

๐ด1 โˆผ ๐‘’๐‘‹ โˆ’ ๐‘’๐œ€๐‘‹ + ๐‘’๐œ€๐‘‹2

2!โˆ’โ‹ฏ

๐ด1 โˆผ ๐‘’ (๐‘‹ โˆ’ ๐œ€๐‘‹) + ๐‘’๐œ€๐‘‹2

2!โˆ’โ‹ฏ

I do not see how ๐ด1 = โˆ’๐‘’. Does any one see how to get ๐ด1 = โˆ’๐‘’?

Let redo this using the class method

243

Page 248: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.9. note p9. added 2/24/17, asking . . . CHAPTER 4. STUDY NOTES

lim๐‘‹โ†’โˆž

๐‘Œ1(๐‘‹)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(๐ด1 + ๐ด0) ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘‹๏ฟฝ โˆ’ ๐‘’๐‘‹ โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐‘‹โ†’โˆž

(๐ด1 + ๐ด0) ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘‹๏ฟฝ โˆ’ ๐‘’๐‘‹ โˆผ lim๐‘ฅโ†’0

๐‘’ ๏ฟฝ1 โˆ’ ๐‘ฅ +๐‘ฅ2

2!โˆ’โ‹ฏ๏ฟฝ

lim๐‘‹โ†’โˆž

๐ด1 + ๐‘’ โˆ’ ๐‘’๐‘‹ โˆผ ๐‘’

lim๐‘‹โ†’โˆž

๐ด1 โˆผ ๐‘’๐‘‹

How does the above says that ๐ด1 = โˆ’๐‘’? and what happend to the lim๐‘‹โ†’โˆž of ๐‘‹ which remainsthere?

244

Page 249: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.10. note p11. added 3/7/17, Showing . . . CHAPTER 4. STUDY NOTES

4.10 note p11. added 3/7/17, Showing that scaling fornormalization is same for any ๐‘›

This small computation verifies that normalization constant for the S-L from lecture 3/2/2017for making all eigenfunction orthonormal is the same for each ๐‘›. Its numerical value is0.16627. Here is the table generated for ๐‘› = 1, 2, โ€ฆ , 6.

245

Page 250: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.10. note p11. added 3/7/17, Showing . . . CHAPTER 4. STUDY NOTES

246

Page 251: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

4.11 note p12. added 3/8/17, comparing exact solutionto WKB solution using Mathematica

Comparing Exact to WKB solution

for ODE in lecture 3/2/2017by Nasser M. Abbasi EP 548, Spring 2017.

This note shows how to obtain exact solution for the ODE given in lecture 3/2/2017, EP 548, and to

compare it to the WKB solution for different modes. This shows that the WKB becomes very close to

the exact solution for higher modes.

Obtain the exact solution, in terms of BesselJ functionsIn[16]:= ClearAll[n, c, y, m, lam];

lam[n_] :=9 n^2

49 Pi^4; (*eigenvalues from WKB solution*)

c =6

7 Pi^3; (*normalization value found for WKB*)

y[n_, x_] := c1

Pi + xSinn x^3 + 3 x^2 Pi + 3 Pi^2 x 7 Pi^2;

(*WKB solution found*)

Find exact solution

In[18]:= ode = y''[x] + lam x + Pi^4 y[x] โฉต 0;

solExact = y[x] /. First@DSolve[{ode, y[0] โฉต 0}, y[x], x] // TraditionalForm

Out[19]//TraditionalForm=

1

66

lam24

J 16

lam ฯ€3

3

c1 ฮ“5

6 lam (x + ฯ€)4

8J 1

6

lam ฯ€3

3J-

16

lam x4 + 4 lam ฯ€ x3 + 6 lam ฯ€2x

2 + 4 lam ฯ€3x + lam ฯ€4

34

3 lam4

-

J-

16

lam ฯ€3

3J 1

6

lam x4 + 4 lam ฯ€ x3 + 6 lam ฯ€2x

2 + 4 lam ฯ€3x + lam ฯ€4

34

3 lam4

Make function which normalizes the exact solution eigenfunctions and plot each

mode eigenfunction with the WKB on the same plot

Printed by Wolfram Mathematica Student Edition

247

Page 252: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

In[65]:= compare[modeNumber_] :=

Module{solExact1, int, cFromExact, eigenvalueFromHandSolution, flip},

eigenvalueFromHandSolution = lam[modeNumber];

solExact1 = solExact /. lam โ†’ eigenvalueFromHandSolution;

int = IntegratesolExact1^2 * x + Pi^4, {x, 0, Pi};

cFromExact = First@NSolve[int โฉต 1, C[1]];

solExact1 = solExact1 /. cFromExact;

If[modeNumber > 5, flip = -1, flip = 1];

Plot {y[modeNumber, x], flip * solExact1}, {x, 0, Pi},

PlotStyle โ†’ {Red, Blue}, Frame -> True, FrameLabel โ†’ {{"y(x)", None},

{"x", Row[{"Comparing exact solution with WKB for mode ", modeNumber}]}},

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray, BaseStyle โ†’ 12, ImageSize โ†’ 310,

FrameTicks โ†’ {Automatic, None}, 0, Pi 4, Pi 2, 3 4 Pi, Pi, None

;

Generate 4 plots, for mode 1, up to 6

These plots show that after mode 5 or 6, the two eigenfunctions are almost exact

2 p12.nb

Printed by Wolfram Mathematica Student Edition

248

Page 253: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

In[66]:= plots = Table[compare[n], {n, 6}];

Grid[Partition[plots, 2]]

Out[67]=

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.01

0.02

0.03

x

y(x)

Comparing exact solution with WKB for mode 1

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

x

y(x)

Comparing exact solution with WKB for mode 2

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 3

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 4

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

-0.04

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 5

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

-0.04

-0.02

0.00

0.02

0.04

x

y(x)

Comparing exact solution with WKB for mode 6

p12.nb 3

Printed by Wolfram Mathematica Student Edition

249

Page 254: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

Generate the above again, but now using relative error between the exact and

WKB for each mode, to make it more clear

In[68]:= compareError[modeNumber_] :=

Module{solExact1, eigenvalueFromHandSolution, int, cFromExact, flip},

eigenvalueFromHandSolution = lam[modeNumber];

solExact1 = solExact /. lam โ†’ eigenvalueFromHandSolution;

int = IntegratesolExact1^2 * x + Pi^4, {x, 0, Pi};

cFromExact = First@NSolve[int โฉต 1, C[1]];

solExact1 = solExact1 /. cFromExact;

If[modeNumber > 5, flip = -1, flip = 1];

Plot 100 * Absflip * solExact1 - y[modeNumber, x], {x, 0, Pi}, PlotStyle โ†’

{Red, Blue}, Frame -> True, FrameLabel โ†’ {{"relative error percentage", None},

{"x", Row[{"Absolute error. Exact solution vs WKB for mode ", modeNumber}]}},

GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray, BaseStyle โ†’ 12, ImageSize โ†’ 310,

FrameTicks โ†’ {Automatic, None}, 0, Pi 4, Pi 2, 3 4 Pi, Pi, None,

PlotRange โ†’ {Automatic, {0, 0.3}}

;

In[69]:= plots = Table[compareError[n], {n, 10}]; (*let do 10 modes*)

Grid[Partition[plots, 2]]

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 1

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 2

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 3

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 4

4 p12.nb

Printed by Wolfram Mathematica Student Edition

250

Page 255: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.11. note p12. added 3/8/17, comparing . . . CHAPTER 4. STUDY NOTES

Out[69]=

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 5

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 6

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 7

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 8

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 9

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

rela

tive

erro

rpe

rcen

tage

Absolute error. Exact solution vs WKB for mode 10

p12.nb 5

Printed by Wolfram Mathematica Student Edition

251

Page 256: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.12. Convert ODE to Liouville form CHAPTER 4. STUDY NOTES

4.12 Convert ODE to Liouville form

Handy image to remember. Thanks to http://people.uncw.edu/hermanr/mat463/ODEBook/Book/SL.pdf

252

Page 257: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.12. Convert ODE to Liouville form CHAPTER 4. STUDY NOTES

253

Page 258: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

4.13. note p13. added 3/15/17, solving . . . CHAPTER 4. STUDY NOTES

4.13 note p13. added 3/15/17, solving๐œ–2๐‘ฆโ€ณ(๐‘ฅ) = (๐‘Ž + ๐‘ฅ + ๐‘ฅ2)๐‘ฆ(๐‘ฅ) in Maple

> >

> >

> >

> >

> >

Define the ODEassume(a>0 and 'real');ode:=epsilon^2*diff(y(x),x$2)=(x^2+a*x)*y(x);

Solve without giving any B.C.sol:=dsolve(ode,y(x));

Solve with one B.C. at infinity givensol:=dsolve({ode,y(infinity)=0},y(x));

Now solve giving B.C. at -infinitysol:=dsolve({ode,y(-infinity)=0},y(x));

Now solve by giving both B.C.at both endssol:=dsolve({ode,y(infinity)=0,y(-infinity)=0},y(x));

254

Page 259: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

Chapter 5

Exams

Local contents5.1 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2565.2 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

255

Page 260: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1 Exam 1

5.1.1 problem 3.26 (page 139)

Problem Perform local analysis solution to (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฆ = 0 at ๐‘ฅ = 1. Use the resultof this analysis to prove that a Taylor series expansion of any solution about ๐‘ฅ = 0 has aninfinite radius of convergence. Find the exact solution by summing the series.

solution

Writing the ODE in standard form

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) + ๐‘Ž (๐‘ฅ) ๐‘ฆโ€ฒ (๐‘ฅ) + ๐‘ (๐‘ฅ) ๐‘ฆ (๐‘ฅ) = 0 (1)

๐‘ฆโ€ฒโ€ฒ โˆ’๐‘ฅ

(๐‘ฅ โˆ’ 1)๐‘ฆโ€ฒ +

1(๐‘ฅ โˆ’ 1)

๐‘ฆ = 0 (2)

Where ๐‘Ž (๐‘ฅ) = โˆ’๐‘ฅ(๐‘ฅโˆ’1) , ๐‘ (๐‘ฅ) =

1(๐‘ฅโˆ’1) . The above shows that ๐‘ฅ = 1 is singular point for both ๐‘Ž (๐‘ฅ)

and ๐‘ (๐‘ฅ). The next step is to classify the type of the singular point. Is it regular singularpoint or irregular singular point?

lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1) ๐‘Ž (๐‘ฅ) = lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)โˆ’๐‘ฅ

(๐‘ฅ โˆ’ 1)= โˆ’1

And

lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)2 ๐‘ (๐‘ฅ) = lim๐‘ฅโ†’1

(๐‘ฅ โˆ’ 1)21

(๐‘ฅ โˆ’ 1)= 0

Because the limit exist, then ๐‘ฅ = 1 is a regular singular point. Therefore solution is assumedto be a Frobenius power series given by

๐‘ฆ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿ

Substituting this in the original ODE (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฆ = 0 gives

๐‘ฆโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’2

In order to move the (๐‘ฅ โˆ’ 1) inside the summation, the original ODE (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฆ = 0is first rewritten as

(๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒ โˆ’ ๐‘ฆโ€ฒ + ๐‘ฆ = 0 (3)

256

Page 261: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Substituting the Frobenius series into the above gives

(๐‘ฅ โˆ’ 1)โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’2

โˆ’ (๐‘ฅ โˆ’ 1)โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

+โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿ = 0

Orโˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿ

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

+โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿ = 0

Adjusting all powers of (๐‘ฅ โˆ’ 1) to be the same by rewriting exponents and summation indicesgives

โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘›=1

(๐‘› + ๐‘Ÿ โˆ’ 1) ๐‘Ž๐‘›โˆ’1 (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + ๐‘Ÿ) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1

+โˆž๏ฟฝ๐‘›=1

๐‘Ž๐‘›โˆ’1 (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1 = 0

Collecting terms with same powers in (๐‘ฅ โˆ’ 1) simplifies the above toโˆž๏ฟฝ๐‘›=0

((๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) โˆ’ (๐‘› + ๐‘Ÿ)) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1 โˆ’

โˆž๏ฟฝ๐‘›=1

(๐‘› + ๐‘Ÿ โˆ’ 2) ๐‘Ž๐‘›โˆ’1 (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿโˆ’1 = 0 (4)

Setting ๐‘› = 0 gives the indicial equation((๐‘› + ๐‘Ÿ) (๐‘› + ๐‘Ÿ โˆ’ 1) โˆ’ (๐‘› + ๐‘Ÿ)) ๐‘Ž0 = 0

((๐‘Ÿ) (๐‘Ÿ โˆ’ 1) โˆ’ ๐‘Ÿ) ๐‘Ž0 = 0

Since ๐‘Ž0 โ‰  0 then the indicial equation is

(๐‘Ÿ) (๐‘Ÿ โˆ’ 1) โˆ’ ๐‘Ÿ = 0๐‘Ÿ2 โˆ’ 2๐‘Ÿ = 0๐‘Ÿ (๐‘Ÿ โˆ’ 2) = 0

257

Page 262: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

The roots of the indicial equation are therefore

๐‘Ÿ1 = 2๐‘Ÿ2 = 0

Each one of these roots generates a solution to the ODE. The next step is to find the solution๐‘ฆ1 (๐‘ฅ) associated with ๐‘Ÿ = 2. (The largest root is used first). Using ๐‘Ÿ = 2 in equation (4) gives

โˆž๏ฟฝ๐‘›=0

((๐‘› + 2) (๐‘› + 1) โˆ’ (๐‘› + 2)) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+1 โˆ’

โˆž๏ฟฝ๐‘›=1

๐‘›๐‘Ž๐‘›โˆ’1 (๐‘ฅ โˆ’ 1)๐‘›+1 = 0

โˆž๏ฟฝ๐‘›=0

๐‘› (๐‘› + 2) ๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+1 โˆ’

โˆž๏ฟฝ๐‘›=1

๐‘›๐‘Ž๐‘›โˆ’1 (๐‘ฅ โˆ’ 1)๐‘›+1 = 0 (5)

At ๐‘› โ‰ฅ 1, the recursive relation is found and used to generate the coe๏ฟฝcients of the Frobeniuspower series

๐‘› (๐‘› + 2) ๐‘Ž๐‘› โˆ’ ๐‘›๐‘Ž๐‘›โˆ’1 = 0

๐‘Ž๐‘› =๐‘›

๐‘› (๐‘› + 2)๐‘Ž๐‘›โˆ’1

Few terms are now generated to see the pattern of the series and to determine the closedform. For ๐‘› = 1

๐‘Ž1 =13๐‘Ž0

For ๐‘› = 2

๐‘Ž2 =2

2 (2 + 2)๐‘Ž1 =

2813๐‘Ž0 =

112๐‘Ž0

For ๐‘› = 3

๐‘Ž3 =3

3 (3 + 2)๐‘Ž2 =

315

112๐‘Ž0 =

160๐‘Ž0

For ๐‘› = 4

๐‘Ž4 =4

4 (4 + 2)๐‘Ž3 =

16160๐‘Ž0 =

1360

๐‘Ž0

And so on. From the above, the first solution becomes

๐‘ฆ1 (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘Ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›+2

= ๐‘Ž0 (๐‘ฅ โˆ’ 1)2 + ๐‘Ž1 (๐‘ฅ โˆ’ 1)

3 + ๐‘Ž2 (๐‘ฅ โˆ’ 1)4 + ๐‘Ž3 (๐‘ฅ โˆ’ 1)

4 + ๐‘Ž4 (๐‘ฅ โˆ’ 1)5 +โ‹ฏ

= (๐‘ฅ โˆ’ 1)2 ๏ฟฝ๐‘Ž0 + ๐‘Ž1 (๐‘ฅ โˆ’ 1) + ๐‘Ž2 (๐‘ฅ โˆ’ 1)2 + ๐‘Ž3 (๐‘ฅ โˆ’ 1)

3 + ๐‘Ž4 (๐‘ฅ โˆ’ 1)4 +โ‹ฏ๏ฟฝ

= (๐‘ฅ โˆ’ 1)2 ๏ฟฝ๐‘Ž0 +13๐‘Ž0 (๐‘ฅ โˆ’ 1) +

112๐‘Ž0 (๐‘ฅ โˆ’ 1)

2 +160๐‘Ž0 (๐‘ฅ โˆ’ 1)

3 +1360

๐‘Ž0 (๐‘ฅ โˆ’ 1)4 +โ‹ฏ๏ฟฝ

= ๐‘Ž0 (๐‘ฅ โˆ’ 1)2 ๏ฟฝ1 +

13(๐‘ฅ โˆ’ 1) +

112(๐‘ฅ โˆ’ 1)2 +

160(๐‘ฅ โˆ’ 1)3 +

1360

(๐‘ฅ โˆ’ 1)4 +โ‹ฏ๏ฟฝ (6)

To find closed form solution to ๐‘ฆ1 (๐‘ฅ), Taylor series expansion of ๐‘’๐‘ฅ around ๐‘ฅ = 1 is found

258

Page 263: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

first

๐‘’๐‘ฅ โ‰ˆ ๐‘’ + ๐‘’ (๐‘ฅ โˆ’ 1) +๐‘’2(๐‘ฅ โˆ’ 1)2 +

๐‘’3!(๐‘ฅ โˆ’ 1)3 +

๐‘’4!(๐‘ฅ โˆ’ 1)4 +

๐‘’5!(๐‘ฅ โˆ’ 1)5 +โ‹ฏ

โ‰ˆ ๐‘’ + ๐‘’ (๐‘ฅ โˆ’ 1) +๐‘’2(๐‘ฅ โˆ’ 1)2 +

๐‘’6(๐‘ฅ โˆ’ 1)3 +

๐‘’24(๐‘ฅ โˆ’ 1)4 +

๐‘’120

(๐‘ฅ โˆ’ 1)5 +โ‹ฏ

โ‰ˆ ๐‘’ ๏ฟฝ1 + (๐‘ฅ โˆ’ 1) +12(๐‘ฅ โˆ’ 1)2 +

16(๐‘ฅ โˆ’ 1)3 +

124(๐‘ฅ โˆ’ 1)4 +

1120

(๐‘ฅ โˆ’ 1)5 +โ‹ฏ๏ฟฝ

Multiplying the above by 2 gives

2๐‘’๐‘ฅ โ‰ˆ ๐‘’ ๏ฟฝ2 + 2 (๐‘ฅ โˆ’ 1) + (๐‘ฅ โˆ’ 1)2 +13(๐‘ฅ โˆ’ 1)3 +

112(๐‘ฅ โˆ’ 1)4 +

160(๐‘ฅ โˆ’ 1)5 +โ‹ฏ๏ฟฝ

Factoring (๐‘ฅ โˆ’ 1)2 from the RHS results in

2๐‘’๐‘ฅ โ‰ˆ ๐‘’ ๏ฟฝ2 + 2 (๐‘ฅ โˆ’ 1) + (๐‘ฅ โˆ’ 1)2 ๏ฟฝ1 +13(๐‘ฅ โˆ’ 1) +

112(๐‘ฅ โˆ’ 1)2 +

160(๐‘ฅ โˆ’ 1)3 +โ‹ฏ๏ฟฝ๏ฟฝ (6A)

Comparing the above result with the solution ๐‘ฆ1 (๐‘ฅ) in (6), shows that the (6A) can be writtenin terms of ๐‘ฆ1 (๐‘ฅ) as

2๐‘’๐‘ฅ = ๐‘’ ๏ฟฝ2 + 2 (๐‘ฅ โˆ’ 1) + (๐‘ฅ โˆ’ 1)2 ๏ฟฝ๐‘ฆ1 (๐‘ฅ)

๐‘Ž0 (๐‘ฅ โˆ’ 1)2 ๏ฟฝ๏ฟฝ

Therefore

2๐‘’๐‘ฅ = ๐‘’ ๏ฟฝ2 + 2 (๐‘ฅ โˆ’ 1) +๐‘ฆ1 (๐‘ฅ)๐‘Ž0

๏ฟฝ

2๐‘’๐‘ฅโˆ’1 = 2 + 2 (๐‘ฅ โˆ’ 1) +๐‘ฆ1 (๐‘ฅ)๐‘Ž0

2๐‘’๐‘ฅโˆ’1 โˆ’ 2 โˆ’ 2 (๐‘ฅ โˆ’ 1) =๐‘ฆ1 (๐‘ฅ)๐‘Ž0

Solving for ๐‘ฆ1 (๐‘ฅ)

๐‘ฆ1 (๐‘ฅ) = ๐‘Ž0 ๏ฟฝ2๐‘’๐‘ฅโˆ’1 โˆ’ 2 โˆ’ 2 (๐‘ฅ โˆ’ 1)๏ฟฝ

= ๐‘Ž0 ๏ฟฝ2๐‘’๐‘ฅโˆ’1 โˆ’ 2 โˆ’ 2๐‘ฅ + 2๏ฟฝ

= ๐‘Ž0 ๏ฟฝ2๐‘’๐‘ฅโˆ’1 โˆ’ 2๐‘ฅ๏ฟฝ

=2๐‘Ž0๐‘’๐‘’๐‘ฅ โˆ’ 2๐‘Ž0๐‘ฅ

Let 2๐‘Ž0๐‘’ = ๐ถ1 and โˆ’2๐‘Ž0 = ๐ถ2, then the above solution can be written as

๐‘ฆ1 (๐‘ฅ) = ๐ถ1๐‘’๐‘ฅ + ๐ถ2๐‘ฅ

Now that ๐‘ฆ1 (๐‘ฅ) is found, which is the solution associated with ๐‘Ÿ = 2, the next step is to findthe second solution ๐‘ฆ2 (๐‘ฅ) associated with ๐‘Ÿ = 0. Since ๐‘Ÿ2 โˆ’ ๐‘Ÿ1 = 2 is an integer, the solutioncan be either case ๐ผ๐ผ(๐‘) (๐‘–) or case ๐ผ๐ผ (๐‘) (๐‘–๐‘–) as given in the text book at page 72.

From equation (3.3.9) at page 72 of the text, using ๐‘ = 2 since ๐‘ = ๐‘Ÿ2โˆ’๐‘Ÿ1 and where ๐‘ (๐‘ฅ) = โˆ’๐‘ฅand ๐‘ž (๐‘ฅ) = 1 in this problem by comparing our ODE with the standard ODE in (3.3.2) at

259

Page 264: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

page 70 given by

๐‘ฆโ€ฒโ€ฒ +๐‘ (๐‘ฅ)(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘ฆโ€ฒ +๐‘ž (๐‘ฅ)

(๐‘ฅ โˆ’ ๐‘ฅ0)2๐‘ฆ = 0

Expanding ๐‘ (๐‘ฅ) , ๐‘ž (๐‘ฅ) in Taylor series

๐‘ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›

๐‘ž (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘ž๐‘› (๐‘ฅ โˆ’ 1)๐‘›

Since ๐‘ (๐‘ฅ) = โˆ’๐‘ฅ in our ODE, then ๐‘0 = โˆ’1 and ๐‘1 = โˆ’1 and all other terms are zero. For ๐‘ž (๐‘ฅ),which is just 1 in our ODE, then ๐‘ž0 = 1 and all other terms are zero. Hence

๐‘0 = โˆ’1๐‘1 = โˆ’1๐‘ž0 = 1๐‘ = 2๐‘Ÿ = 0

The above values are now used to evaluate RHS of 3.3.9 in order to find which case it is.(book uses ๐›ผ for ๐‘Ÿ)

0๐‘Ž๐‘ = โˆ’๐‘โˆ’1๏ฟฝ๐‘˜=0

๏ฟฝ(๐‘Ÿ + ๐‘˜) ๐‘๐‘โˆ’๐‘˜ + ๐‘ž๐‘โˆ’๐‘˜๏ฟฝ ๐‘Ž๐‘˜ (3.3.9)

Since ๐‘ = 2 the above becomes

0๐‘Ž2 = โˆ’1๏ฟฝ๐‘˜=0

๏ฟฝ(๐‘Ÿ + ๐‘˜) ๐‘2โˆ’๐‘˜ + ๐‘ž2โˆ’๐‘˜๏ฟฝ ๐‘Ž๐‘˜

Using ๐‘Ÿ = 0, since this is the second root, gives

0๐‘Ž2 = โˆ’1๏ฟฝ๐‘˜=0

๏ฟฝ๐‘˜๐‘2โˆ’๐‘˜ + ๐‘ž2โˆ’๐‘˜๏ฟฝ ๐‘Ž๐‘˜

= โˆ’ ๏ฟฝ๏ฟฝ0๐‘2โˆ’0 + ๐‘ž2โˆ’0๏ฟฝ ๐‘Ž0 + ๏ฟฝ๐‘2โˆ’1 + ๐‘ž2โˆ’1๏ฟฝ ๐‘Ž1๏ฟฝ

= โˆ’ ๏ฟฝ๏ฟฝ0๐‘2 + ๐‘ž2๏ฟฝ ๐‘Ž0 + ๏ฟฝ๐‘1 + ๐‘ž1๏ฟฝ ๐‘Ž1๏ฟฝ

= โˆ’ ๏ฟฝ0 + ๐‘ž2๏ฟฝ ๐‘Ž0 โˆ’ ๏ฟฝ๐‘1 + ๐‘ž1๏ฟฝ ๐‘Ž1Since ๐‘ž2 = 0, ๐‘1 = โˆ’1, ๐‘ž1 = 1, therefore

0๐‘Ž2 = โˆ’ (0 + 0) ๐‘Ž0 โˆ’ (โˆ’1 + 1) ๐‘Ž1= 0

The above shows that this is case ๐ผ๐ผ (๐‘) (๐‘–๐‘–), because the right side of 3.3.9 is zero. This meansthe second solution ๐‘ฆ2 (๐‘ฅ) is also a Fronbenius series. If the above was not zero, the methodof reduction of order would be used to find second solution.

260

Page 265: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Assuming ๐‘ฆ2 (๐‘ฅ) = โˆ‘๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›+๐‘Ÿ, and since ๐‘Ÿ = 0, therefore

๐‘ฆ2 (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›

Following the same method used to find the first solution, this series is now used in the ODEto determine ๐‘๐‘›.

๐‘ฆโ€ฒ2 (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘›๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›โˆ’1 =

โˆž๏ฟฝ๐‘›=1

๐‘›๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›โˆ’1 =

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›

๐‘ฆโ€ฒโ€ฒ2 (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘› (๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›โˆ’1 =

โˆž๏ฟฝ๐‘›=1

๐‘› (๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›โˆ’1 =

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘๐‘›+2 (๐‘ฅ โˆ’ 1)๐‘›

The ODE (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒ โˆ’ ๐‘ฆโ€ฒ + ๐‘ฆ = 0 now becomes

(๐‘ฅ โˆ’ 1)โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘๐‘›+2 (๐‘ฅ โˆ’ 1)๐‘›

โˆ’ (๐‘ฅ โˆ’ 1)โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›

+โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘› = 0

Orโˆž๏ฟฝ๐‘›=0

(๐‘› + 1) (๐‘› + 2) ๐‘๐‘›+2 (๐‘ฅ โˆ’ 1)๐‘›+1

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›+1

โˆ’โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘›

+โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘› = 0

Henceโˆž๏ฟฝ๐‘›=1

(๐‘›) (๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘› โˆ’

โˆž๏ฟฝ๐‘›=1

๐‘›๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘› โˆ’

โˆž๏ฟฝ๐‘›=0

(๐‘› + 1) ๐‘๐‘›+1 (๐‘ฅ โˆ’ 1)๐‘› +

โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘› = 0

๐‘› = 0 gives

โˆ’ (๐‘› + 1) ๐‘๐‘›+1 + ๐‘๐‘› = 0โˆ’๐‘1 + ๐‘0 = 0

๐‘1 = ๐‘0

261

Page 266: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

๐‘› โ‰ฅ 1 generates the recursive relation to find all remaining ๐‘๐‘› coe๏ฟฝcients

(๐‘›) (๐‘› + 1) ๐‘๐‘›+1 โˆ’ ๐‘›๐‘๐‘› โˆ’ (๐‘› + 1) ๐‘๐‘›+1 + ๐‘๐‘› = 0(๐‘›) (๐‘› + 1) ๐‘๐‘›+1 โˆ’ (๐‘› + 1) ๐‘๐‘›+1 = ๐‘›๐‘๐‘› โˆ’ ๐‘๐‘›๐‘๐‘›+1 ((๐‘›) (๐‘› + 1) โˆ’ (๐‘› + 1)) = ๐‘๐‘› (๐‘› โˆ’ 1)

๐‘๐‘›+1 = ๐‘๐‘›(๐‘› โˆ’ 1)

(๐‘›) (๐‘› + 1) โˆ’ (๐‘› + 1)Therefore the recursive relation is

๐‘๐‘›+1 =๐‘๐‘›๐‘› + 1

Few terms are generated to see the pattern and to find the closed form solution for ๐‘ฆ2 (๐‘ฅ).For ๐‘› = 1

๐‘2 = ๐‘112=12๐‘0

For ๐‘› = 2

๐‘3 =๐‘23=1312๐‘0 =

16๐‘0

For ๐‘› = 3

๐‘4 =๐‘33 + 1

=1416๐‘0 =

124๐‘0

For ๐‘› = 4

๐‘5 =๐‘44 + 1

=15124๐‘0 =

1120

๐‘0

And so on. Therefore, the second solution is

๐‘ฆ2 (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐‘๐‘› (๐‘ฅ โˆ’ 1)๐‘›

= ๐‘0 + ๐‘1 (๐‘ฅ โˆ’ 1) + ๐‘2 (๐‘ฅ โˆ’ 1)2 +โ‹ฏ

= ๐‘0 + ๐‘0 (๐‘ฅ โˆ’ 1) +12๐‘0 (๐‘ฅ โˆ’ 1)

2 +16๐‘0 (๐‘ฅ โˆ’ 1)

3 +124๐‘0 (๐‘ฅ โˆ’ 1)

4 +1120

๐‘0 (๐‘ฅ โˆ’ 1)5 +โ‹ฏ

= ๐‘0 ๏ฟฝ1 + (๐‘ฅ โˆ’ 1) +12(๐‘ฅ โˆ’ 1)2 +

16(๐‘ฅ โˆ’ 1)3 +

124(๐‘ฅ โˆ’ 1)4 +

1120

(๐‘ฅ โˆ’ 1)5 +โ‹ฏ๏ฟฝ (7A)

The Taylor series for ๐‘’๐‘ฅ around ๐‘ฅ = 1 is

๐‘’๐‘ฅ โ‰ˆ ๐‘’ + ๐‘’ (๐‘ฅ โˆ’ 1) +๐‘’2(๐‘ฅ โˆ’ 1)2 +

๐‘’6(๐‘ฅ โˆ’ 1)3 +

๐‘’24(๐‘ฅ โˆ’ 1)4 +

๐‘’120

(๐‘ฅ โˆ’ 1)5 +โ‹ฏ

โ‰ˆ ๐‘’ ๏ฟฝ1 + (๐‘ฅ โˆ’ 1) +12(๐‘ฅ โˆ’ 1)2 +

16(๐‘ฅ โˆ’ 1)3 +

124(๐‘ฅ โˆ’ 1)4 +

1120

(๐‘ฅ โˆ’ 1)5 +โ‹ฏ๏ฟฝ (7B)

Comparing (7A) with (7B) shows that the second solution closed form is

๐‘ฆ2 (๐‘ฅ) = ๐‘0๐‘’๐‘ฅ

๐‘’Let ๐‘0

๐‘’ be some constant, say ๐ถ3, the second solution above becomes

๐‘ฆ2 (๐‘ฅ) = ๐ถ3๐‘’๐‘ฅ

262

Page 267: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Both solutions ๐‘ฆ1 (๐‘ฅ) , ๐‘ฆ2 (๐‘ฅ) have now been found. The final solution is

๐‘ฆ (๐‘ฅ) = ๐‘ฆ1 (๐‘ฅ) + ๐‘ฆ2 (๐‘ฅ)

=๐‘ฆ1(๐‘ฅ)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐ถ1๐‘’๐‘ฅ + ๐ถ2๐‘ฅ +๐‘ฆ2(๐‘ฅ)๏ฟฝ๐ถ3๐‘’๐‘ฅ

= ๐ถ4๐‘’๐‘ฅ + ๐ถ2๐‘ฅ

Hence, the exact solution is

๐‘ฆ (๐‘ฅ) = ๐ด๐‘’๐‘ฅ + ๐ต๐‘ฅ (7)

Where ๐ด,๐ต are constants to be found from initial conditions if given. Above solution is nowverified by substituting it back to original ODE

๐‘ฆโ€ฒ = ๐ด๐‘’๐‘ฅ + ๐ต๐‘ฆโ€ฒโ€ฒ = ๐ด๐‘’๐‘ฅ

Substituting these into (๐‘ฅ โˆ’ 1) ๐‘ฆโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฆโ€ฒ + ๐‘ฆ = 0 gives(๐‘ฅ โˆ’ 1)๐ด๐‘’๐‘ฅ โˆ’ ๐‘ฅ (๐ด๐‘’๐‘ฅ + ๐ต) + ๐ด๐‘’๐‘ฅ + ๐ต๐‘ฅ = 0๐‘ฅ๐ด๐‘’๐‘ฅ โˆ’ ๐ด๐‘’๐‘ฅ โˆ’ ๐‘ฅ๐ด๐‘’๐‘ฅ โˆ’ ๐‘ฅ๐ต + ๐ด๐‘’๐‘ฅ + ๐ต๐‘ฅ = 0

โˆ’๐ด๐‘’๐‘ฅ โˆ’ ๐‘ฅ๐ต + ๐ด๐‘’๐‘ฅ + ๐ต๐‘ฅ = 00 = 0

To answer the final part of the question, the above solution (7) is analytic around ๐‘ฅ = 0 withinfinite radius of convergence since exp (โ‹…) is analytic everywhere. Writing the solution as

๐‘ฆ (๐‘ฅ) = ๏ฟฝ๐ดโˆž๏ฟฝ๐‘›=0

๐‘ฅ๐‘›

๐‘›! ๏ฟฝ+ ๐ต๐‘ฅ

The function ๐‘ฅ have infinite radius of convergence, since it is its own series. And the ex-ponential function has infinite radius of convergence as known, verified by using standardratio test

๐ด lim๐‘›โ†’โˆž

๏ฟฝ๐‘Ž๐‘›+1๐‘Ž๐‘›

๏ฟฝ = ๐ด lim๐‘›โ†’โˆž

๏ฟฝ๐‘ฅ๐‘›+1๐‘›!

(๐‘› + 1)!๐‘ฅ๐‘› ๏ฟฝ= ๐ด lim

๐‘›โ†’โˆž๏ฟฝ๐‘ฅ๐‘›!

(๐‘› + 1)!๏ฟฝ = ๐ด lim

๐‘›โ†’โˆž๏ฟฝ๐‘ฅ

๐‘› + 1๏ฟฝ = 0

For any ๐‘ฅ. Since the ratio is less than 1, then the solution ๐‘ฆ (๐‘ฅ) expanded around ๐‘ฅ = 0 hasan infinite radius of convergence.

263

Page 268: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.2 problem 9.8 (page 480)

Problem Use boundary layer to find uniform approximation with error of order ๐‘‚๏ฟฝ๐œ€2๏ฟฝ forthe problem ๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘ฆโ€ฒ + ๐‘ฆ = 0 with ๐‘ฆ (0) = ๐‘’, ๐‘ฆ (1) = 1. Compare your solution to exact solution.Plot the solution for some values of ๐œ€.

solution

๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘ฆโ€ฒ + ๐‘ฆ = 0 (1)

Since ๐‘Ž (๐‘ฅ) = 1 > 0, then a boundary layer is expected at the left side, near ๐‘ฅ = 0. Matchingwill fail if this was not the case. Starting with the outer solution near ๐‘ฅ = 1. Let

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› (๐‘ฅ)

Substituting this into (1) gives

๐œ€ ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 + ๐œ€2๐‘ฆโ€ฒ2 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ๏ฟฝ = 0 (2)

Collecting powers of ๐‘‚๏ฟฝ๐œ€0๏ฟฝ results in the ODE

๐‘ฆโ€ฒ0 โˆผ โˆ’๐‘ฆ0๐‘‘๐‘ฆ0๐‘ฆ0

โˆผ โˆ’๐‘‘๐‘ฅ

ln ๏ฟฝ๐‘ฆ0๏ฟฝ โˆผ โˆ’๐‘ฅ + ๐ถ1

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) โˆผ ๐ถ1๐‘’โˆ’๐‘ฅ + ๐‘‚ (๐œ€) (3)

๐ถ1 is found from boundary conditions ๐‘ฆ (1) = 1. Equation (3) gives

1 = ๐ถ1๐‘’โˆ’1

๐ถ1 = ๐‘’

Hence solution (3) becomes

๐‘ฆ๐‘œ๐‘ข๐‘ก0 (๐‘ฅ) โˆผ ๐‘’1โˆ’๐‘ฅ

๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ) is now found. Using (2) and collecting terms of ๐‘‚๏ฟฝ๐œ€1๏ฟฝ gives the ODE

๐‘ฆโ€ฒ1 + ๐‘ฆ1 โˆผ โˆ’๐‘ฆโ€ฒโ€ฒ0 (4)

But

๐‘ฆโ€ฒ0 (๐‘ฅ) = โˆ’๐‘’1โˆ’๐‘ฅ

๐‘ฆโ€ฒโ€ฒ0 (๐‘ฅ) = ๐‘’1โˆ’๐‘ฅ

Using the above in the RHS of (4) gives

๐‘ฆโ€ฒ1 + ๐‘ฆ1 โˆผ โˆ’๐‘’1โˆ’๐‘ฅ

264

Page 269: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

The integrating factor is ๐‘’๐‘ฅ, hence the above becomes๐‘‘๐‘‘๐‘ฅ๏ฟฝ๐‘ฆ1๐‘’๐‘ฅ๏ฟฝ โˆผ โˆ’๐‘’๐‘ฅ๐‘’1โˆ’๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๏ฟฝ๐‘ฆ1๐‘’๐‘ฅ๏ฟฝ โˆผ โˆ’๐‘’

Integrating both sides gives

๐‘ฆ1๐‘’๐‘ฅ โˆผ โˆ’๐‘’๐‘ฅ + ๐ถ2

๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ) โˆผ โˆ’๐‘ฅ๐‘’1โˆ’๐‘ฅ + ๐ถ2๐‘’โˆ’๐‘ฅ (5)

Applying boundary conditions ๐‘ฆ (1) = 0 to the above gives

0 = โˆ’1 + ๐ถ2๐‘’โˆ’1

๐ถ2 = ๐‘’

Hence the solution in (5) becomes

๐‘ฆ๐‘œ๐‘ข๐‘ก1 (๐‘ฅ) โˆผ โˆ’๐‘ฅ๐‘’1โˆ’๐‘ฅ + ๐‘’1โˆ’๐‘ฅ

โˆผ (1 โˆ’ ๐‘ฅ) ๐‘’1โˆ’๐‘ฅ

Therefore the outer solution is

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) = ๐‘ฆ0 + ๐œ€๐‘ฆ1= ๐‘’1โˆ’๐‘ฅ + ๐œ€ (1 โˆ’ ๐‘ฅ) ๐‘’1โˆ’๐‘ฅ (6)

Now the boundary layer (inner) solution ๐‘ฆ๐‘–๐‘› (๐‘ฅ) near ๐‘ฅ = 0 is found. Let ๐œ‰ = ๐‘ฅ๐œ€๐‘ be the inner

variable. The original ODE is expressed using this new variable, and ๐‘ is found. Since๐‘‘๐‘ฆ๐‘‘๐‘ฅ =

๐‘‘๐‘ฆ๐‘‘๐œ‰

๐‘‘๐œ‰๐‘‘๐‘ฅ then ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =๐‘‘๐‘ฆ๐‘‘๐œ‰๐œ€

โˆ’๐‘. The di๏ฟฝerential operator is ๐‘‘๐‘‘๐‘ฅ โ‰ก ๐œ€

โˆ’๐‘ ๐‘‘๐‘‘๐œ‰ therefore

๐‘‘2

๐‘‘๐‘ฅ2=๐‘‘๐‘‘๐‘ฅ

๐‘‘๐‘‘๐‘ฅ

= ๏ฟฝ๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ ๏ฟฝ

๐œ€โˆ’๐‘๐‘‘๐‘‘๐œ‰๏ฟฝ

= ๐œ€โˆ’2๐‘๐‘‘2

๐‘‘๐œ‰2

Hence ๐‘‘2๐‘ฆ๐‘‘๐‘ฅ2 = ๐œ€

โˆ’2๐‘ ๐‘‘2๐‘ฆ๐‘‘๐œ‰2 and ๐œ€๐‘ฆ

โ€ฒโ€ฒ + ๐‘ฆโ€ฒ + ๐‘ฆ = 0 becomes

๐œ€ ๏ฟฝ๐œ€โˆ’2๐‘๐‘‘2๐‘ฆ๐‘‘๐œ‰2 ๏ฟฝ

+ ๐œ€โˆ’๐‘๐‘‘๐‘ฆ๐‘‘๐œ‰

+ ๐‘ฆ = 0

๐œ€1โˆ’2๐‘๐‘ฆโ€ฒโ€ฒ + ๐œ€โˆ’๐‘๐‘ฆโ€ฒ + ๐‘ฆ = 0 (7A)

The largest terms are ๏ฟฝ๐œ€1โˆ’2๐‘, ๐œ€โˆ’๐‘๏ฟฝ, balance gives 1 โˆ’ 2๐‘ = โˆ’๐‘ or

๐‘ = 1

The ODE (7A) becomes

๐œ€โˆ’1๐‘ฆโ€ฒโ€ฒ + ๐œ€โˆ’1๐‘ฆโ€ฒ + ๐‘ฆ = 0 (7)

265

Page 270: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Assuming that solution is

๐‘ฆ๐‘–๐‘› (๐‘ฅ) =โˆž๏ฟฝ๐‘›=0

๐œ€๐‘›๐‘ฆ๐‘› = ๐‘ฆ0 + ๐œ€๐‘ฆ1 + ๐œ€2๐‘ฆ2 +โ‹ฏ

Substituting the above into (7) gives

๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒโ€ฒ0 + ๐œ€๐‘ฆโ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ + ๐œ€โˆ’1 ๏ฟฝ๐‘ฆโ€ฒ0 + ๐œ€๐‘ฆโ€ฒ1 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐‘ฆ0 + ๐œ€๐‘ฆ1 +โ‹ฏ๏ฟฝ = 0 (8)

Collecting terms with ๐‘‚๏ฟฝ๐œ€โˆ’1๏ฟฝ gives the first order ODE to solve

๐‘ฆโ€ฒโ€ฒ0 โˆผ โˆ’๐‘ฆโ€ฒ0Let ๐‘ง = ๐‘ฆโ€ฒ0, the above becomes

๐‘งโ€ฒ โˆผ โˆ’๐‘ง๐‘‘๐‘ง๐‘ง

โˆผ โˆ’๐‘‘๐œ‰

ln |๐‘ง| โˆผ โˆ’๐œ‰ + ๐ถ4

๐‘ง โˆผ ๐ถ4๐‘’โˆ’๐œ‰

Hence

๐‘ฆโ€ฒ0 โˆผ ๐ถ4๐‘’โˆ’๐œ‰

Integrating

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ ๐ถ4๏ฟฝ๐‘’โˆ’๐œ‰๐‘‘๐œ‰ + ๐ถ5

โˆผ โˆ’๐ถ4๐‘’โˆ’๐œ‰ + ๐ถ5 (9)

Applying boundary conditions ๐‘ฆ (0) = ๐‘’ gives

๐‘’ = โˆ’๐ถ4 + ๐ถ5

๐ถ5 = ๐‘’ + ๐ถ4

Equation (9) becomes

๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ โˆ’๐ถ4๐‘’โˆ’๐œ‰ + ๐‘’ + ๐ถ4

โˆผ ๐ถ4 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐‘’ (10)

The next leading order ๐‘ฆ๐‘–๐‘›1 (๐œ‰) is found from (8) by collecting terms in ๐‘‚๏ฟฝ๐œ€0๏ฟฝ, which resultsin the ODE

๐‘ฆโ€ฒโ€ฒ1 + ๐‘ฆโ€ฒ1 โˆผ โˆ’๐‘ฆ0Since ๐‘ฆ๐‘–๐‘›0 (๐œ‰) โˆผ ๐ถ4 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐‘’, therefore ๐‘ฆโ€ฒ0 โˆผ ๐ถ4๐‘’โˆ’๐œ‰ and the above becomes

๐‘ฆโ€ฒโ€ฒ1 + ๐‘ฆโ€ฒ1 โˆผ โˆ’๐ถ4๐‘’โˆ’๐œ‰

The homogenous solution is found first, then method of undetermined coe๏ฟฝcients is usedto find particular solution. The homogenous ODE is

๐‘ฆโ€ฒโ€ฒ1,โ„Ž โˆผ ๐‘ฆโ€ฒ1,โ„ŽThis was solved above for ๐‘ฆ๐‘–๐‘›0 , and the solution is

๐‘ฆ1,โ„Ž โˆผ โˆ’๐ถ5๐‘’โˆ’๐œ‰ + ๐ถ6

266

Page 271: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

To find the particular solution, let ๐‘ฆ1,๐‘ โˆผ ๐ด๐œ‰๐‘’โˆ’๐œ‰, where ๐œ‰ was added since ๐‘’โˆ’๐œ‰ shows up inthe homogenous solution. Hence

๐‘ฆโ€ฒ1,๐‘ โˆผ ๐ด๐‘’โˆ’๐œ‰ โˆ’ ๐ด๐œ‰๐‘’โˆ’๐œ‰

๐‘ฆโ€ฒโ€ฒ1,๐‘ โˆผ โˆ’๐ด๐‘’โˆ’๐œ‰ โˆ’ ๏ฟฝ๐ด๐‘’โˆ’๐œ‰ โˆ’ ๐ด๐œ‰๐‘’โˆ’๐œ‰๏ฟฝ

โˆผ โˆ’2๐ด๐‘’โˆ’๐œ‰ + ๐ด๐œ‰๐‘’โˆ’๐œ‰

Substituting these in the ODE ๐‘ฆโ€ฒโ€ฒ1,๐‘ + ๐‘ฆโ€ฒ1,๐‘ โˆผ โˆ’๐ถ4๐‘’โˆ’๐œ‰ results in

โˆ’2๐ด๐‘’โˆ’๐œ‰ + ๐ด๐œ‰๐‘’โˆ’๐œ‰ + ๐ด๐‘’โˆ’๐œ‰ โˆ’ ๐ด๐œ‰๐‘’โˆ’๐œ‰ โˆผ โˆ’๐ถ4๐‘’โˆ’๐œ‰

โˆ’๐ด = โˆ’๐ถ4

๐ด = ๐ถ4

Therefore the particular solution is

๐‘ฆ1,๐‘ โˆผ ๐ถ4๐œ‰๐‘’โˆ’๐œ‰

And therefore the complete solution is

๐‘ฆ๐‘–๐‘›1 (๐œ‰) โˆผ ๐‘ฆ1,โ„Ž + ๐‘ฆ1,๐‘โˆผ โˆ’๐ถ5๐‘’โˆ’๐œ‰ + ๐ถ6 + ๐ถ4๐œ‰๐‘’โˆ’๐œ‰

Applying boundary conditions ๐‘ฆ (0) = 0 to the above gives

0 = โˆ’๐ถ5 + ๐ถ6

๐ถ6 = ๐ถ5

Hence the solution becomes

๐‘ฆ๐‘–๐‘›1 (๐œ‰) โˆผ โˆ’๐ถ5๐‘’โˆ’๐œ‰ + ๐ถ5 + ๐ถ4๐œ‰๐‘’โˆ’๐œ‰

โˆผ ๐ถ5 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐ถ4๐œ‰๐‘’โˆ’๐œ‰ (11)

The complete inner solution now becomes

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ ๐‘ฆ๐‘–๐‘›0 + ๐œ€๐‘ฆ๐‘–๐‘›1โˆผ ๐ถ4 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐‘’ + ๐œ€ ๏ฟฝ๐ถ5 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐ถ4๐œ‰๐‘’โˆ’๐œ‰๏ฟฝ (12)

There are two constants that need to be determined in the above from matching with theouter solution.

lim๐œ‰โ†’โˆž

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ lim๐‘ฅโ†’0

๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ)

lim๐œ‰โ†’โˆž

๐ถ4 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐‘’ + ๐œ€ ๏ฟฝ๐ถ5 ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ + ๐ถ4๐œ‰๐‘’โˆ’๐œ‰๏ฟฝ โˆผ lim๐‘ฅโ†’0

๐‘’1โˆ’๐‘ฅ + ๐œ€ (1 โˆ’ ๐‘ฅ) ๐‘’1โˆ’๐‘ฅ

๐ถ4 + ๐‘’ + ๐œ€๐ถ5 โˆผ ๐‘’ + ๐œ€๐‘’

The above shows that

๐ถ5 = ๐‘’๐ถ4 + ๐‘’ = ๐‘’

๐ถ4 = 0

267

Page 272: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

This gives the boundary layer solution ๐‘ฆ๐‘–๐‘› (๐œ‰) as

๐‘ฆ๐‘–๐‘› (๐œ‰) โˆผ ๐‘’ + ๐œ€๐‘’ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ

โˆผ ๐‘’ ๏ฟฝ1 + ๐œ€ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐œ‰๏ฟฝ๏ฟฝ

In terms of ๐‘ฅ, since ๐œ‰ = ๐‘ฅ๐œ€ , the above can be written as

๐‘ฆ๐‘–๐‘› (๐‘ฅ) โˆผ ๐‘’ ๏ฟฝ1 + ๐œ€ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘ฅ๐œ€ ๏ฟฝ๏ฟฝ

The uniform solution is therefore

๐‘ฆuniform (๐‘ฅ) โˆผ ๐‘ฆ๐‘–๐‘› (๐‘ฅ) + ๐‘ฆ๐‘œ๐‘ข๐‘ก (๐‘ฅ) โˆ’ ๐‘ฆ๐‘š๐‘Ž๐‘ก๐‘โ„Ž

โˆผ

๐‘ฆ๐‘–๐‘›

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘’ ๏ฟฝ1 + ๐œ€ ๏ฟฝ1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐œ€ ๏ฟฝ๏ฟฝ +

๐‘ฆ๐‘œ๐‘ข๐‘ก

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘’1โˆ’๐‘ฅ + ๐œ€ (1 โˆ’ ๐‘ฅ) ๐‘’1โˆ’๐‘ฅ โˆ’ (๐‘’ + ๐œ€๐‘’)

โˆผ ๐‘’ + ๐‘’๐œ€ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘ฅ๐œ€ ๏ฟฝ + ๐‘’1โˆ’๐‘ฅ + (๐œ€ โˆ’ ๐œ€๐‘ฅ) ๐‘’1โˆ’๐‘ฅ โˆ’ (๐‘’ + ๐œ€๐‘’)

โˆผ ๐‘’ + ๐‘’๐œ€ โˆ’ ๐œ€๐‘’1โˆ’๐‘ฅ๐œ€ + ๐‘’1โˆ’๐‘ฅ + ๐œ€๐‘’1โˆ’๐‘ฅ โˆ’ ๐œ€๐‘ฅ๐‘’1โˆ’๐‘ฅ โˆ’ ๐‘’ โˆ’ ๐œ€๐‘’

โˆผ โˆ’๐œ€๐‘’1โˆ’๐‘ฅ๐œ€ + ๐‘’1โˆ’๐‘ฅ + ๐œ€๐‘’1โˆ’๐‘ฅ โˆ’ ๐œ€๐‘ฅ๐‘’1โˆ’๐‘ฅ

โˆผ ๐‘’1โˆ’๐‘ฅ ๏ฟฝโˆ’๐œ€๐‘’โˆ’1๐œ€ + 1 + ๐œ€ โˆ’ ๐œ€๐‘ฅ๏ฟฝ

Or

๐‘ฆuniform (๐‘ฅ) โˆผ ๐‘’1โˆ’๐‘ฅ ๏ฟฝ1 + ๐œ€ ๏ฟฝ1 โˆ’ ๐‘ฅ โˆ’ ๐‘’โˆ’1๐œ€ ๏ฟฝ๏ฟฝ

With error ๐‘‚๏ฟฝ๐œ€2๏ฟฝ.

The above solution is now compared to the exact solution of ๐œ€๐‘ฆโ€ฒโ€ฒ + ๐‘ฆโ€ฒ + ๐‘ฆ = 0 with ๐‘ฆ (0) =๐‘’, ๐‘ฆ (1) = 1. Since this is a homogenous second order ODE with constant coe๏ฟฝcient, it iseasily solved using characteristic equation.

๐œ€๐œ†2 + ๐œ† + 1 = 0

The roots are

๐œ† =โˆ’๐‘2๐‘Ž

ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘2๐‘Ž

=โˆ’12๐œ€

ยฑ โˆš1 โˆ’ 4๐œ€2๐œ€

Therefore the solution is

๐‘ฆ (๐‘ฅ) = ๐ด๐‘’๐œ†1๐‘ฅ + ๐ต๐‘’๐œ†2๐‘ฅ

= ๐ด๐‘’๏ฟฝโˆ’12๐œ€+

โˆš1โˆ’4๐œ€2๐œ€ ๏ฟฝ๐‘ฅ

+ ๐ต๐‘’๏ฟฝโˆ’12๐œ€ โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๏ฟฝ๐‘ฅ

= ๐ด๐‘’โˆ’๐‘ฅ2๐œ€ ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ + ๐ต๐‘’

โˆ’๐‘ฅ2๐œ€ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ

= ๐‘’โˆ’๐‘ฅ2๐œ€ ๏ฟฝ๐ด๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ + ๐ต๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ

268

Page 273: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Applying first boundary conditions ๐‘ฆ (0) = ๐‘’ to the above gives

๐‘’ = ๐ด + ๐ต๐ต = ๐‘’ โˆ’ ๐ด

Hence the solution becomes

๐‘ฆ (๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2๐œ€ ๏ฟฝ๐ด๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ + (๐‘’ โˆ’ ๐ด) ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ

= ๐‘’โˆ’๐‘ฅ2๐œ€ ๏ฟฝ๐ด๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ โˆ’ ๐ด๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ

= ๐‘’โˆ’๐‘ฅ2๐œ€ ๏ฟฝ๐ด ๏ฟฝ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ (13)

Applying second boundary conditions ๐‘ฆ (1) = 1 gives

1 = ๐‘’โˆ’12๐œ€ ๏ฟฝ๐ด ๏ฟฝ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๏ฟฝ

๐‘’12๐œ€ = ๐ด๏ฟฝ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€

๐ด =๐‘’

12๐œ€ โˆ’ ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€

๐‘’โˆš1โˆ’4๐œ€2๐œ€ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€

(14)

Substituting this into (13) results in

๐‘ฆexact (๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2๐œ€ ๏ฟฝ๐ด ๏ฟฝ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ

Where ๐ด is given in (14). hence

๐‘ฆexact (๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘’

12๐œ€ โˆ’ ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€

๐‘’โˆš1โˆ’4๐œ€2๐œ€ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ๐‘’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

In summary

exact solution asymptotic solution

๐‘’โˆ’๐‘ฅ2๐œ€

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘’12๐œ€ โˆ’๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€

๐‘’โˆš1โˆ’4๐œ€2๐œ€ โˆ’๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๏ฟฝ๐‘’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ โˆ’ ๐‘’

โˆ’โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ๏ฟฝ + ๐‘’1โˆ’

โˆš1โˆ’4๐œ€2๐œ€ ๐‘ฅ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘’1โˆ’๐‘ฅ + ๐œ€๐‘’1โˆ’๐‘ฅ ๏ฟฝ1 โˆ’ ๐‘ฅ โˆ’ ๐‘’โˆ’

1๐œ€ ๏ฟฝ + ๐‘‚ ๏ฟฝ๐œ€2๏ฟฝ

The following plot compares the exact solution with the asymptotic solution for ๐œ€ = 0.1

269

Page 274: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Exact solution

Asymptotic

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

x

y(x)

Exact solution vs. two terms asymptotic ฯต = 0.1

The following plot compares the exact solution with the asymptotic solution for ๐œ€ = 0.01.The di๏ฟฝerence was too small to notice in this case, the plot below is zoomed to be near ๐‘ฅ = 0

Out[21]=

Exact solution

Asymptotic

0.00 0.05 0.10 0.15 0.20

2.3

2.4

2.5

2.6

2.7

x

y(x)

Exact solution vs. two terms asymptotic ฯต = 0.01

At ๐œ€ = 0.001, the di๏ฟฝerence between the exact and the asymptotic solution was not noticeable.Therefore, to better compare the solutions, the following plot shows the relative percentage

270

Page 275: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

error given by

100 ๏ฟฝ๐‘ฆexact โˆ’ ๐‘ฆuniform

๐‘ฆexact ๏ฟฝ%

For di๏ฟฝerent ๐œ€.

ฯต=0.1

ฯต=0.05

ฯต=0.01

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x

%relativeerror

Percentage relative error between exact solution and asymptotic solution

Some observations: The above plot shows more clearly how the di๏ฟฝerence between theexact solution and the asymptotic solution became smaller as ๐œ€ became smaller. The plotalso shows that the boundary layer near ๐‘ฅ = 0 is becoming more narrow are ๐œ€ becomessmaller as expected. It also shows that the relative error is smaller in the outer region thanin the boundary layer region. For example, for ๐œ€ = 0.05, the largest percentage error inthe outer region was less than 1%, while in the boundary layer, very near ๐‘ฅ = 0, the errorgrows to about 5%. Another observation is that at the matching location, the relative errorgoes down to zero. One also notices that the matching location drifts towards ๐‘ฅ = 0 as ๐œ€becomes smaller because the boundary layer is becoming more narrow. The following tablesummarizes these observations.

๐œ€ % error near ๐‘ฅ = 0 apparent width of boundary layer

0.1 10 0.20.05 5 0.120.01 1 0.02

271

Page 276: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.3 problem 3

Problem (a) Find physical optics approximation to the eigenvalue and eigenfunctions of theSturm-Liouville problem are ๐œ† โ†’ โˆž

โˆ’๐‘ฆโ€ฒโ€ฒ = ๐œ† (sin (๐‘ฅ) + 1)2 ๐‘ฆ๐‘ฆ (0) = 0๐‘ฆ (๐œ‹) = 0

(b) What is the integral relation necessary to make the eigenfunctions orthonormal? Forsome reasonable choice of scaling coe๏ฟฝcient (give the value), plot the eigenfunctions for๐‘› = 5, ๐‘› = 20.

(c) Estimate how large ๐œ† should be for the relative error of less than 0.1%

solution

5.1.3.1 Part a

Writing the ODE as

๐‘ฆโ€ฒโ€ฒ + ๐œ† (sin (๐‘ฅ) + 1)2 ๐‘ฆ = 0Let1

๐œ† = 1๐œ€2

Then the given ODE becomes

๐œ€2๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) + (sin (๐‘ฅ) + 1)2 ๐‘ฆ (๐‘ฅ) = 0 (1)

Physical optics approximation is obtained when ๐œ† โ†’ โˆž which implies ๐œ€ โ†’ 0+. Since theODE is linear and the highest derivative is now multiplied by a very small parameter ๐œ€,WKB can therefore be used to solve it. WKB starts by assuming that the solution has theform

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

Therefore, taking derivatives and substituting back in the ODE results in

๐‘ฆโ€ฒ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ

๐‘ฆโ€ฒโ€ฒ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2

+ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ)๏ฟฝ

1๐œ† = 1๐œ€could also be used. But the book uses ๐œ€2.

272

Page 277: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Substituting these into (1) and canceling the exponential terms gives

๐œ€2โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒ๐‘› (๐‘ฅ)๏ฟฝ2

+1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†โ€ฒโ€ฒ๐‘› (๐‘ฅ)โŽžโŽŸโŽŸโŽŸโŽŸโŽ  โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

๐œ€2

๐›ฟ2๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 +โ‹ฏ๏ฟฝ ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 +โ‹ฏ๏ฟฝ +

๐œ€2

๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

๐œ€2

๐›ฟ2๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+ ๐›ฟ ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ +โ‹ฏ๏ฟฝ +

๐œ€2

๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

๏ฟฝ๐œ€2

๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+2๐œ€2

๐›ฟ๐‘†โ€ฒ1๐‘†โ€ฒ0 +โ‹ฏ๏ฟฝ + ๏ฟฝ

๐œ€2

๐›ฟ๐‘†โ€ฒโ€ฒ0 + ๐œ€2๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2 (2)

The largest term in the left side is ๐œ€2

๐›ฟ2๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2. By dominant balance, this term has the same

order of magnitude as the right side โˆ’ (sin (๐‘ฅ) + 1)2. This implies that ๐›ฟ2 is proportional to๐œ€2. For simplicity (following the book) ๐›ฟ can be taken as equal to ๐œ€

๐›ฟ = ๐œ€

Using the above in equation (2) results in

๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ 2๐œ€๐‘†โ€ฒ1๐‘†โ€ฒ0 +โ‹ฏ๏ฟฝ + ๏ฟฝ๐œ€๐‘†โ€ฒโ€ฒ0 + ๐œ€2๐‘†โ€ฒโ€ฒ1 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

Balance of ๐‘‚ (1) gives

๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2โˆผ โˆ’ (sin (๐‘ฅ) + 1)2 (3)

Balance of ๐‘‚ (๐œ€) gives

2๐‘†โ€ฒ1๐‘†โ€ฒ0 โˆผ โˆ’๐‘†โ€ฒโ€ฒ0 (4)

Equation (3) is solved first in order to find ๐‘†0 (๐‘ฅ).

๐‘†โ€ฒ0 โˆผ ยฑ๐‘– (sin (๐‘ฅ) + 1)Hence

๐‘†0 (๐‘ฅ) โˆผ ยฑ๐‘–๏ฟฝ๐‘ฅ

0(sin (๐‘ก) + 1) ๐‘‘๐‘ก + ๐ถยฑ

โˆผ ยฑ๐‘– (๐‘ก โˆ’ cos (๐‘ก))๐‘ฅ0 + ๐ถยฑ

โˆผ ยฑ๐‘– (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ)) + ๐ถยฑ (5)

๐‘†1 (๐‘ฅ) is now found from (4) and using ๐‘†โ€ฒโ€ฒ0 = ยฑ๐‘– cos (๐‘ฅ) gives

๐‘†โ€ฒ1 โˆผ โˆ’12๐‘†โ€ฒโ€ฒ0๐‘†โ€ฒ0

โˆผ โˆ’12

ยฑ๐‘– cos (๐‘ฅ)ยฑ๐‘– (sin (๐‘ฅ) + 1)

โˆผ โˆ’12

cos (๐‘ฅ)(sin (๐‘ฅ) + 1)

Hence the solution is

๐‘†1 (๐‘ฅ) โˆผ โˆ’12

ln (1 + sin (๐‘ฅ)) (6)

273

Page 278: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Having found ๐‘†0 (๐‘ฅ) and ๐‘†1 (๐‘ฅ), the leading behavior is now obtained from

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ

โˆผ exp ๏ฟฝ1๐œ€(๐‘†0 (๐‘ฅ) + ๐œ€๐‘†1 (๐‘ฅ)) +โ‹ฏ๏ฟฝ

โˆผ exp ๏ฟฝ1๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) +โ‹ฏ๏ฟฝ

The leading behavior is only the first two terms (called physical optics approximation inWKB), therefore

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ)๏ฟฝ

โˆผ exp ๏ฟฝยฑ๐‘–๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ)) + ๐ถยฑ โˆ’

12

ln (1 + sin (๐‘ฅ))๏ฟฝ

โˆผ1

โˆš1 + sin ๐‘ฅexp ๏ฟฝยฑ

๐‘–๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ)) + ๐ถยฑ๏ฟฝ

Which can be written as

๐‘ฆ (๐‘ฅ) โˆผ๐ถ

โˆš1 + sin ๐‘ฅexp ๏ฟฝ

๐‘–๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ โˆ’

๐ถ

โˆš1 + sin ๐‘ฅexp ๏ฟฝ

โˆ’๐‘–๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ

In terms of sin and cos the above becomes (using the standard Euler relation simplifications)

๐‘ฆ (๐‘ฅ) โˆผ๐ด

โˆš1 + sin ๐‘ฅcos ๏ฟฝ

1๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ +

๐ต

โˆš1 + sin ๐‘ฅsin ๏ฟฝ

1๐œ€(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ

Where ๐ด,๐ต are the new constants. But ๐œ† = 1๐œ€2 , and the above becomes

๐‘ฆ (๐‘ฅ) โˆผ๐ด

โˆš1 + sin ๐‘ฅcos ๏ฟฝโˆš๐œ† (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ + ๐ต

โˆš1 + sin ๐‘ฅsin ๏ฟฝโˆš๐œ† (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ (7)

Boundary conditions are now applied to determine ๐ด,๐ต.

๐‘ฆ (0) = 0๐‘ฆ (๐œ‹) = 0

First B.C. applied to (7) gives (where now โˆผ is replaced by = for notation simplicity)

0 = ๐ด cos ๏ฟฝโˆš๐œ† (1 โˆ’ cos (0))๏ฟฝ + ๐ต sin ๏ฟฝโˆš๐œ† (1 โˆ’ cos (0))๏ฟฝ

0 = ๐ด cos (0) + ๐ต sin (0)0 = ๐ด

Hence solution (7) becomes

๐‘ฆ (๐‘ฅ) โˆผ๐ต

โˆš1 + sin ๐‘ฅsin ๏ฟฝโˆš๐œ† (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ

274

Page 279: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Applying the second B.C. ๐‘ฆ (๐œ‹) = 0 to the above results in

0 =๐ต

โˆš1 + sin๐œ‹sin ๏ฟฝโˆš๐œ† (1 + ๐œ‹ โˆ’ cos (๐œ‹))๏ฟฝ

0 = ๐ต sin ๏ฟฝโˆš๐œ† (1 + ๐œ‹ + 1)๏ฟฝ

= ๐ต sin ๏ฟฝ(2 + ๐œ‹)โˆš๐œ†๏ฟฝ

Hence, non-trivial solution implies that

(2 + ๐œ‹)๏ฟฝ๐œ†๐‘› = ๐‘›๐œ‹ ๐‘› = 1, 2, 3,โ‹ฏ

๏ฟฝ๐œ†๐‘› =๐‘›๐œ‹2 + ๐œ‹

The eigenvalues are

๐œ†๐‘› =๐‘›2๐œ‹2

(2 + ๐œ‹)2๐‘› = 1, 2, 3,โ‹ฏ

Hence ๐œ†๐‘› โ‰ˆ ๐‘›2 for large ๐‘›. The eigenfunctions are

๐‘ฆ๐‘› (๐‘ฅ) โˆผ๐ต๐‘›

โˆš1 + sin ๐‘ฅsin ๏ฟฝ๏ฟฝ๐œ†๐‘› (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ ๐‘› = 1, 2, 3,โ‹ฏ

The solution is therefore a linear combination of the eigenfunctions

๐‘ฆ (๐‘ฅ) โˆผโˆž๏ฟฝ๐‘›=1

๐‘ฆ๐‘› (๐‘ฅ)

โˆผโˆž๏ฟฝ๐‘›=1

๐ต๐‘›โˆš1 + sin ๐‘ฅ

sin ๏ฟฝ๏ฟฝ๐œ†๐‘› (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ (7A)

This solution becomes more accurate for large ๐œ† or large ๐‘›.

5.1.3.2 Part b

For normalization, the requirement is that

๏ฟฝ๐œ‹

0๐‘ฆ2๐‘› (๐‘ฅ)

weight

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ(sin (๐‘ฅ) + 1)2๐‘‘๐‘ฅ = 1

Substituting the eigenfunction ๐‘ฆ๐‘› (๐‘ฅ) solution obtained in first part in the above results in

๏ฟฝ๐œ‹

0๏ฟฝ

๐ต๐‘›โˆš1 + sin ๐‘ฅ

sin ๏ฟฝ๏ฟฝ๐œ†๐‘› (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ๏ฟฝ2

(sin (๐‘ฅ) + 1)2 ๐‘‘๐‘ฅ โˆผ 1

The above is now solved for constant ๐ต๐‘›. The constant ๐ต๐‘› will the same for each ๐‘› fornormalization. Therefore any ๐‘› can be used for the purpose of finding the scaling constant.

275

Page 280: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Selecting ๐‘› = 1 in the above gives

๏ฟฝ๐œ‹

0๏ฟฝ

๐ต

โˆš1 + sin ๐‘ฅsin ๏ฟฝ ๐œ‹

2 + ๐œ‹(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ๏ฟฝ

2

(sin (๐‘ฅ) + 1)2 ๐‘‘๐‘ฅ โˆผ 1

๐ต2๏ฟฝ๐œ‹

0

11 + sin ๐‘ฅ sin2 ๏ฟฝ

๐œ‹2 + ๐œ‹

(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ (sin (๐‘ฅ) + 1)2 ๐‘‘๐‘ฅ โˆผ 1

๐ต2๏ฟฝ๐œ‹

0sin2 ๏ฟฝ

๐œ‹2 + ๐œ‹

(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ (sin (๐‘ฅ) + 1) ๐‘‘๐‘ฅ โˆผ 1 (8)

Letting ๐‘ข = ๐œ‹2+๐œ‹

(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ)), then๐‘‘๐‘ข๐‘‘๐‘ฅ

=๐œ‹

2 + ๐œ‹(1 + sin (๐‘ฅ))

When ๐‘ฅ = 0, then ๐‘ข = ๐œ‹2+๐œ‹

(1 + 0 โˆ’ cos (0)) = 0 and when ๐‘ฅ = ๐œ‹ then ๐‘ข = ๐œ‹2+๐œ‹

(1 + ๐œ‹ โˆ’ cos (๐œ‹)) =๐œ‹

2+๐œ‹(2 + ๐œ‹) = ๐œ‹, hence (8) becomes

๐ต2๏ฟฝ๐œ‹

0sin2 (๐‘ข)

2 + ๐œ‹๐œ‹

๐‘‘๐‘ข๐‘‘๐‘ฅ๐‘‘๐‘ฅ = 1

2 + ๐œ‹๐œ‹

๐ต2๏ฟฝ๐œ‹

0sin2 (๐‘ข) ๐‘‘๐‘ข = 1

But sin2 (๐‘ข) = 12 โˆ’

12 cos 2๐‘ข, therefore the above becomes

2 + ๐œ‹๐œ‹

๐ต2๏ฟฝ๐œ‹

0๏ฟฝ12โˆ’12

cos 2๐‘ข๏ฟฝ ๐‘‘๐‘ข = 1

122 + ๐œ‹๐œ‹

๐ต2 ๏ฟฝ๐‘ข โˆ’sin 2๐‘ข2 ๏ฟฝ

๐œ‹

0= 1

2 + ๐œ‹2๐œ‹

๐ต2 ๏ฟฝ๏ฟฝ๐œ‹ โˆ’sin 2๐œ‹2 ๏ฟฝ โˆ’ ๏ฟฝ0 โˆ’

sin 02 ๏ฟฝ๏ฟฝ = 1

2 + ๐œ‹2๐œ‹

๐ต2๐œ‹ = 1

๐ต2 =2

2 + ๐œ‹Therefore

๐ต =๏ฟฝ

2๐œ‹ + 2

= 0.62369

Using the above for each ๐ต๐‘› in the solution obtained for the eigenfunctions in (7A), andpulling this scaling constant out of the sum results in

๐‘ฆnormalized โˆผ๏ฟฝ

2๐œ‹ + 2

โˆž๏ฟฝ๐‘›=1

1

โˆš1 + sin ๐‘ฅsin ๏ฟฝ๏ฟฝ๐œ†๐‘› (1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ (9)

Where

๏ฟฝ๐œ†๐‘› =๐‘›๐œ‹2 + ๐œ‹

๐‘› = 1, 2, 3,โ‹ฏ

The following are plots for the normalized ๐‘ฆ๐‘› (๐‘ฅ) for ๐‘› values it asks to show.

276

Page 281: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

-0.4

-0.2

0.0

0.2

0.4

x

y(x)

yn(x) for n =5

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

y(x)

yn(x) for n =20

The following shows the ๐‘ฆ (๐‘ฅ) as more eigenfunctions are added up to 55.

277

Page 282: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0.0

0.5

1.0

1.5

2.0

x

y(x)

sum of first 5 eigenfunction

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0

1

2

3

4

5

6

xy(x)

sum of first 15 eigenfunction

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0

2

4

6

8

10

x

y(x)

sum of first 25 eigenfunction

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0

5

10

15

x

y(x)

sum of first 35 eigenfunction

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0

5

10

15

20

x

y(x)

sum of first 45 eigenfunction

0 ฯ€

4ฯ€

23ฯ€4

ฯ€

0

5

10

15

20

25

x

y(x)

sum of first 55 eigenfunction

278

Page 283: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

5.1.3.3 Part c

Since approximate solution is

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐›ฟ

โˆž๏ฟฝ๐‘›=0

๐›ฟ๐‘›๐‘†๐‘› (๐‘ฅ)๏ฟฝ ๐›ฟ โ†’ 0

โˆผ exp ๏ฟฝ1๐›ฟ๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐›ฟ๐‘†2 (๐‘ฅ) +โ‹ฏ๏ฟฝ (1)

And the physical optics approximation includes the first two terms in the series above, thenthe relative error between physical optics and exact solution is given by ๐›ฟ๐‘†2 (๐‘ฅ). But ๐›ฟ = ๐œ€.Hence (1) becomes

๐‘ฆ (๐‘ฅ) โˆผ exp ๏ฟฝ1๐œ€๐‘†0 (๐‘ฅ) + ๐‘†1 (๐‘ฅ) + ๐œ€๐‘†2 (๐‘ฅ) +โ‹ฏ๏ฟฝ

Hence the relative error must be such that

|๐œ€๐‘†2 (๐‘ฅ)|max โ‰ค 0.001 (1A)

Now ๐‘†2 (๐‘ฅ) is found. From (2) in part(a)

๐œ€2

๐›ฟ2๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ ๏ฟฝ๐‘†โ€ฒ0 + ๐›ฟ๐‘†โ€ฒ1 + ๐›ฟ2๐‘†โ€ฒ2 +โ‹ฏ๏ฟฝ +

๐œ€2

๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 + ๐›ฟ2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

๐œ€2

๐›ฟ2๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ

2+ ๐›ฟ ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ + ๐›ฟ2 ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ +

๐œ€2

๐›ฟ๏ฟฝ๐‘†โ€ฒโ€ฒ0 + ๐›ฟ๐‘†โ€ฒโ€ฒ1 + ๐›ฟ2๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

๏ฟฝ๏ฟฝ๐‘†โ€ฒ0๏ฟฝ2+ ๐œ€ ๏ฟฝ2๐‘†โ€ฒ1๐‘†โ€ฒ0๏ฟฝ + ๐œ€2 ๏ฟฝ2๐‘†โ€ฒ0๐‘†โ€ฒ2 + ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2๏ฟฝ +โ‹ฏ๏ฟฝ + ๏ฟฝ๐œ€๐‘†โ€ฒโ€ฒ0 + ๐œ€2๐‘†โ€ฒโ€ฒ1 + ๐œ€3๐‘†โ€ฒโ€ฒ2 +โ‹ฏ๏ฟฝ โˆผ โˆ’ (sin (๐‘ฅ) + 1)2

A balance on ๐‘‚๏ฟฝ๐œ€2๏ฟฝ gives the ODE to solve to find ๐‘†2

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โˆผ โˆ’ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โˆ’ ๐‘†โ€ฒโ€ฒ1 (2)

But

๐‘†โ€ฒ0 โˆผ ยฑ๐‘– (1 + sin (๐‘ฅ))

๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โˆผ ๏ฟฝโˆ’

12

cos (๐‘ฅ)(sin (๐‘ฅ) + 1)๏ฟฝ

2

โˆผ14

cos2 (๐‘ฅ)(1 + sin (๐‘ฅ))2

๐‘†โ€ฒโ€ฒ1 โˆผ โˆ’12๐‘‘๐‘‘๐‘ฅ ๏ฟฝ

cos (๐‘ฅ)(1 + sin (๐‘ฅ))๏ฟฝ

โˆผ12 ๏ฟฝ

11 + sin (๐‘ฅ)๏ฟฝ

279

Page 284: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence (2) becomes

2๐‘†โ€ฒ0๐‘†โ€ฒ2 โˆผ โˆ’ ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ2โˆ’ ๐‘†โ€ฒโ€ฒ1

๐‘†โ€ฒ2 โˆผ โˆ’๏ฟฝ๏ฟฝ๐‘†โ€ฒ1๏ฟฝ

2+ ๐‘†โ€ฒโ€ฒ1 ๏ฟฝ

2๐‘†โ€ฒ0

โˆผ โˆ’๏ฟฝ14

cos2(๐‘ฅ)(1+sin(๐‘ฅ))2

+ 12๏ฟฝ 11+sin(๐‘ฅ)๏ฟฝ๏ฟฝ

ยฑ2๐‘– (1 + sin (๐‘ฅ))

โˆผ ยฑ๐‘– ๏ฟฝ14

cos2(๐‘ฅ)(sin(๐‘ฅ)+1)2

+ 12๏ฟฝ 11+sin(๐‘ฅ)๏ฟฝ๏ฟฝ

2 (sin (๐‘ฅ) + 1)

โˆผ ยฑ๐‘–14 ๏ฟฝ

cos2(๐‘ฅ)+2(1+sin(๐‘ฅ))(sin(๐‘ฅ)+1)2

๏ฟฝ

2 (sin (๐‘ฅ) + 1)

โˆผ ยฑ๐‘–8

cos2 (๐‘ฅ) + 2 (1 + sin (๐‘ฅ))(1 + sin (๐‘ฅ))3

Therefore

๐‘†2 (๐‘ฅ) โˆผ ยฑ๐‘–8 ๏ฟฝ

๐‘ฅ

0

cos2 (๐‘ก) + 2 (1 + sin (๐‘ก))(1 + sin (๐‘ก))3

๐‘‘๐‘ก

โˆผ ยฑ๐‘–8 ๏ฟฝ๏ฟฝ

๐‘ฅ

0

cos2 (๐‘ก)(1 + sin (๐‘ก))3

๐‘‘๐‘ก + 2๏ฟฝ๐‘ฅ

0

1(1 + sin (๐‘ก))2

๐‘‘๐‘ก๏ฟฝ (3)

To do โˆซ๐‘ฅ

0cos2(๐‘ก)

(1+sin(๐‘ก))3๐‘‘๐‘ก, I used a lookup integration rule from tables which says โˆซ cos๐‘ (๐‘ก) (๐‘Ž + sin ๐‘ก)๐‘š ๐‘‘๐‘ก =

1(๐‘Ž)(๐‘š) cos๐‘+1 (๐‘ก) (๐‘Ž + sin ๐‘ก)๐‘š, therefore using this rule the integral becomes, where now ๐‘š =โˆ’3, ๐‘ = 2, ๐‘Ž = 1,

๏ฟฝ๐‘ฅ

0

cos2 ๐‘ก(1 + sin ๐‘ก)3

๐‘‘๐‘ก =1โˆ’3 ๏ฟฝ

cos3 ๐‘ก(1 + sin ๐‘ก)3

๏ฟฝ๐‘ฅ

0

=1โˆ’3 ๏ฟฝ

cos3 ๐‘ฅ(1 + sin ๐‘ฅ)3

โˆ’ 1๏ฟฝ

=13 ๏ฟฝ1 โˆ’

cos3 ๐‘ฅ(1 + sin ๐‘ฅ)3

๏ฟฝ

And for โˆซ 1(1+sin(๐‘ฅ))2

๐‘‘๐‘ฅ, half angle substitution can be used. I do not know what other substi-

tution to use. Using CAS for little help on this, I get

๏ฟฝ๐‘ฅ

0

1(1 + sin ๐‘ก)2

๐‘‘๐‘ก = ๏ฟฝโˆ’cos ๐‘ก

3 (1 + sin ๐‘ก)2โˆ’13

cos ๐‘ก1 + sin ๐‘ก๏ฟฝ

๐‘ฅ

0

= ๏ฟฝโˆ’cos ๐‘ฅ

3 (1 + sin ๐‘ฅ)2โˆ’13

cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ โˆ’ ๏ฟฝโˆ’

13โˆ’13๏ฟฝ

=23โˆ’

cos ๐‘ฅ3 (1 + sin ๐‘ฅ)2

โˆ’13

cos ๐‘ฅ1 + sin ๐‘ฅ

280

Page 285: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence from (3)

๐‘†2 (๐‘ฅ) โˆผ ยฑ๐‘–8 ๏ฟฝ

13 ๏ฟฝ1 โˆ’

cos3 (๐‘ฅ)(1 + sin (๐‘ฅ))3

๏ฟฝ + 2 ๏ฟฝ23โˆ’

cos ๐‘ฅ3 (1 + sin ๐‘ฅ)2

โˆ’13

cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ๏ฟฝ

โˆผ ยฑ๐‘–8 ๏ฟฝ

13โˆ’13

cos3 (๐‘ฅ)(1 + sin (๐‘ฅ))3

+43โˆ’

2 cos ๐‘ฅ3 (1 + sin ๐‘ฅ)2

โˆ’23

cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ

โˆผ ยฑ๐‘–24 ๏ฟฝ

1 โˆ’cos3 (๐‘ฅ)

(1 + sin (๐‘ฅ))3+ 4 โˆ’

2 cos ๐‘ฅ(1 + sin ๐‘ฅ)2

โˆ’2 cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ

Therefore, from (1A)

|๐œ€๐‘†2 (๐‘ฅ)|max โ‰ค 0.001

๏ฟฝ๐œ€๐‘–24 ๏ฟฝ

1 โˆ’cos3 (๐‘ฅ)

(1 + sin (๐‘ฅ))3+ 4 โˆ’

2 cos ๐‘ฅ(1 + sin ๐‘ฅ)2

โˆ’2 cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ๏ฟฝ

maxโ‰ค 0.001

124 ๏ฟฝ

๐œ€ ๏ฟฝ1 โˆ’cos3 (๐‘ฅ)

(1 + sin (๐‘ฅ))3+ 4 โˆ’

2 cos ๐‘ฅ(1 + sin ๐‘ฅ)2

โˆ’2 cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ๏ฟฝ

maxโ‰ค 0.001

๏ฟฝ๐œ€ ๏ฟฝ1 โˆ’cos3 (๐‘ฅ)

(1 + sin (๐‘ฅ))3+ 4 โˆ’

2 cos ๐‘ฅ(1 + sin ๐‘ฅ)2

โˆ’2 cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ๏ฟฝ

maxโ‰ค 0.024 (2)

The maximum value of ๏ฟฝ1 โˆ’ cos3(๐‘ฅ)(1+sin(๐‘ฅ))3

+ 4 โˆ’ 2 cos ๐‘ฅ(1+sin ๐‘ฅ)2

โˆ’ 2 cos ๐‘ฅ1+sin ๐‘ฅ

๏ฟฝ between ๐‘ฅ = 0 and ๐‘ฅ = ๐œ‹ is now

found and used to find ๐œ€. A plot of the above shows the maximum is maximum at the end,at ๐‘ฅ = ๐œ‹ (Taking the derivative and setting it to zero to determine where the maximum iscan also be used).

In[324]:= myResult = 1 -Cos[x]3

(1 + Sin[x])3+ 4 -

2 Cos[x]

(1 + Sin[x])2-

2 Cos[x]

1 + Sin[x];

Plot[myResult, {x, 0, Pi}, PlotRange โ†’ All, Frame โ†’ True, GridLines โ†’ Automatic, GridLinesStyle โ†’ LightGray,

FrameLabel โ†’ {{"s2(x)", None}, {"x", "Finding where maximum S2(x) is, part(c)"}}, PlotStyle โ†’ Red, BaseStyle โ†’ 14,

FrameTicks โ†’ {Automatic, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, ImageSize โ†’ 400]

Out[325]=

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0

2

4

6

8

10

x

s2(x)

Finding where maximum S2(x) is, part(c)

Therefore, at ๐‘ฅ = ๐œ‹

๏ฟฝ1 โˆ’cos3 ๐‘ฅ

(1 + sin ๐‘ฅ)3+ 4 โˆ’

2 cos ๐‘ฅ(1 + sin ๐‘ฅ)2

โˆ’2 cos ๐‘ฅ1 + sin ๐‘ฅ๏ฟฝ

๐‘ฅ=๐œ‹

= ๏ฟฝ1 โˆ’cos3 (๐œ‹)

(1 + sin๐œ‹)3+ 4 โˆ’

2 cos๐œ‹(1 + sin๐œ‹)2

โˆ’2 cos๐œ‹1 + sin๐œ‹๏ฟฝ

= 10

281

Page 286: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

Hence (2) becomes

10๐œ€ โ‰ค 0.024๐œ€ โ‰ค 0.0024

But since ๐œ† = 1๐œ€2 the above becomes

1

โˆš๐œ†โ‰ค 0.0024

โˆš๐œ† โ‰ฅ1

0.0024โˆš๐œ† โ‰ฅ 416.67

Hence

๐œ† โ‰ฅ 17351.1

To find which mode this corresponds to, since ๐œ†๐‘› =๐‘›2๐œ‹2

(2+๐œ‹)2, then need to solve for ๐‘›

17351.1 =๐‘›2๐œ‹2

(2 + ๐œ‹)2

๐‘›2๐œ‹2 = (17351.1) (2 + ๐œ‹)2

๐‘› =๏ฟฝ(17351.1) (2 + ๐œ‹)2

๐œ‹2

= 215.58

Hence the next largest integer is used

๐‘› = 216

To have relative error less than 0.1% compared to exact solution. Therefore using the resultobtained in (9) in part (b) the normalized solution needed is

๐‘ฆnormalized โˆผ๏ฟฝ

2๐œ‹ + 2

216๏ฟฝ๐‘›=1

1

โˆš1 + sin ๐‘ฅsin ๏ฟฝ ๐‘›๐œ‹

2 + ๐œ‹(1 + ๐‘ฅ โˆ’ cos (๐‘ฅ))๏ฟฝ

The following is a plot of the above solution adding all the first 216 modes for illustration.

282

Page 287: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.1. Exam 1 CHAPTER 5. EXAMS

In[42]:= ClearAll[x, n, lam]

mySol[x_, max_] := Sqrt2

Pi + 2 Sum

1

Sqrt[1 + Sin[x]]Sin

n Pi

2 + Pi(1 + x - Cos[x]), {n, 1, max};

In[46]:= p[n_] := Plot[mySol[x, n], {x, 0, Pi}, PlotRange โ†’ All, Frame โ†’ True,

FrameLabel โ†’ {{"y(x)", None}, {"x", Row[{"yn(x) for n =", n}]}}, BaseStyle โ†’ 14, GridLines โ†’ Automatic,

GridLinesStyle โ†’ LightGray, ImageSize โ†’ 600, PlotStyle โ†’ Red,

FrameTicks โ†’ { {Automatic, None}, {{0, Pi / 4, Pi / 2, 3 / 4 Pi, Pi}, None}}, PlotRange โ†’ All]

In[47]:= p[216]

Out[47]=

0 ฯ€

4

ฯ€

2

3ฯ€

4ฯ€

0

20

40

60

80

100

x

y(x)

yn(x) for n =216

283

Page 288: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2 Exam 2

5.2.1 problem 3

2. Consider the 1D heat equation in a semi-infinite domain:

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2, x โ‰ฅ 0

with boundary conditions: u(0, t) = exp(โˆ’iฯ‰t) and u(x, t) bounded as x โ†’ โˆž. In orderto construct a real forcing, we need both positive and negative real values of ฯ‰. Considerthat this forcing has been and will be applied for all time. This โ€œpure boundary valueproblemโ€ could be an idealization of heating the surface of the earth by the sun (periodicforcing). One could then ask, how far beneath the surface of the earth do the periodicfluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;ฯ‰) = exp(ikx) exp(โˆ’iฯ‰t). Find a single expressionfor k as a function of (given) ฯ‰ real, sgn(ฯ‰) and ฮฝ real.

Write u(x, t;ฯ‰) as a function of (given) ฯ‰ real, sgn(ฯ‰) and ฮฝ real. To obtain the mostgeneral solution by superposition, one would next integrate over all values of ฯ‰, โˆ’โˆž <ฯ‰ <โˆž (do not do this).

(b) The basic solution can be written as u(x, t;ฯ‰) = exp(โˆ’iฯ‰t) exp(โˆ’ฯƒx) exp(iฯƒ sgn(ฯ‰) x).Find ฯƒ in terms of |ฯ‰| and ฮฝ.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context ofBurgerโ€™s equation

โˆ‚u

โˆ‚t+ u

โˆ‚u

โˆ‚x= ฮฝ

โˆ‚2u

โˆ‚x2(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solvedexactly using the Cole-Hopf transformation

u = โˆ’2ฮฝฯ†xฯ†

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ฯˆx (where the subscript denotes partial differentiation) and integrate oncewith respect to x.

(b) Let ฯˆ = โˆ’2ฮฝ ln(ฯ†) to get the diffusion equation for ฯ†.

(c) Solve for ฯ† with ฯ†(x, 0) = ฮฆ(x), โˆ’โˆž < x < โˆž. In your integral expression for ฯ†, usedummy variable ฮท to facilitate the remaining parts below.

(d) Show that

ฮฆ(x) = exp

[

โˆ’1

2ฮฝ

โˆซ x

xo

F (ฮฑ)dฮฑ

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for conveniencebelow (xo > 0).

2

(e) Write your expression for ฯ†(x, t) in terms of

f(ฮท, x, t) =

โˆซ ฮท

xo

F (ฮฑ)dฮฑ+(xโˆ’ ฮท)2

2t.

(f) Find ฯ†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2+Q(x, t), 0 โ‰ค x โ‰ค L, t โ‰ฅ 0

u(x, 0) = f(x),โˆ‚u

โˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

โˆ‚u

โˆ‚t=iฮป

4ฯ€

โˆ‚2u

โˆ‚x2(1)

with initial source u(x, 0) = f(x) = ฮด(xโˆ’ a) + ฮด(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period ฮปt/(2a).

3

5.2.1.1 Part (a)

๐œ•๐‘ข๐œ•๐‘ก

+ ๐‘ข๐œ•๐‘ข๐œ•๐‘ฅ

= ๐œˆ๐œ•2๐‘ข๐œ•๐‘ฅ2

(1)

284

Page 289: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Let

๐‘ข = โˆ’2๐œˆ๐œ™๐‘ฅ๐‘ฅ

=๐œ•๐œ•๐‘ฅ

๏ฟฝโˆ’2๐œˆ ln๐œ™๏ฟฝ (1A)

5.2.1.2 Part(b)

Let

๐œ“ = โˆ’2๐œˆ ln๐œ™ (2)

Hence (1A) becomes

๐‘ข =๐œ•๐œ•๐‘ฅ๐œ“

We now substitute the above back into (1) noting first that

๐œ•๐‘ข๐œ•๐‘ก

=๐œ•๐œ•๐‘ก๐œ•๐œ“๐œ•๐‘ฅ

Interchanging the order gives

๐œ•๐‘ข๐œ•๐‘ก

=๐œ•๐œ•๐‘ฅ๐œ•๐œ“๐œ•๐‘ก

=๐œ•๐œ•๐‘ฅ๐œ“๐‘ก

And๐œ•๐‘ข๐œ•๐‘ฅ

=๐œ•๐œ•๐‘ฅ๐œ•๐œ“๐œ•๐‘ฅ

= ๐œ“๐‘ฅ๐‘ฅ

And๐œ•2๐‘ข๐œ•๐‘ฅ2

= ๐œ“๐‘ฅ๐‘ฅ๐‘ฅ

Hence the original PDE (1) now can be written in term of ๐œ“ as the new dependent variableas

๐œ•๐œ•๐‘ฅ๐œ“๐‘ก + ๐œ“๐‘ฅ ๏ฟฝ๐œ“๐‘ฅ๐‘ฅ๏ฟฝ = ๐œˆ๐œ“๐‘ฅ๐‘ฅ๐‘ฅ (3)

But

๐œ“๐‘ฅ ๏ฟฝ๐œ“๐‘ฅ๐‘ฅ๏ฟฝ =12๐œ•๐œ•๐‘ฅ

๏ฟฝ๐œ“2๐‘ฅ๏ฟฝ

285

Page 290: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Using the above in (3), then (3) becomes

๐œ•๐œ•๐‘ฅ๐œ“๐‘ก +

12๐œ•๐œ•๐‘ฅ

๏ฟฝ๐œ“2๐‘ฅ๏ฟฝ = ๐œˆ๐œ“๐‘ฅ๐‘ฅ๐‘ฅ

๐œ•๐œ•๐‘ฅ๐œ“๐‘ก +

12๐œ•๐œ•๐‘ฅ

๏ฟฝ๐œ“2๐‘ฅ๏ฟฝ โˆ’ ๐œˆ

๐œ•๐œ•๐‘ฅ

๏ฟฝ๐œ“๐‘ฅ๐‘ฅ๏ฟฝ = 0

๐œ•๐œ•๐‘ฅ ๏ฟฝ

๐œ“๐‘ก +12๐œ“2๐‘ฅ โˆ’ ๐œˆ๐œ“๐‘ฅ๐‘ฅ๏ฟฝ = 0

Therefore

๐œ“๐‘ก +12๐œ“2๐‘ฅ โˆ’ ๐œˆ๐œ“๐‘ฅ๐‘ฅ = 0 (4)

But from (2) ๐œ“ = โˆ’2๐œˆ ln๐œ™, then using this in (4), we now rewrite (4) in terms of ๐œ™

๐œ•๐œ•๐‘ก๏ฟฝโˆ’2๐œˆ ln๐œ™๏ฟฝ + 1

2 ๏ฟฝ๐œ•๐œ•๐‘ฅ

๏ฟฝโˆ’2๐œˆ ln๐œ™๏ฟฝ๏ฟฝ2

โˆ’ ๐œˆ๐œ•2

๐œ•๐‘ฅ2๏ฟฝโˆ’2๐œˆ ln๐œ™๏ฟฝ = 0

๏ฟฝโˆ’2๐œˆ๐œ™๐‘ก๐œ™ ๏ฟฝ

+12 ๏ฟฝโˆ’2๐œˆ

๐œ™๐‘ฅ๐œ™ ๏ฟฝ

2

โˆ’ ๐œˆ๐œ•๐œ•๐‘ฅ ๏ฟฝ

โˆ’2๐œˆ๐œ™๐‘ฅ๐œ™ ๏ฟฝ

= 0

โˆ’2๐œˆ๐œ™๐‘ก๐œ™+ 2๐œˆ2 ๏ฟฝ

๐œ™๐‘ฅ๐œ™ ๏ฟฝ

2

+ 2๐œˆ2๐œ•๐œ•๐‘ฅ ๏ฟฝ

๐œ™๐‘ฅ๐œ™ ๏ฟฝ

= 0

But ๐œ•๐œ•๐‘ฅ๏ฟฝ๐œ™๐‘ฅ๐œ™๏ฟฝ = ๐œ™๐‘ฅ๐‘ฅ

๐œ™ โˆ’ ๐œ™2๐‘ฅ๐œ™2 , hence the above becomes

โˆ’2๐œˆ๐œ™๐‘ก๐œ™+ 2๐œˆ2 ๏ฟฝ

๐œ™๐‘ฅ๐œ™ ๏ฟฝ

2

+ 2๐œˆ2 ๏ฟฝ๐œ™๐‘ฅ๐‘ฅ๐œ™

โˆ’๐œ™2๐‘ฅ๐œ™2 ๏ฟฝ = 0

โˆ’2๐œˆ๐œ™๐‘ก๐œ™+ 2๐œˆ2 ๏ฟฝ

๐œ™๐‘ฅ๐œ™ ๏ฟฝ

2

+ 2๐œˆ2๐œ™๐‘ฅ๐‘ฅ๐œ™

โˆ’ 2๐œˆ2๐œ™2๐‘ฅ๐œ™2 = 0

โˆ’2๐œˆ๐œ™๐‘ก๐œ™+ 2๐œˆ2

๐œ™๐‘ฅ๐‘ฅ๐œ™

= 0

โˆ’๐œ™๐‘ก๐œ™+ ๐œˆ

๐œ™๐‘ฅ๐‘ฅ๐œ™

= 0

Since ๐œ™ โ‰  0 identically, then the above simplifies to the heat PDE

๐œ™๐‘ก = ๐œˆ๐œ™๐‘ฅ๐‘ฅ (5)

๐œ™ (๐‘ฅ, 0) = ฮฆ (๐‘ฅ)โˆ’โˆž < ๐‘ฅ < โˆž

5.2.1.3 Part (c)

Now we solve (5) for ๐œ™ (๐‘ฅ, ๐‘ก) and then convert the solution back to ๐‘ข (๐‘ฅ, ๐‘ก) using the Cole-Hopftransformation. This infinite domain heat PDE has known solution (as ๐œ™ (ยฑโˆž, ๐‘ก) is boundedwhich is

๐œ™ (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

โˆ’โˆžฮฆ๏ฟฝ๐œ‚๏ฟฝ

1

โˆš4๐œ‹๐œ๐‘กexp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽโˆ’ ๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚ (6)

286

Page 291: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.1.4 Part(d)

Now

ฮฆ (๐‘ฅ) = ๐œ™ (๐‘ฅ, 0) (7)

But since ๐‘ข (๐‘ฅ, ๐‘ก) = ๐œ•๐œ•๐‘ฅ๏ฟฝโˆ’2๐œˆ ln๐œ™๏ฟฝ, then integrating

๏ฟฝ๐‘ฅ

๐‘ฅ0๐‘ข (๐›ผ, ๐‘ก) ๐‘‘๐›ผ = โˆ’2๐œˆ ln๐œ™

ln๐œ™ = โˆ’12๐œˆ ๏ฟฝ

๐‘ฅ

๐‘ฅ0๐‘ข (๐›ผ, ๐‘ก) ๐‘‘๐›ผ

๐œ™ (๐‘ฅ, ๐‘ก) = exp ๏ฟฝโˆ’12๐œˆ ๏ฟฝ

๐‘ฅ

๐‘ฅ0๐‘ข (๐›ผ, ๐‘ก) ๐‘‘๐›ผ๏ฟฝ

Hence at ๐‘ก = 0 the above becomes

๐œ™ (๐‘ฅ, 0) = exp ๏ฟฝโˆ’12๐œˆ ๏ฟฝ

๐‘ฅ

๐‘ฅ0๐‘ข (๐›ผ, 0) ๐‘‘๐›ผ๏ฟฝ

= exp ๏ฟฝโˆ’12๐œˆ ๏ฟฝ

๐‘ฅ

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ๏ฟฝ

Where ๐น (๐‘ฅ) = ๐‘ข (๐‘ฅ, 0). Hence from the above, comparing it to (6) we see that

ฮฆ (๐‘ฅ) = exp ๏ฟฝโˆ’12๐œˆ ๏ฟฝ

๐‘ฅ

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ๏ฟฝ (8)

5.2.1.5 Part(e)

From (6), we found ๐œ™ (๐‘ฅ, ๐‘ก) = โˆซโˆž

โˆ’โˆžฮฆ๏ฟฝ๐œ‚๏ฟฝ 1

โˆš4๐œ‹๐œ๐‘กexp

โŽ›โŽœโŽœโŽœโŽโˆ’๏ฟฝ๐‘ฅโˆ’๐œ‚๏ฟฝ

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚. Plugging (8) into this expression

gives

๐œ™ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐œ๐‘ก๏ฟฝ

โˆž

โˆ’โˆžexp ๏ฟฝ

โˆ’12๐œˆ ๏ฟฝ

๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ๏ฟฝ exp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽโˆ’ ๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

=1

โˆš4๐œ‹๐œ๐‘ก๏ฟฝ

โˆž

โˆ’โˆžexp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽโˆ’12๐œˆ ๏ฟฝ

๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ โˆ’

๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

=1

โˆš4๐œ‹๐œ๐‘ก๏ฟฝ

โˆž

โˆ’โˆžexp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽโˆ’12๐œˆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๏ฟฝ

๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ +

๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ2

2๐‘ก

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚ (9)

Let

๏ฟฝ๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ +

๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ2

2๐‘ก= ๐‘“ ๏ฟฝ๐œ‚, ๐‘ฅ, ๐‘ก๏ฟฝ

287

Page 292: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Hence (9) becomes

๐œ™ (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

โˆ’โˆž

1

โˆš4๐œ‹๐œ๐‘ก๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ ๐‘‘๐œ‚ (10)

5.2.1.6 Part(f)

From (10)

๐œ•๐œ™๐œ•๐‘ฅ

= ๏ฟฝโˆž

โˆ’โˆž

1

โˆš4๐œ‹๐œ๐‘ก๐œ•๐œ•๐‘ฅ

โŽ›โŽœโŽœโŽœโŽ๐‘’

โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ2๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

= ๏ฟฝโˆž

โˆ’โˆž

1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽ๐œ•๐œ•๐‘ฅ๐‘“ ๏ฟฝ๐œ‚, ๐‘ฅ, ๐‘ก๏ฟฝ ๐‘’

โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ2๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

= ๏ฟฝโˆž

โˆ’โˆž

1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐œ•๐œ•๐‘ฅ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๏ฟฝ

๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ +

๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ2

2๐‘ก

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ ๐‘’

โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ2๐œˆ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

Using Leibniz integral rule the above simplifies to

๐œ•๐œ™๐œ•๐‘ฅ

= ๏ฟฝโˆž

โˆ’โˆž

1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽœโŽ๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ๐‘ก

๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚ (11)

But

๐‘ข = โˆ’2๐œˆ๐œ™๐‘ฅ๐œ™

Hence, using (10) and (11) in the above gives

๐‘ข = โˆ’2๐œˆโˆซโˆž

โˆ’โˆž1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽ๏ฟฝ๐‘ฅโˆ’๐œ‚๏ฟฝ

๐‘ก ๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ‚

โˆซโˆž

โˆ’โˆž1

โˆš4๐œ‹๐œ๐‘ก๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ ๐‘‘๐œ‚

Hence the solution is

๐‘ข (๐‘ฅ, ๐‘ก) = โˆ’2๐œˆโˆซโˆž

โˆ’โˆž

๏ฟฝ๐‘ฅโˆ’๐œ‚๏ฟฝ

๐‘ก ๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ ๐‘‘๐œ‚

โˆซโˆž

โˆ’โˆž๐‘’โˆ’๐‘“๏ฟฝ๐œ‚,๐‘ฅ,๐‘ก๏ฟฝ

2๐œˆ ๐‘‘๐œ‚

Where

๐‘“ ๏ฟฝ๐œ‚, ๐‘ฅ, ๐‘ก๏ฟฝ = ๏ฟฝ๐œ‚

๐‘ฅ0๐น (๐›ผ) ๐‘‘๐›ผ +

๏ฟฝ๐‘ฅ โˆ’ ๐œ‚๏ฟฝ2

2๐‘ก

288

Page 293: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.2 problem 4

(e) Write your expression for ฯ†(x, t) in terms of

f(ฮท, x, t) =

โˆซ ฮท

xo

F (ฮฑ)dฮฑ+(xโˆ’ ฮท)2

2t.

(f) Find ฯ†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2+Q(x, t), 0 โ‰ค x โ‰ค L, t โ‰ฅ 0

u(x, 0) = f(x),โˆ‚u

โˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

โˆ‚u

โˆ‚t=iฮป

4ฯ€

โˆ‚2u

โˆ‚x2(1)

with initial source u(x, 0) = f(x) = ฮด(xโˆ’ a) + ฮด(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period ฮปt/(2a).

3

5.2.2.1 Part(a)

๐œ•๐‘ข๐œ•๐‘ก

= ๐œ๐œ•2๐‘ข๐œ•๐‘ฅ2

+ ๐‘„ (๐‘ฅ, ๐‘ก) (1)

0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ๐‘ก โ‰ฅ 0

Initial conditions are

๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ)

Boundary conditions are

๐œ•๐‘ข (0, ๐‘ก)๐œ•๐‘ฅ

= 0

๐‘ข (๐ฟ, ๐‘ก) = ๐ด

Multiplying both sides of (1) by ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) and integrating over the domain gives (wherein the following ๐บ is used instead of ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) for simplicity).

๏ฟฝ๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ข๐‘ก ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐‘ฅ๐‘ฅ๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘„๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ (1)

For the integral on the LHS, we apply integration by parts once to move the time derivativefrom ๐‘ข to ๐บ

๏ฟฝ๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ข๐‘ก ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ก๐‘ข ๐‘‘๐‘ก๐‘‘๐‘ฅ (1A)

289

Page 294: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

And the first integral in the RHS of (1) gives, after doing integration by parts two times onit

๏ฟฝ๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐‘˜๐‘ข๐‘ฅ๐‘ฅ๐บ ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก โˆ’๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐‘ฅ๐บ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= ๏ฟฝ๐ฟ

๐‘ก=0[๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก โˆ’ ๏ฟฝ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก โˆ’๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ๏ฟฝ

= ๏ฟฝโˆž

๐‘ก=0๏ฟฝ[๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 โˆ’ [๐‘ข๐บ๐‘ฅ]

๐ฟ๐‘ฅ=0๏ฟฝ ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= ๏ฟฝโˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ โˆ’ ๐‘ข๐บ๐‘ฅ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ

= โˆ’๏ฟฝโˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ (1B)

Substituting (1A) and (1B) back into (1) results in

๏ฟฝ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅโˆ’๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘ก๐‘ข ๐‘‘๐‘ก๐‘‘๐‘ฅ = ๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐‘ฅ๐บ โˆ’ ๐‘ข๐บ๐‘ฅ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก+๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ+๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

Or

๏ฟฝ๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0โˆ’๐บ๐‘ก๐‘ข โˆ’ ๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ ๐‘‘๐‘ก๐‘‘๐‘ฅ = โˆ’๏ฟฝ

๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

โˆž

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

โˆž

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ

(2)

We now want to choose ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) such that

โˆ’๐บ๐‘ก๐‘ข โˆ’ ๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0)โˆ’๐บ๐‘ก๐‘ข = ๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ + ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0) (3)

This way, the LHS of (2) becomes just ๐‘ข (๐‘ฅ0, ๐‘ก0). Hence (2) now (after the above choice of๐บ) reduces to

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (4)

We now need to find the Green function which satisfies (3). But (3) is equivalent to solutionof problem

โˆ’๐บ๐‘ก๐‘ข = ๐œ๐‘ข๐บ๐‘ฅ๐‘ฅ

๐บ (๐‘ฅ, 0) = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0) ๐›ฟ (๐‘ก โˆ’ ๐‘ก0)โˆ’โˆž < ๐‘ฅ < โˆž

๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0 ๐‘ก > ๐‘ก0๐บ (ยฑโˆž, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = 0๐บ (๐‘ฅ, ๐‘ก0; ๐‘ฅ0, ๐‘ก0) = ๐›ฟ (๐‘ฅ โˆ’ ๐‘ฅ0)

The above problem has a known fundamental solution which we found before, but for theforward heat PDE instead of the reverse heat PDE as it is now. The fundamental solution

290

Page 295: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

to the forward heat PDE is

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก0 โ‰ค ๐‘ก

Therefore, for the reverse heat PDE the above becomes

๐บ (๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  0 โ‰ค ๐‘ก โ‰ค ๐‘ก0 (5)

We now go back to (4) and try to evaluate all terms in the RHS. Starting with the first termโˆซ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ. Since ๐บ (๐‘ฅ,โˆž; ๐‘ฅ0, ๐‘ก0) = 0 then the upper limit is zero. But at lower limit ๐‘ก = 0

we are given that ๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ), hence this term becomes

๏ฟฝ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ = ๏ฟฝ

๐ฟ

๐‘ฅ=0โˆ’๐‘ข (๐‘ฅ, 0) ๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ

= ๏ฟฝ๐ฟ

๐‘ฅ=0โˆ’๐‘“ (๐‘ฅ)๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ

Now looking at the second term in RHS of (4), we expand it and find

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]๐ฟ๐‘ฅ=0 = (๐‘ข (๐ฟ, ๐‘ก) ๐บ๐‘ฅ (๐ฟ, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (๐ฟ, ๐‘ก) ๐บ (๐ฟ, ๐‘ก)) โˆ’ (๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (0, ๐‘ก) ๐บ (0, ๐‘ก))

We are told that ๐‘ข๐‘ฅ (0, ๐‘ก) = 0 and ๐‘ข (๐ฟ, ๐‘ก) = ๐ด, then the above becomes

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]๐ฟ๐‘ฅ=0 = ๐ด๐บ๐‘ฅ (๐ฟ, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (๐ฟ, ๐‘ก) ๐บ (๐ฟ, ๐‘ก) โˆ’ ๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก) (5A)

There are still two terms above we do not know. We do not know ๐‘ข๐‘ฅ (๐ฟ, ๐‘ก) and we also donot know ๐‘ข (0, ๐‘ก). If we can configure, using method of images, such that ๐บ (๐ฟ, ๐‘ก) = 0 and๐บ๐‘ฅ (0, ๐‘ก) = 0 then we can get rid of these two terms and end up only with [๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

โˆž๐‘ฅ=0 =

๐ด๐บ๐‘ฅ (๐ฟ, ๐‘ก) which we can evaluate once we know what ๐บ (๐‘ฅ, ๐‘ก) is.

This means we need to put images on both sides of the boundaries such that to force๐บ (๐ฟ, ๐‘ก) = 0 and also ๐บ๐‘ฅ (0, ๐‘ก) = 0.

We see that this result agrees what we always did, which is, If the prescribed boundary

conditions on ๐‘ข are such that ๐‘ข = ๐ด, then we want ๐บ = 0 there. And if it is ๐œ•๐‘ข๐œ•๐‘ฅ = ๐ด, then we

want ๐œ•๐บ๐œ•๐‘ฅ = 0 there. And this is what we conclude here also from the above. In other words,

the boundary conditions on Green functions are always the homogeneous version of theboundary conditions given on ๐‘ข.

โˆ‚uโˆ‚x = 0โˆ‚Gโˆ‚x = 0

x = 0 x = L

u(L, t) = A

G(L, t) = 0

291

Page 296: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

To force ๐บ๐‘ฅ (0, ๐‘ก) = 0, we need to put same sign images on both sides of ๐‘ฅ = 0. So we endup with this

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0โˆ’x0

The above makes ๐บ๐‘ฅ (0, ๐‘ก) = 0 at ๐‘ฅ = 0. Now we want to make ๐บ = 0 at ๐‘ฅ = ๐ฟ. Then we updatethe above and put a negative image at ๐‘ฅ = 2๐ฟ โˆ’ ๐‘ฅ0 to the right of ๐‘ฅ = ๐ฟ as follows

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0โˆ’x0

2Lโˆ’ x0

But now we see that the image at ๐‘ฅ = โˆ’๐‘ฅ0 has a๏ฟฝected condition of ๐บ = 0 at ๐‘ฅ = ๐ฟ and willmake it not zero as we wanted. So to counter e๏ฟฝect this, we have to add another negativeimage at distance ๐‘ฅ = 2๐ฟ + ๐‘ฅ0 to cancel the e๏ฟฝect of the image at ๐‘ฅ = โˆ’๐‘ฅ0. We end up withthis setup

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0โˆ’x0

2Lโˆ’ x0 2L+ x0

But now we see that the two negative images we added to the right will no longer make๐บ๐‘ฅ (0, ๐‘ก) = 0, so we need to counter e๏ฟฝect this by adding two negative images to the left sideto keep ๐บ๐‘ฅ (0, ๐‘ก) = 0. So we end up with

292

Page 297: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0โˆ’x0

2Lโˆ’ x0 2L+ x0โˆ’2Lโˆ’ x0 โˆ’2L+ x0

But now we see that by putting these two images on the left, we no longer have ๐บ = 0 at๐‘ฅ = ๐ฟ. So to counter e๏ฟฝect this, we have to put copies of these 2 images on the right againbut with positive sign, as follows

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0โˆ’x0

2Lโˆ’ x0 2L+ x0โˆ’2Lโˆ’ x0 โˆ’2L+ x0

4Lโˆ’ x0 4L+ x0

But now these two images on the right, no longer keep ๐บ๐‘ฅ (0, ๐‘ก) = 0, so we have to put samesign images to the left, as follows

x0x = 0 x = L

โˆ‚Gโˆ‚x = 0

G = 0

โˆ’x0

2Lโˆ’ x0

2L+ x0โˆ’2Lโˆ’ x0

โˆ’2L+ x0

4Lโˆ’ x0

4L+ x0

โˆ’4L+ x0

โˆ’4Lโˆ’ x0

And so on. This continues for infinite number of images. Therefore we see from the above,for the positive images, we have the following sum

๏ฟฝ4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ๐‘ฅ0)

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ + ๐‘ฅ0)

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+ expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+ expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  +โ‹ฏ

Or

๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) =1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ  (6)

293

Page 298: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

The above takes care of the positive images. For negative images, we have this sum of images

๏ฟฝ4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (2๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’2๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+ expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (2๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’2๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+ expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (6๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’6๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+ expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (6๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’6๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ โ‹ฏ

Or

๏ฟฝ4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) = โˆ’โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

(7)

Hence the Green function to use is (6)+(7) which gives

๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) =1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

(7A)

Using the above Green function, we go back to 5A and finally are able to simplify it

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]๐ฟ๐‘ฅ=0 = ๐ด๐บ๐‘ฅ (๐ฟ, ๐‘ก) โˆ’ ๐‘ข๐‘ฅ (๐ฟ, ๐‘ก) ๐บ (๐ฟ, ๐‘ก) โˆ’ ๐‘ข (0, ๐‘ก) ๐บ๐‘ฅ (0, ๐‘ก)

The above becomes now (with the images in place as above)

[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]๐ฟ๐‘ฅ=0 = ๐ด

๐œ•๐บ (๐ฟ, ๐‘ก; ๐‘ฅ0, ๐‘ก0)๐œ•๐‘ฅ

(8)

Since now we know what ๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0), from (7), we can evaluate its derivative w.r.t. ๐‘ฅ. (brokenup, so it fits on one page)

๐œ•๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0)๐œ•๐‘ฅ

=1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐‘ฅ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐‘ฅ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

294

Page 299: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

At ๐‘ฅ = ๐ฟ, the above derivative becomes

๐œ•๐บ (๐ฟ, ๐‘ก; ๐‘ฅ0, ๐‘ก0)๐œ•๐‘ฅ

=1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

+1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก0 โˆ’ ๐‘ก)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))2๐œ (๐‘ก0 โˆ’ ๐‘ก)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ (๐‘ก0 โˆ’ ๐‘ก)

โŽžโŽŸโŽŸโŽŸโŽ  (9)

From (4), we now collect all terms into the solution

๐‘ข (๐‘ฅ0, ๐‘ก0) = โˆ’๏ฟฝ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ โˆ’๏ฟฝ

๐‘ก0

๐‘ก=0[๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]

๐ฟ๐‘ฅ=0 ๐‘‘๐‘ก +๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ๐‘„ ๐‘‘๐‘ก๐‘‘๐‘ฅ (4)

We found โˆซ๐ฟ

๐‘ฅ=0[๐‘ข๐บ]โˆž๐‘ก=0 ๐‘‘๐‘ฅ = โˆซ๐ฟ

๐‘ฅ=0โˆ’๐‘“ (๐‘ฅ)๐บ (๐‘ฅ, 0) ๐‘‘๐‘ฅ and now we know what ๐บ is. Hence we can

find ๐บ (๐‘ฅ, 0; ๐‘ฅ0, ๐‘ก0). It is, from (7A)

๐บ (๐‘ฅ, 0; ๐‘ฅ0, ๐‘ก0) =1

โˆš4๐œ‹๐œ๐‘ก0

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ0))

2

4๐œ๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ๐‘ก0

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ0))

2

4๐œ๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ0))

2

4๐œ๐‘ก0

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

(10)

And we now know what [๐‘ข๐บ๐‘ฅ โˆ’ ๐‘ข๐‘ฅ๐บ]๐ฟ๐‘ฅ=0 is. It is ๐ด

๐œ•๐บ(๐ฟ,๐‘ก;๐‘ฅ0,๐‘ก0)๐œ•๐‘ฅ . Hence (4) becomes

๐‘ข (๐‘ฅ0, ๐‘ก0) = ๏ฟฝ๐ฟ

๐‘ฅ=0๐‘“ (๐‘ฅ)๐บ (๐‘ฅ, 0; ๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ฅโˆ’๏ฟฝ

๐‘ก0

๐‘ก=0๐ด๐œ•๐บ (๐ฟ, ๐‘ก; ๐‘ฅ0, ๐‘ก0)

๐œ•๐‘ฅ๐‘‘๐‘ก+๏ฟฝ

๐ฟ

๐‘ฅ=0๏ฟฝ

๐‘ก0

๐‘ก=0๐บ (๐‘ฅ, ๐‘ก; ๐‘ฅ0, ๐‘ก0) ๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ก๐‘‘๐‘ฅ

Changing the roles of ๐‘ฅ0, ๐‘ก0

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝ๐ฟ

๐‘ฅ0=0๐‘“ (๐‘ฅ0) ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) ๐‘‘๐‘ฅ0 โˆ’๏ฟฝ

๐‘ก

๐‘ก=0๐ด๐œ•๐บ (๐‘ฅ0, ๐‘ก0; ๐ฟ, ๐‘ก)

๐œ•๐‘ฅ0๐‘‘๐‘ก0 +๏ฟฝ

๐ฟ

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

(11)

This completes the solution.

Summary

The solution is

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝ๐ฟ

๐‘ฅ0=0๐‘“ (๐‘ฅ0) ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) ๐‘‘๐‘ฅ0โˆ’๏ฟฝ

๐‘ก

๐‘ก=0๐ด๐œ•๐บ (๐‘ฅ0, ๐‘ก0; ๐ฟ, ๐‘ก)

๐œ•๐‘ฅ0๐‘‘๐‘ก0+๏ฟฝ

๐ฟ

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

Where ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) is given in (10) (after changing roles of parameters):

295

Page 300: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) =1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ))

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ))

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ๐‘ก

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ))

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ))

2

4๐œ๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

(10A)

and ๐œ•๐บ(๐‘ฅ0,๐‘ก0;๐ฟ,๐‘ก)๐œ•๐‘ฅ0

is given in (9) (after also changing roles of parameters):

๐œ•๐บ (๐‘ฅ0, ๐‘ก0; ๐ฟ, ๐‘ก)๐œ•๐‘ฅ0

=1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ))2๐œ (๐‘ก โˆ’ ๐‘ก0)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ))2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

+1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ))2๐œ (๐‘ก โˆ’ ๐‘ก0)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ))2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ))2๐œ (๐‘ก โˆ’ ๐‘ก0)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ))2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โˆž๏ฟฝ๐‘›=โˆ’โˆž

โˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ))2๐œ (๐‘ก โˆ’ ๐‘ก0)

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐ฟ โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ))2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  (9A)

and ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) is given in (7A), but with roles changed as well to become

๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) =1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ (4๐‘›๐ฟ โˆ’ ๐‘ฅ))

2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ (โˆ’4๐‘›๐ฟ + ๐‘ฅ))

2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

(7AA)

โˆ’1

โˆš4๐œ‹๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽ›โŽœโŽœโŽœโŽ

โˆž๏ฟฝ๐‘›=โˆ’โˆž

expโŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ + ๐‘ฅ))

2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽโˆ’ (๐‘ฅ0 โˆ’ ((4๐‘› โˆ’ 2) ๐ฟ โˆ’ ๐‘ฅ))

2

4๐œ (๐‘ก โˆ’ ๐‘ก0)

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

5.2.2.2 Part(b)

When ๐ด = 0, the solution in part (a) becomes

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝ๐ฟ

๐‘ฅ0=0๐‘“ (๐‘ฅ0) ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) ๐‘‘๐‘ฅ0 +๏ฟฝ

๐ฟ

๐‘ฅ0=0๏ฟฝ

๐‘ก

๐‘ก0=0๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) ๐‘„ ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

Where ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) is given in (10A) in part (a), and ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) is given in (7AA) in part(a). Now we find the eigenfunction solution for this problem order to compare it with theabove green function images solution. Since ๐ด = 0 then the PDE now becomes

๐œ•๐‘ข๐œ•๐‘ก

= ๐œ๐œ•2๐‘ข๐œ•๐‘ฅ2

+ ๐‘„ (๐‘ฅ, ๐‘ก) (1)

0 โ‰ค ๐‘ฅ โ‰ค ๐ฟ๐‘ก โ‰ฅ 0

Initial conditions

๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ)

296

Page 301: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Boundary conditions

๐œ•๐‘ข (0, ๐‘ก)๐œ•๐‘ฅ

= 0

๐‘ข (๐ฟ, ๐‘ก) = 0

Since boundary conditions has now become homogenous (thanks for ๐ด = 0), we can useseparation of variables to find the eigenfunctions, and then use eigenfunction expansion.Let the solution be

๐‘ข๐‘› (๐‘ฅ, ๐‘ก) = ๐‘Ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๐‘Ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) (1A)

Where ๐œ™๐‘› (๐‘ก) are eigenfunctions for the associated homogeneous PDE ๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 which can

be found from separation of variables. To find ๐œ™๐‘› (๐‘ฅ), we start by separation of variables.Let ๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘‹ (๐‘ฅ) ๐‘‡ (๐‘ก) and we plug this solution back to the PDE to obtain

๐‘‹๐‘‡โ€ฒ = ๐œ๐‘‹โ€ฒโ€ฒ๐‘‡1๐‘ฃ๐‘‡โ€ฒ

๐‘‡=๐‘‹โ€ฒโ€ฒ

๐‘‹= โˆ’๐œ†

Hence the spatial ODE is ๐‘‹โ€ฒโ€ฒ

๐‘‹ = โˆ’๐œ† or ๐‘‹โ€ฒโ€ฒ + ๐œ†๐‘‹ = 0 with boundary conditions

๐‘‹โ€ฒ (0) = 0๐‘‹ (๐ฟ) = 0

case ๐œ† = 0 The solution is ๐‘‹ = ๐‘1 + ๐‘2๐‘ฅ. Hence ๐‘‹โ€ฒ = ๐‘2. Therefore ๐‘2 = 0. Hence ๐‘‹ = ๐‘1 = 0.Trivial solution. So ๐œ† = 0 is not possible.

case ๐œ† > 0 The solution is ๐‘‹ = ๐‘1 cos ๏ฟฝโˆš๐œ†๐‘ฅ๏ฟฝ+๐‘2 sin ๏ฟฝโˆš๐œ†๐‘ฅ๏ฟฝ. and ๐‘‹โ€ฒ = โˆ’โˆš๐œ†๐‘1 sin๐œ†๐‘ฅ+๐‘2โˆš๐œ† cos๐œ†๐‘ฅ.From first B.C. at ๐‘ฅ = 0 we find 0 = ๐‘2โˆš๐œ†, hence ๐‘2 = 0 and the solution becomes ๐‘‹ =๐‘1 cos ๏ฟฝโˆš๐œ†๐‘ฅ๏ฟฝ. At ๐‘ฅ = ๐ฟ, we have 0 = ๐‘1 cos ๏ฟฝโˆš๐œ†๐ฟ๏ฟฝ which leads to โˆš๐œ†๐ฟ = ๐‘›

๐œ‹2 for ๐‘› = 1, 3, 5,โ‹ฏ or

๏ฟฝ๐œ†๐‘› = ๏ฟฝ2๐‘› โˆ’ 12 ๏ฟฝ

๐œ‹๐ฟ

๐‘› = 1, 2, 3,โ‹ฏ

๐œ†๐‘› = ๏ฟฝ2๐‘› โˆ’ 12

๐œ‹๐ฟ ๏ฟฝ

2

๐‘› = 1, 1, 2, 3,โ‹ฏ

Hence the ๐‘‹๐‘› (๐‘ฅ) solution is

๐‘‹๐‘› (๐‘ฅ) = ๐‘๐‘› cos ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘› = 1, 2, 3,โ‹ฏ

The time ODE is now solved using the above eigenvalues. (we really do not need to do thispart, since ๐ด๐‘› (๐‘ก) will be solved for later, and ๐ด๐‘› (๐‘ก) will contain all the time dependent parts,

297

Page 302: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

including those that come from ๐‘„ (๐‘ฅ, ๐‘ก), but for completion, this is done)1๐‘ฃ๐‘‡โ€ฒ

๐‘‡= โˆ’๐œ†๐‘›

๐‘‡โ€ฒ + ๐‘ฃ๐œ†๐‘›๐‘‡ = 0๐‘‘๐‘‡๐‘‡= โˆ’๐‘ฃ๐œ†๐‘›๐‘‘๐‘ก

ln |๐‘‡| = โˆ’๐‘ฃ๐œ†๐‘›๐‘ก + ๐ถ๐‘‡ = ๐ถ๐‘›๐‘’๐‘ฃ๐œ†๐‘›๐‘ก

Hence the solution to the homogenous PDE is

๐‘ข๐‘› (๐‘ฅ, ๐‘ก) = ๐‘‹๐‘›๐‘‡๐‘›= ๐‘๐‘› cos ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘’๐‘ฃ๐œ†๐‘›๐‘ก

Where constants of integration are merged into one. Therefore

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๐‘‹๐‘›๐‘‡๐‘›

=โˆž๏ฟฝ๐‘›=1

๐‘๐‘› cos ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘’๐‘ฃ๐œ†๐‘›๐‘ก (2)

From the above we see that

๐œ™๐‘› (๐‘ฅ) = cos ๏ฟฝโˆš๐œ†๐‘›๐‘ฅ๏ฟฝ

Using this, we now write the solution to ๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 + ๐‘„ (๐‘ฅ, ๐‘ก) using eigenfunction expansion

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๐ด๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) (3)

Where now ๐ด๐‘› (๐‘ก) will have all the time dependent terms from ๐‘„ (๐‘ฅ, ๐‘ก) as well from the time

solution from the homogenous PDE ๐‘’๐‘ฃ๏ฟฝ 2๐‘›โˆ’12

๐œ‹๐ฟ ๏ฟฝ

2๐‘กpart. We will solve for ๐ด๐‘› (๐‘ก) now.

In this below, we will expand ๐‘„ (๐‘ฅ, ๐‘ก) using these eigenfunctions (we can do this, since theeigenfunctions are basis for the whole solution space which the forcing function is in as well).We plug-in (3) back into the PDE, and since boundary conditions are now homogenous,

then term by term di๏ฟฝerentiation is justified. The PDE ๐œ•๐‘ข๐œ•๐‘ก = ๐œ

๐œ•2๐‘ข๐œ•๐‘ฅ2 + ๐‘„ (๐‘ฅ, ๐‘ก) now becomes

๐œ•๐œ•๐‘ก

โˆž๏ฟฝ๐‘›=1

๐ด๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) = ๐œ๐œ•2

๐œ•๐‘ฅ2โˆž๏ฟฝ๐‘›=1

๐ด๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) +โˆž๏ฟฝ๐‘›=1

๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) (4)

Where โˆ‘โˆž๐‘›=1 ๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) is the eigenfunction expansion of ๐‘„ (๐‘ฅ, ๐‘ก). To find ๐‘ž๐‘› (๐‘ก) we apply

298

Page 303: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

orthogonality as follows

๐‘„ (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)

๏ฟฝ๐ฟ

0๐œ™๐‘š (๐‘ฅ)๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ = ๏ฟฝ

๐ฟ

0๏ฟฝโˆž๏ฟฝ๐‘›=1

๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)๏ฟฝ ๐œ™๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ

๏ฟฝ๐ฟ

0๐œ™๐‘š (๐‘ฅ)๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ =

โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐ฟ

0๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) ๐œ™๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ

= ๏ฟฝ๐ฟ

0๐‘ž๐‘š (๐‘ก) ๐œ™2

๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ

= ๐‘ž๐‘š (๐‘ก)๏ฟฝ๐ฟ

0cos2 ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘‘๐‘ฅ

But

๏ฟฝ๐ฟ

0cos2 ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘‘๐‘ฅ =

๐ฟ2

Hence

๐‘ž๐‘› (๐‘ก) =2๐ฟ ๏ฟฝ

๐ฟ

0๐œ™๐‘› (๐‘ฅ)๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ (5)

Now that we found ๐‘ž๐‘› (๐‘ก), we go back to (4) and simplifies it moreโˆž๏ฟฝ๐‘›=1

๐ดโ€ฒ๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) = ๐œ

โˆž๏ฟฝ๐‘›=1

๐ด๐‘› (๐‘ก) ๐œ™โ€ฒโ€ฒ๐‘› (๐‘ฅ) +

โˆž๏ฟฝ๐‘›=1

๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)

๐ดโ€ฒ๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ) = ๐œ๐ด๐‘› (๐‘ก) ๐œ™โ€ฒโ€ฒ

๐‘› (๐‘ฅ) + ๐‘ž๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)

But since ๐œ™๐‘› (๐‘ฅ) = cos ๏ฟฝโˆš๐œ†๐‘›๐‘ฅ๏ฟฝ then

๐œ™โ€ฒ๐‘› (๐‘ฅ) = โˆ’ ๏ฟฝ๏ฟฝ๐œ†๐‘›๏ฟฝ sin ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ

And

๐œ™โ€ฒโ€ฒ๐‘› (๐‘ฅ) = โˆ’๐œ†๐‘› cos ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ

= โˆ’๐œ†๐‘›๐œ™๐‘› (๐‘ฅ)

Hence the above ODE becomes

๐ดโ€ฒ๐‘›๐œ™๐‘› = โˆ’๐œ๐ด๐‘›๐œ†๐‘›๐œ™๐‘› + ๐‘ž๐‘›๐œ™๐‘›

Canceling the eigenfunction ๐œ™๐‘› (๐‘ฅ) (since not zero) gives

๐ดโ€ฒ๐‘› (๐‘ก) + ๐œ๐ด๐‘› (๐‘ก) ๐œ†๐‘› = ๐‘ž๐‘› (๐‘ก) (6)

We now solve this for ๐ด๐‘› (๐‘ก). Integrating factor is

๐œ‡ = exp ๏ฟฝ๏ฟฝ๐œ๐œ†๐‘›๐‘‘๐‘ก๏ฟฝ

= ๐‘’๐œ†๐‘›๐œ๐‘ก

299

Page 304: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Hence (6) becomes๐‘‘๐‘‘๐‘ก๏ฟฝ๐œ‡๐ด๐‘› (๐‘ก)๏ฟฝ = ๐œ‡๐‘ž๐‘› (๐‘ก)

๐‘’๐œ†๐‘›๐œ๐‘ก๐ด๐‘› (๐‘ก) = ๏ฟฝ๐‘ก

0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘  + ๐ถ

๐ด๐‘› (๐‘ก) = ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐‘ก

0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘  + ๐ถ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก (7)

Now that we found ๐ด๐‘› (๐‘ก), then the solution (3) becomes

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘’

โˆ’๏ฟฝ 2๐‘›โˆ’12๐œ‹๐ฟ ๏ฟฝ

2๐œ๐‘ก๏ฟฝ

๐‘ก

0๐‘’๏ฟฝ 2๐‘›โˆ’12

๐œ‹๐ฟ ๏ฟฝ

2๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘  + ๐ถ๐‘’

โˆ’๏ฟฝ 2๐‘›โˆ’12๐œ‹๐ฟ ๏ฟฝ

2๐œ๐‘กโŽžโŽŸโŽŸโŽŸโŽŸโŽ  ๐œ™๐‘› (๐‘ฅ) (8)

At ๐‘ก = 0 , we are given that ๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ), hence the above becomes

๐‘“ (๐‘ฅ) =โˆž๏ฟฝ๐‘›=1

๐ถ๐œ™๐‘› (๐‘ฅ)

To find ๐ถ, we apply orthogonality again, which gives

๏ฟฝ๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ =

โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐ฟ

0๐ถ๐œ™๐‘› (๐‘ฅ) ๐œ™๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ

= ๐ถ๏ฟฝ๐ฟ

0๐œ™2๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ

๏ฟฝ๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘š (๐‘ฅ) ๐‘‘๐‘ฅ =

๐ฟ2๐ถ

๐ถ =2๐ฟ ๏ฟฝ

๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ

Now that we found ๐ถ, then the solution in (8) is complete. It is

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๐ด๐‘› (๐‘ก) ๐œ™๐‘› (๐‘ฅ)

=โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐‘ก

0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘  +

2๐ฟ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ

๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ๏ฟฝ๐œ™๐‘› (๐‘ฅ)

Or

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐œ™๐‘› (๐‘ฅ) ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐‘ก

0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘ ๏ฟฝ

+2๐ฟ

โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐œ™๐‘› (๐‘ฅ) ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ๏ฟฝ

Summary

The eigenfunction solution is

๐‘ข (๐‘ฅ, ๐‘ก) =โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐œ™๐‘› (๐‘ฅ) ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐‘ก

0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘› (๐‘ ) ๐‘‘๐‘ ๏ฟฝ

+2๐ฟ

โˆž๏ฟฝ๐‘›=1

๏ฟฝ๐œ™๐‘› (๐‘ฅ) ๐‘’โˆ’๐œ†๐‘›๐œ๐‘ก๏ฟฝ๐ฟ

0๐‘“ (๐‘ฅ) ๐œ™๐‘› (๐‘ฅ) ๐‘‘๐‘ฅ๏ฟฝ

300

Page 305: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Where

๐œ™๐‘› (๐‘ฅ) = cos ๏ฟฝ๏ฟฝ๐œ†๐‘›๐‘ฅ๏ฟฝ ๐‘› = 1, 2, 3,โ‹ฏ

๐œ†๐‘› = ๏ฟฝ2๐‘› โˆ’ 12

๐œ‹๐ฟ ๏ฟฝ

2

๐‘› = 1, 1, 2, 3,โ‹ฏ

And

๐‘ž๐‘› (๐‘ก) =2๐ฟ ๏ฟฝ

๐ฟ

0๐œ™๐‘› (๐‘ฅ)๐‘„ (๐‘ฅ, ๐‘ก) ๐‘‘๐‘ฅ

To compare the eigenfunction expansion solution and the Green function solution, we seethe following mapping of the two solutions

2๐ฟโˆ‘โˆž๐‘›=1๏ฟฝ๐œ™๐‘›(๐‘ฅ)๐‘’

โˆ’๐œ†๐‘›๐œ๐‘กโˆซ๐ฟ0

๐‘“(๐‘ฅ)๐œ™๐‘›(๐‘ฅ)๐‘‘๐‘ฅ๏ฟฝ

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

๐ฟ

0๐‘“ (๐‘ฅ0) ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, 0) ๐‘‘๐‘ฅ0 +

โˆ‘โˆž๐‘›=1๏ฟฝ๐œ™๐‘›(๐‘ฅ)๐‘’

โˆ’๐œ†๐‘›๐œ๐‘กโˆซ๐‘ก0๐‘’๐œ†๐‘›๐œ๐‘ ๐‘ž๐‘›(๐‘ )๐‘‘๐‘ ๏ฟฝ

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

๐ฟ

0๏ฟฝ

๐‘ก

0๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) ๐‘„ (๐‘ฅ0, ๐‘ก0) ๐‘‘๐‘ก0๐‘‘๐‘ฅ0

Where the top expression is the eigenfunction expansion and the bottom expression is theGreen function solution using method of images. Where ๐บ (๐‘ฅ0, ๐‘ก0; ๐‘ฅ, ๐‘ก) in above contains theinfinite sums of the images. So the Green function solution contains integrals and insidethese integrals are the infinite sums. While the eigenfunction expansions contains two infinitesums, but inside the sums we see the integrals. So summing over the images seems to beequivalent to the operation of summing over eigenfunctions. These two solutions in thelimit should of course give the same result (unless I made a mistake somewhere). In thisexample, I found method of eigenfunction expansion easier, since getting the images incorrect locations and sign was tricky to get right.

301

Page 306: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.3 problem 5

(e) Write your expression for ฯ†(x, t) in terms of

f(ฮท, x, t) =

โˆซ ฮท

xo

F (ฮฑ)dฮฑ+(xโˆ’ ฮท)2

2t.

(f) Find ฯ†x(x, t) and then use equation (3b) to find u(x, t).

4. (a) Use the Method of Images to solve

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2+Q(x, t), 0 โ‰ค x โ‰ค L, t โ‰ฅ 0

u(x, 0) = f(x),โˆ‚u

โˆ‚x(0, t) = 0, u(L, t) = A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5. This problem is a simple model for diffraction of light passing through infinitesimallysmall slits separated by a distance 2a.

Solve the diffraction equation

โˆ‚u

โˆ‚t=iฮป

4ฯ€

โˆ‚2u

โˆ‚x2(1)

with initial source u(x, 0) = f(x) = ฮด(xโˆ’ a) + ฮด(x+ a), a > 0.

Show that the solution u(x, t) oscillates wildly, but that the intensity |u(x, t)|2 is well-behaved. The intensity |u(x, t)|2 shows that the diffraction pattern at a distance t consistsof a series of alternating bright and dark fringes with period ฮปt/(2a).

3

๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ก

=๐‘–๐œ†4๐œ‹

๐œ•2๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ2

(1)

๐‘ข (๐‘ฅ, 0) = ๐‘“ (๐‘ฅ) = ๐›ฟ (๐‘ฅ โˆ’ ๐‘Ž) + ๐›ฟ (๐‘ฅ + ๐‘Ž)

I will Use Fourier transform to solve this, since this is for โˆ’โˆž < ๐‘ฅ < โˆž and the solution ๐‘ข (๐‘ฅ, ๐‘ก)is assumed bounded at ยฑโˆž (or goes to zero there), hence ๐‘ข (๐‘ฅ, ๐‘ก) is square integrable andtherefore we can assume it has a Fourier transform.

Let ๐‘ˆ (๐œ‰, ๐‘ก) be the spatial part only Fourier transform of ๐‘ข (๐‘ฅ, ๐‘ก). Using the Fourier transformpairs defined as

๐‘ˆ (๐œ‰, ๐‘ก) = โ„ฑ (๐‘ข (๐‘ฅ, ๐‘ก)) = ๏ฟฝโˆž

โˆ’โˆž๐‘ข (๐‘ฅ, ๐‘ก) ๐‘’โˆ’๐‘–2๐œ‹๐‘ฅ๐œ‰๐‘‘๐‘ฅ

๐‘ข (๐‘ฅ, ๐‘ก) = โ„ฑ โˆ’1 (๐‘ˆ (๐œ‰, ๐‘ก)) = ๏ฟฝโˆž

โˆ’โˆž๐‘ˆ (๐œ‰, ๐‘ก) ๐‘’๐‘–2๐œ‹๐‘ฅ๐œ‰๐‘‘๐œ‰

Therefore, by Fourier transform properties of derivatives

โ„ฑ๏ฟฝ๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ ๏ฟฝ = (2๐œ‹๐‘–๐œ‰)๐‘ˆ (๐œ‰, ๐‘ก)

โ„ฑ ๏ฟฝ๐œ•2๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ2 ๏ฟฝ = (2๐œ‹๐‘–๐œ‰)2๐‘ˆ (๐œ‰, ๐‘ก) (2)

And

โ„ฑ๏ฟฝ๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ก ๏ฟฝ =

๐œ•๐‘ˆ (๐œ‰, ๐‘ก)๐œ•๐‘ก

(3)

Where in (3), we just need to take time derivative of ๐‘ˆ (๐œ‰, ๐‘ก) since the transform is appliedonly to the space part. Now we take the Fourier transform of the given PDE and using (2,3)

302

Page 307: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

relations we obtain the PDE but now in Fourier space.

๐œ•๐‘ˆ (๐œ‰, ๐‘ก)๐œ•๐‘ก

= ๏ฟฝ๐‘–๐œ†4๐œ‹๏ฟฝ

(2๐œ‹๐‘–๐œ‰)2๐‘ˆ (๐œ‰, ๐‘ก)

= โˆ’ ๏ฟฝ๐‘–๐œ†4๐œ‹๏ฟฝ

4๐œ‹2๐œ‰2๐‘ˆ (๐œ‰, ๐‘ก)

= ๏ฟฝโˆ’๐‘–๐œ†๐œ‹๐œ‰2๏ฟฝ๐‘ˆ (๐œ‰, ๐‘ก) (4)

Equation (4) can now be easily solved for ๐‘ˆ (๐œ‰, ๐‘ก) since it is separable.๐œ•๐‘ˆ (๐œ‰, ๐‘ก)๐‘ˆ (๐œ‰, ๐‘ก)

= ๏ฟฝโˆ’๐‘–๐œ†๐œ‹๐œ‰2๏ฟฝ ๐œ•๐‘ก

Integrating

ln |๐‘ˆ (๐œ‰, ๐‘ก)| = ๏ฟฝโˆ’๐‘–๐œ†๐œ‹๐œ‰2๏ฟฝ ๐‘ก + ๐ถ

๐‘ˆ (๐œ‰, ๐‘ก) = ๐‘ˆ (๐œ‰, 0) ๐‘’๏ฟฝโˆ’๐‘–๐œ†๐œ‹๐œ‰2๏ฟฝ๐‘ก

Where ๐‘ˆ (๐œ‰, 0) is the Fourier transform of ๐‘ข (๐‘ฅ, 0), the initial conditions, which is ๐‘“ (๐‘ฅ) and isgiven in the problem. To go back to spatial domain, we now need to do the inverse Fouriertransform. By applying the convolution theorem, we know that multiplication in Fourierdomain is convolution in spatial domain, therefore

โ„ฑ โˆ’1 (๐‘ˆ (๐œ‰, ๐‘ก)) = โ„ฑ โˆ’1 (๐‘ˆ (๐œ‰, 0)) โŠ› โ„ฑ โˆ’1 ๏ฟฝ๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๏ฟฝ (5)

But

โ„ฑ โˆ’1 (๐‘ˆ (๐œ‰, ๐‘ก)) = ๐‘ข (๐‘ฅ, ๐‘ก)โ„ฑ โˆ’1 (๐‘ˆ (๐œ‰, 0)) = ๐‘“ (๐‘ฅ)

And

โ„ฑ โˆ’1 ๏ฟฝ๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๏ฟฝ = ๏ฟฝโˆž

โˆ’โˆž๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๐‘’2๐‘–๐œ‹๐‘ฅ๐œ‰๐‘‘๐œ‰ (5A)

Hence (5) becomes

๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘“ (๐‘ฅ) โŠ› โ„ฑ โˆ’1 ๏ฟฝ๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๏ฟฝ

Here, I used Mathematica to help me with the above integral (5A) as I could not find it intables so far2. Here is the result

Find inverse Fourier transform, for problem 5, NE 548

In[13]:= InverseFourierTransform[ Exp[-I lam Pi z^2 t], z, x, FourierParameters -> {1, -2 * Pi}]

Out[13]=โ…‡

โ…ˆ ฯ€ x2

lam t

2 ฯ€ โ…ˆ lam t

2Trying to do this integral by hand also, but so far having some di๏ฟฝculty..

303

Page 308: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Therefore, from Mathematica, we see that

โ„ฑ โˆ’1 ๏ฟฝ๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๏ฟฝ =๐‘’๐‘–๐œ‹๐‘ฅ2๐œ†๐‘ก

โˆš2๐œ‹โˆš๐‘–โˆš๐œ†๐‘ก(6)

But3

โˆš๐‘– =1

โˆš2+ ๐‘–

1

โˆš2

= cos ๏ฟฝ๐œ‹4๏ฟฝ + ๐‘– sin ๏ฟฝ๐œ‹

4๏ฟฝ

= ๐‘’๐‘–๐œ‹4

Hence (6) becomes

โ„ฑ โˆ’1 ๏ฟฝ๐‘’โˆ’๐‘–๐œ†๐œ‹๐œ‰2๐‘ก๏ฟฝ =1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๐‘’๐‘–๐œ‹๐‘ฅ2๐œ†๐‘ก (7)

Now we are ready to do the convolution in (5A) since we know everything in the RHS,hence

๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘“ (๐‘ฅ) โŠ›1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๐‘’๐‘–๐œ‹๐‘ฅ2๐œ†๐‘ก

= (๐›ฟ (๐‘ฅ โˆ’ ๐‘Ž) + ๐›ฟ (๐‘ฅ + ๐‘Ž)) โŠ›1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๐‘’๐‘–๐œ‹๐‘ฅ2๐œ†๐‘ก (8)

Applying convolution integral on (8), which says that

๐‘“ (๐‘ฅ) = ๐‘”1 (๐‘ฅ) โŠ› ๐‘”2 (๐‘ฅ)

= ๏ฟฝโˆž

โˆ’โˆž๐‘”1 (๐‘ง) ๐‘”2 (๐‘ฅ โˆ’ ๐‘ง) ๐‘‘๐‘ง

Therefore (8) becomes

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

โˆ’โˆž(๐›ฟ (๐‘ง โˆ’ ๐‘Ž) + ๐›ฟ (๐‘ง + ๐‘Ž))

1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๐‘’๐‘–๐œ‹(๐‘ฅโˆ’๐‘ง)2

๐œ†๐‘ก ๐‘‘๐‘ง

=1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๏ฟฝโˆž

โˆ’โˆž(๐›ฟ (๐‘ง โˆ’ ๐‘Ž) + ๐›ฟ (๐‘ง + ๐‘Ž)) ๐‘’๐‘–

๐œ‹(๐‘ฅโˆ’๐‘ง)2

๐œ†๐‘ก ๐‘‘๐‘ง

=1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

โŽ›โŽœโŽœโŽœโŽ๏ฟฝ

โˆž

โˆ’โˆž๐›ฟ (๐‘ง โˆ’ ๐‘Ž) ๐‘’๐‘–

๐œ‹(๐‘ฅโˆ’๐‘ง)2

๐œ†๐‘ก ๐‘‘๐‘ง +๏ฟฝโˆž

โˆ’โˆž๐›ฟ (๐‘ง + ๐‘Ž) ๐‘’๐‘–

๐œ‹(๐‘ฅโˆ’๐‘ง)2

๐œ†๐‘ก ๐‘‘๐‘งโŽžโŽŸโŽŸโŽŸโŽ 

But an integral with delta function inside it, is just the integrand evaluated where the deltaargument become zero which is at ๐‘ง = ๐‘Ž and ๐‘ง = โˆ’๐‘Ž in the above. (This is called the siftingproperty). Hence the above integrals are now easily found and we obtain the solution

๐‘ข (๐‘ฅ, ๐‘ก) =1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

โŽ›โŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽ๐‘–๐œ‹ (๐‘ฅ โˆ’ ๐‘Ž)2

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽ๐‘–๐œ‹ (๐‘ฅ + ๐‘Ž)2

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽ 

3Taking the positive root only.

304

Page 309: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

The above is the solution we need. But we can simplify it more by using Euler relation.

๐‘ข (๐‘ฅ, ๐‘ก) =1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

โŽ›โŽœโŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘–๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2 โˆ’ 2๐‘ฅ๐‘Ž๏ฟฝ

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  + exp

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘–๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2 + 2๐‘Ž๐‘ฅ๏ฟฝ

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

=1

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

โŽ›โŽœโŽœโŽœโŽœโŽexp

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘–๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2๏ฟฝ

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  exp ๏ฟฝ

โˆ’๐‘–2๐œ‹๐‘ฅ๐‘Ž๐œ†๐‘ก ๏ฟฝ + exp

โŽ›โŽœโŽœโŽœโŽœโŽ๐‘–๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2๏ฟฝ

๐œ†๐‘ก

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  exp ๏ฟฝ

๐‘–2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก ๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

Taking exp ๏ฟฝ๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก ๏ฟฝ as common factor outside results in

๐‘ข (๐‘ฅ, ๐‘ก) =exp ๏ฟฝ

๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก ๏ฟฝ

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

๏ฟฝexp ๏ฟฝ๐‘–2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก ๏ฟฝ + exp ๏ฟฝโˆ’๐‘–

2๐œ‹๐‘ฅ๐‘Ž๐œ†๐‘ก ๏ฟฝ๏ฟฝ

=2 exp ๏ฟฝ

๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก ๏ฟฝ

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

exp ๏ฟฝ๐‘–2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก๏ฟฝ + exp ๏ฟฝโˆ’๐‘–2๐œ‹๐‘ฅ๐‘Ž๐œ†๐‘ก

๏ฟฝ

2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=2 exp ๏ฟฝ

๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก ๏ฟฝ

๐‘’๐‘–๐œ‹4โˆš2๐œ‹๐œ†๐‘ก

cos ๏ฟฝ2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก ๏ฟฝ

=โˆš2 exp ๏ฟฝ

๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก โˆ’ ๐‘–๐œ‹4 ๏ฟฝ

โˆš๐œ‹๐œ†๐‘กcos ๏ฟฝ

2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก ๏ฟฝ

=โˆš2 exp ๏ฟฝ๐‘– ๏ฟฝ

๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก โˆ’ ๐œ‹4 ๏ฟฝ๏ฟฝ

โˆš๐œ‹๐œ†๐‘กcos ๏ฟฝ

2๐œ‹๐‘Ž๐‘ฅ๐œ†๐‘ก ๏ฟฝ

Hence the final solution is

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝ2

๐œ‹๐œ†๐‘ก exp ๏ฟฝ๐‘–๐œ‹๏ฟฝ๐‘ฅ2+๐‘Ž2๏ฟฝ

๐œ†๐‘ก โˆ’ ๐œ‹4 ๏ฟฝ cos ๏ฟฝ2๐œ‹๐‘Ž๐œ†

๐‘ฅ๐‘ก๏ฟฝ (9)

Hence the real part of the solution is

โ„œ (๐‘ข (๐‘ฅ, ๐‘ก)) =๏ฟฝ

2๐œ‹๐œ†๐‘ก

cosโŽ›โŽœโŽœโŽœโŽœโŽ๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2๏ฟฝ

๐œ†๐‘กโˆ’๐œ‹4

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  cos ๏ฟฝ

2๐œ‹๐‘Ž๐œ†

๐‘ฅ๐‘ก ๏ฟฝ

And the imaginary part of the solution is

โ„‘ (๐‘ข (๐‘ฅ, ๐‘ก)) =๏ฟฝ

2๐œ‹๐œ†๐‘ก

sinโŽ›โŽœโŽœโŽœโŽœโŽ๐œ‹ ๏ฟฝ๐‘ฅ2 + ๐‘Ž2๏ฟฝ

๐œ†๐‘กโˆ’๐œ‹4

โŽžโŽŸโŽŸโŽŸโŽŸโŽ  cos ๏ฟฝ

2๐œ‹๐‘Ž๐œ†

๐‘ฅ๐‘ก ๏ฟฝ

The ๐œ‹4 is just a phase shift. Here is a plot of the Real and Imaginary parts of the solution,

using for ๐œ† = 600 ร— 10โˆ’9๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ, ๐‘Ž = 1000 ร— 10โˆ’9๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ at ๐‘ก = 1 second

305

Page 310: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

In[15]:= a = 1000 * 10^(-9);

ฮป = 600 * 10^(-9);

u[x_, t_] :=2

ฯ€ ฮป t

ExpIฯ€ x

2+ a2

ฮป t

-ฯ€

4 Cos

2 ฯ€ a

ฮป

x

t

In[59]:= Clear[t];

Plot[Re@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel โ†’ {{"u(x,t)", None}, {"x", "Real part of solution at t= 1 second"}}, BaseStyle โ†’ 12,

PlotStyle โ†’ Red, PlotTheme โ†’ "Classic"]

Out[60]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(x,t)

Real part of solution at t= 1 second

In[61]:= Plot[Im@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel โ†’ {{"u(x,t)", None}, {"x", "Imaginary part of solution at t= 1 second"}}, BaseStyle โ†’ 12,

PlotStyle โ†’ Red, PlotTheme โ†’ "Classic"]

Out[61]=

-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-400

-200

0

200

400

x

u(x,t)

Imaginary part of solution at t= 1 second

We see the rapid oscillations as distance goes away from the origin. This is due to the ๐‘ฅ2

term making the radial frequency value increase quickly with ๐‘ฅ. We now plot the |๐‘ข (๐‘ฅ, ๐‘ก)|2.Looking at solution in (9), and since complex exponential is ยฑ1, then the amplitude is

governed by ๏ฟฝ2

๐œ‹๐œ†๐‘ก cos ๏ฟฝ2๐œ‹๐‘Ž๐œ†๐‘ฅ๐‘ก๏ฟฝ part of the solution. Hence

|๐‘ข (๐‘ฅ, ๐‘ก)|2 = 2๐œ‹๐œ†๐‘ก cos2 ๏ฟฝ2๐œ‹๐‘Ž๐œ†

๐‘ฅ๐‘ก๏ฟฝ

These plots show the intensity at di๏ฟฝerent time values. We see from these plots, that theintensity is well behaved in that it does not have the same rapid oscillations seen in the๐‘ข (๐‘ฅ, ๐‘ก) solution plots.

306

Page 311: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

In[154]:= a = 1000 * 10^(-9);

ฮป = 600 * 10^(-9);

intensity[x_, t_] :=2

ฯ€ ฮป t

Cos2 ฯ€ a

ฮป

x

t

2

p =

Plotintensity[x, #], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel โ†’ {"u(x,t)", None}, "x", Row" intensity |u 2 of solution at t =", #, " second",

BaseStyle โ†’ 12, PlotStyle โ†’ Red, PlotTheme โ†’ "Classic", ImageSize โ†’ 300 & /@ Range[0.002, 0.012, 0.002];

Out[153]=

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

1ร— 108

2ร— 108

3ร— 108

4ร— 108

5ร— 108

x

u(x,t)

intensity |u 2 of solution at t =0.002 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0ร— 107

1.0ร— 108

1.5ร— 108

2.0ร— 108

2.5ร— 108

xu(x,t)

intensity |u 2 of solution at t =0.004 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

5.0ร— 107

1.0ร— 108

1.5ร— 108

x

u(x,t)

intensity |u 2 of solution at t =0.006 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2.0ร— 1074.0ร— 1076.0ร— 1078.0ร— 1071.0ร— 1081.2ร— 1081.4ร— 108

x

u(x,t)

intensity |u 2 of solution at t =0.008 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2ร— 107

4ร— 107

6ร— 107

8ร— 107

1ร— 108

x

u(x,t)

intensity |u 2 of solution at t =0.01 second

-0.003-0.002-0.001 0.000 0.001 0.002 0.003

0

2ร— 107

4ร— 107

6ร— 107

8ร— 107

x

u(x,t)

intensity |u 2 of solution at t =0.012 second

Now Comparing argument to cosine in above to standard form in order to find the period:2๐œ‹๐‘Ž๐œ†

๐‘ฅ๐‘ก= 2๐œ‹๐‘“๐‘ก

307

Page 312: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Where ๐‘“ is now in hertz, then when ๐‘ฅ = ๐‘ก, we get by comparing terms that2๐œ‹๐‘Ž๐œ†

1๐‘ก= 2๐œ‹๐‘“

๐‘Ž๐œ†1๐‘ก= ๐‘“

But ๐‘“ = 1๐‘‡ where ๐‘‡ is the period in seconds. Hence ๐‘Ž

๐œ†1๐‘ก =

1๐‘‡ or

๐‘‡ = ๐œ†๐‘ก๐‘Ž

So period on intensity is ๐œ†๐‘ก๐‘Ž at ๐‘ฅ = ๐‘ก (why problem statement is saying period is ๐œ†๐‘ก

2๐‘Ž?).

308

Page 313: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

5.2.4 problem 2 (optional)

2. Consider the 1D heat equation in a semi-infinite domain:

โˆ‚u

โˆ‚t= ฮฝ

โˆ‚2u

โˆ‚x2, x โ‰ฅ 0

with boundary conditions: u(0, t) = exp(โˆ’iฯ‰t) and u(x, t) bounded as x โ†’ โˆž. In orderto construct a real forcing, we need both positive and negative real values of ฯ‰. Considerthat this forcing has been and will be applied for all time. This โ€œpure boundary valueproblemโ€ could be an idealization of heating the surface of the earth by the sun (periodicforcing). One could then ask, how far beneath the surface of the earth do the periodicfluctuations of the heat propagate?

(a) Consider solutions of the form u(x, t;ฯ‰) = exp(ikx) exp(โˆ’iฯ‰t). Find a single expressionfor k as a function of (given) ฯ‰ real, sgn(ฯ‰) and ฮฝ real.

Write u(x, t;ฯ‰) as a function of (given) ฯ‰ real, sgn(ฯ‰) and ฮฝ real. To obtain the mostgeneral solution by superposition, one would next integrate over all values of ฯ‰, โˆ’โˆž <ฯ‰ <โˆž (do not do this).

(b) The basic solution can be written as u(x, t;ฯ‰) = exp(โˆ’iฯ‰t) exp(โˆ’ฯƒx) exp(iฯƒ sgn(ฯ‰) x).Find ฯƒ in terms of |ฯ‰| and ฮฝ.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

3. Here we study the competing effects of nonlinearity and diffusion in the context ofBurgerโ€™s equation

โˆ‚u

โˆ‚t+ u

โˆ‚u

โˆ‚x= ฮฝ

โˆ‚2u

โˆ‚x2(3a)

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solvedexactly using the Cole-Hopf transformation

u = โˆ’2ฮฝฯ†xฯ†

(3b)

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = ฯˆx (where the subscript denotes partial differentiation) and integrate oncewith respect to x.

(b) Let ฯˆ = โˆ’2ฮฝ ln(ฯ†) to get the diffusion equation for ฯ†.

(c) Solve for ฯ† with ฯ†(x, 0) = ฮฆ(x), โˆ’โˆž < x < โˆž. In your integral expression for ฯ†, usedummy variable ฮท to facilitate the remaining parts below.

(d) Show that

ฮฆ(x) = exp

[

โˆ’1

2ฮฝ

โˆซ x

xo

F (ฮฑ)dฮฑ

]

where u(x, 0) = F (x), with xo arbitrary which we will take to be positive for conveniencebelow (xo > 0).

2

5.2.4.1 Part (a)

๐œ•๐‘ข๐œ•๐‘ก

= ๐œˆ๐œ•2๐‘ข๐œ•๐‘ฅ2

(1)

๐‘ข (0, ๐‘ก) = ๐‘’โˆ’๐‘–๐œ”๐‘ก

And ๐‘ฅ โ‰ฅ 0, ๐‘ข (โˆž, ๐‘ก) bounded. Let

๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘’๐‘–๐‘˜๐‘ฅ๐‘’โˆ’๐‘–๐œ”๐‘ก

Hence๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ก

= โˆ’๐‘–๐œ”๐‘’๐‘–๐‘˜๐‘ฅ๐‘’โˆ’๐‘–๐œ”๐‘ก

= โˆ’๐‘–๐œ”๐‘ข (๐‘ฅ, ๐‘ก) (2)

And๐œ•๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ

= ๐‘–๐‘˜๐‘’๐‘–๐‘˜๐‘ฅ๐‘’โˆ’๐‘–๐œ”๐‘ก

๐œ•2๐‘ข (๐‘ฅ, ๐‘ก)๐œ•๐‘ฅ2

= โˆ’๐‘˜2๐‘’๐‘–๐‘˜๐‘ฅ๐‘’โˆ’๐‘–๐œ”๐‘ก

= โˆ’๐‘˜2๐‘ข (๐‘ฅ, ๐‘ก) (3)

Substituting (2,3) into (1) gives

โˆ’๐‘–๐œ”๐‘ข (๐‘ฅ, ๐‘ก) = โˆ’๐œˆ๐‘˜2๐‘ข (๐‘ฅ, ๐‘ก)309

Page 314: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Since ๐‘ข๐œ” (๐‘ฅ, ๐‘ก) can not be identically zero (trivial solution), then the above simplifies to

โˆ’๐‘–๐œ” = โˆ’๐œˆ๐‘˜2

Or

๐‘˜2 = ๐‘–๐œ”๐œˆ (4)

Writing

๐œ” = sgn (๐œ”) |๐œ”|Where

sgn (๐œ”) =

โŽงโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽฉ

+1 ๐œ” > 00 ๐œ” = 0โˆ’1 ๐œ” < 0

Then (4) becomes

๐‘˜2 =๐‘– sgn (๐œ”) |๐œ”|

๐œˆ

๐‘˜ = ยฑโˆš๐‘– โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆSince

โˆš๐‘– = ๐‘–12 = ๏ฟฝ๐‘’๐‘–

๐œ‹2 ๏ฟฝ

12= ๐‘’๐‘–

๐œ‹4

Hence ๐‘˜ can be written as

๐‘˜ = ยฑ๐‘’๐‘–

๐œ‹4 โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆcase A. Let start with the positive root hence

๐‘˜ =๐‘’๐‘–

๐œ‹4 โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆCase (A1) ๐œ” < 0 then the above becomes

๐‘˜ =๐‘–๐‘’๐‘–

๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ=๐‘’๐‘–

๐œ‹2 ๐‘’๐‘–

๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ=๐‘’๐‘–

3๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ

= ๏ฟฝcos 34๐œ‹ + ๐‘– sin 3

4๐œ‹๏ฟฝ

โˆš|๐œ”|

โˆš๐œˆ

= ๏ฟฝโˆ’1

โˆš2+ ๐‘–

1

โˆš2๏ฟฝโˆš|๐œ”|

โˆš๐œˆ

=โŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ+ ๐‘–

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ 

310

Page 315: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

And the solution becomes

๐‘ข (๐‘ฅ, ๐‘ก) = exp (๐‘–๐‘˜๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽ๐‘–โŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ+ ๐‘–

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽ

โŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘– โˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp

โŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘–๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

We are told that ๐‘ข (โˆž, ๐‘ก) is bounded. So for large ๐‘ฅ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large ๐‘ฅ since theyare oscillatory trig functions. We then just need to worry about exp ๏ฟฝโˆ’ 1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘ฅ๏ฟฝ for large ๐‘ฅ.

This term will decay for large ๐‘ฅ since โˆ’ 1

โˆš2โˆš|๐œ”|

โˆš๐œˆis negative (assuming ๐œˆ > 0 always). Hence

positive root hence worked OK when ๐œ” < 0. Now we check if it works OK also when ๐œ” > 0

case A2 When ๐œ” > 0 then ๐‘˜ now becomes

๐‘˜ =๐‘’๐‘–

๐œ‹4 โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆ

=๐‘’๐‘–

๐œ‹4 โˆš๐œ”

โˆš๐œˆ

= ๏ฟฝcos ๐œ‹4+ ๐‘– sin ๐œ‹

4๏ฟฝ โˆš๐œ”

โˆš๐œˆ

= ๏ฟฝ1

โˆš2+ ๐‘–

1

โˆš2๏ฟฝ โˆš๐œ”

โˆš๐œˆ

=1

โˆš2โˆš๐œ”

โˆš๐œˆ+ ๐‘–

1

โˆš2โˆš๐œ”

โˆš๐œˆAnd the solution becomes

๐‘ข (๐‘ฅ, ๐‘ก) = exp (๐‘–๐‘˜๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)

= exp ๏ฟฝ๐‘– ๏ฟฝ1

โˆš2โˆš๐œ”

โˆš๐œˆ+ ๐‘–

1

โˆš2โˆš๐œ”

โˆš๐œˆ๏ฟฝ ๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

= exp ๏ฟฝ๏ฟฝ๐‘–1

โˆš2โˆš๐œ”

โˆš๐œˆโˆ’

1

โˆš2โˆš๐œ”

โˆš๐œˆ๏ฟฝ ๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

= exp ๏ฟฝโˆ’1

โˆš2โˆš๐œ”

โˆš๐œˆ๐‘ฅ๏ฟฝ exp ๏ฟฝ๐‘–

1

โˆš2โˆš๐œ”

โˆš๐œˆ๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

We are told that ๐‘ข (โˆž, ๐‘ก) is bounded. So for large ๐‘ฅ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large ๐‘ฅ since theyare oscillatory trig functions. We then just need to worry about exp ๏ฟฝโˆ’ 1

โˆš2โˆš๐œ”

โˆš๐œˆ๐‘ฅ๏ฟฝ for large ๐‘ฅ.

311

Page 316: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

This term will decay for large ๐‘ฅ since โˆ’ 1

โˆš2โˆš๐œ”

โˆš๐œˆis negative (assuming ๐œˆ > 0 always). Hence

positive root hence worked OK when ๐œ” > 0 as well.

Let check what happens if we use the negative root.

case B. negative root hence

๐‘˜ = โˆ’๐‘’๐‘–

๐œ‹4 โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆCase (A1) ๐œ” < 0 then the above becomes

๐‘˜ = โˆ’๐‘–๐‘’๐‘–

๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ= โˆ’

๐‘’๐‘–๐œ‹2 ๐‘’๐‘–

๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ= โˆ’

๐‘’๐‘–3๐œ‹4 โˆš|๐œ”|

โˆš๐œˆ

= โˆ’ ๏ฟฝcos 34๐œ‹ + ๐‘– sin 3

4๐œ‹๏ฟฝ

โˆš|๐œ”|

โˆš๐œˆ

= โˆ’ ๏ฟฝโˆ’1

โˆš2+ ๐‘–

1

โˆš2๏ฟฝโˆš|๐œ”|

โˆš๐œˆ

= โˆ’โŽ›โŽœโŽœโŽœโŽโˆ’

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ+ ๐‘–

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ 

=โŽ›โŽœโŽœโŽœโŽ1

โˆš2โˆš|๐œ”|

โˆš๐œˆโˆ’ ๐‘–

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ 

And the solution becomes

๐‘ข (๐‘ฅ, ๐‘ก) = exp (๐‘–๐‘˜๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽ๐‘–โŽ›โŽœโŽœโŽœโŽ1

โˆš2โˆš|๐œ”|

โˆš๐œˆโˆ’ ๐‘–

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽ

โŽ›โŽœโŽœโŽœโŽ๐‘–1

โˆš2โˆš|๐œ”|

โˆš๐œˆ+

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

= expโŽ›โŽœโŽœโŽœโŽ+

1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp

โŽ›โŽœโŽœโŽœโŽ1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘–๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก)

We are told that ๐‘ข (โˆž, ๐‘ก) is bounded. So for large ๐‘ฅ we want the above to be bounded. Thecomplex exponential present in the above expression cause no issue for large ๐‘ฅ since theyare oscillatory trig functions. We then just need to worry about exp ๏ฟฝ+ 1

โˆš2โˆš|๐œ”|

โˆš๐œˆ๐‘ฅ๏ฟฝ for large ๐‘ฅ.

This term will blow up for large ๐‘ฅ since + 1

โˆš2โˆš|๐œ”|

โˆš๐œˆis positive (assuming ๐œˆ > 0 always). Hence

we reject the case of negative sign on ๐‘˜. And pick

๐‘˜ =๐‘’๐‘–

๐œ‹4 โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆ

= ๏ฟฝ1

โˆš2+ ๐‘–

1

โˆš2๏ฟฝโˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆ

312

Page 317: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

Therefore the solution is

๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) = exp (๐‘–๐‘˜๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)

= exp

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘–

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๏ฟฝ 1

โˆš2+ ๐‘– 1

โˆš2๏ฟฝ โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš๐œˆ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘ฅ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ exp (โˆ’๐‘–๐œ”๐‘ก)

= exp ๏ฟฝ๐‘– ๏ฟฝ1

โˆš2๐œˆ๏ฟฝsgn (๐œ”)โˆš|๐œ”| + ๐‘–

1

โˆš2๐œˆ๏ฟฝsgn (๐œ”)โˆš|๐œ”| ๏ฟฝ ๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

= exp ๏ฟฝ๐‘–1

โˆš2๐œˆ๏ฟฝsgn (๐œ”)โˆš|๐œ”|๐‘ฅ โˆ’

1

โˆš2๐œˆ๏ฟฝsgn (๐œ”)โˆš|๐œ”| ๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

Hence

๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) = exp ๏ฟฝโˆ’โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

๐‘ฅ๏ฟฝ exp ๏ฟฝ๐‘–โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก)

The general solution ๐‘ข (๐‘ฅ, ๐‘ก) is therefore the integral over all ๐œ”, hence

๐‘ข (๐‘ฅ, ๐‘ก) = ๏ฟฝโˆž

๐œ”=โˆ’โˆž๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) ๐‘‘๐œ”

= ๏ฟฝโˆž

โˆ’โˆžexp

โŽ›โŽœโŽœโŽœโŽโˆ’โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp

โŽ›โŽœโŽœโŽœโŽ๐‘–โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp (โˆ’๐‘–๐œ”๐‘ก) ๐‘‘๐œ”

= ๏ฟฝโˆž

โˆ’โˆžexp

โŽ›โŽœโŽœโŽœโŽโˆ’โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp

โŽ›โŽœโŽœโŽœโŽ๐‘–โŽกโŽขโŽขโŽขโŽฃโˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆ๐‘ฅ โˆ’ ๐œ”๐‘ก

โŽคโŽฅโŽฅโŽฅโŽฆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ”

= ๏ฟฝโˆž

โˆ’โˆžexp

โŽ›โŽœโŽœโŽœโŽโˆ’โˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆ๐‘ฅโŽžโŽŸโŽŸโŽŸโŽ  exp

โŽ›โŽœโŽœโŽœโŽ๐‘–๐‘ฅ

โŽกโŽขโŽขโŽขโŽฃโˆšsgn (๐œ”)โˆš|๐œ”|

โˆš2๐œˆโˆ’ ๐œ”

๐‘ก๐‘ฅ

โŽคโŽฅโŽฅโŽฅโŽฆ

โŽžโŽŸโŽŸโŽŸโŽ  ๐‘‘๐œ”

5.2.4.2 Part (b)

From part (a), we found that

๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) = exp ๏ฟฝโˆ’โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

๐‘ฅ๏ฟฝ exp ๏ฟฝ๐‘–โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

๐‘ฅ๏ฟฝ exp (โˆ’๐‘–๐œ”๐‘ก) (1)

comparing the above to expression given in problem which is

๐‘ข (๐‘ฅ, ๐‘ก) = exp (โˆ’๐œŽ๐‘ฅ) exp (๐‘–๐œŽ sgn (๐œ”) ๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก) (2)

Therefore, by comparing exp (โˆ’๐œŽ๐‘ฅ) to exp ๏ฟฝโˆ’โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

๐‘ฅ๏ฟฝ we see that

๐œŽ = โˆšsgn(๐œ”)โˆš|๐œ”|โˆš2๐œˆ

(3)

5.2.4.3 part (c)

Using the solution found in part (a)

๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) = exp (โˆ’๐œŽ๐‘ฅ) exp (๐‘–๐œŽ sgn (๐œ”) ๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)

313

Page 318: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

To find numerical estimate, assuming ๐œ” > 0 for now

๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”) = exp (โˆ’๐œŽ๐‘ฅ) exp (๐‘–๐œŽ๐‘ฅ) exp (โˆ’๐‘–๐œ”๐‘ก)= ๐‘’โˆ’๐œŽ๐‘ฅ (cos ๐œŽ๐‘ฅ + ๐‘– sin ๐œŽ๐‘ฅ) (cos๐œ”๐‘ก โˆ’ ๐‘– sin๐œ”๐‘ก)= ๐‘’โˆ’๐œŽ๐‘ฅ (cos ๐œŽ๐‘ฅ cos๐œ”๐‘ก โˆ’ ๐‘– sin๐œ”๐‘ก cos ๐œŽ๐‘ฅ + ๐‘– cos๐œ”๐‘ก sin ๐œŽ๐‘ฅ + sin ๐œŽ๐‘ฅ sin๐œ”๐‘ก)= ๐‘’โˆ’๐œŽ๐‘ฅ (cos (๐œŽ๐‘ฅ) cos (๐œ”๐‘ก) + sin (๐œŽ๐‘ฅ) sin (๐œ”๐‘ก) + ๐‘– (cos (๐œ”๐‘ก) sin (๐œŽ๐‘ฅ) โˆ’ sin (๐œ”๐‘ก) cos (๐œŽ๐‘ฅ)))= ๐‘’โˆ’๐œŽ๐‘ฅ (cos (๐‘ก๐œ” โˆ’ ๐‘ฅ๐œŽ) โˆ’ ๐‘– sin (๐‘ก๐œ” โˆ’ ๐‘ฅ๐œŽ))

Hence will evaluate

Re (๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”)) = ๐‘’โˆ’๐œŽ๐‘ฅ Re (cos (๐‘ก๐œ” โˆ’ ๐‘ฅ๐œŽ) โˆ’ ๐‘– sin (๐‘ก๐œ” โˆ’ ๐‘ฅ๐œŽ))= ๐‘’โˆ’๐œŽ๐‘ฅ cos (๐‘ก๐œ” โˆ’ ๐‘ฅ๐œŽ)

I assume here it is asking for numerical estimate. We only need to determine numericalestimate for ๐œŽ. For ๐œ”, using the period ๐‘‡ = 24 hrs or ๐‘‡ = 86 400 seconds, then ๐œ” = 2๐œ‹

๐‘‡ is nowfound. Then we need to determine ๐œˆ, which is thermal di๏ฟฝusivity for earth crust. There doesnot seem to be an agreed on value for this and this value also changed with depth inside theearth crust. The value I found that seem mentioned more is 1.2 ร— 10โˆ’6 meter2 per second.Hence

๐œŽ = ๏ฟฝ2๐œ‹

86 400

๏ฟฝ2 ๏ฟฝ1.2 ร— 10โˆ’6๏ฟฝ

= 5.505 per meter

Therefore

Re (๐‘ข (๐‘ฅ, ๐‘ก; ๐œ”)) = ๐‘’โˆ’5.505๐‘ฅ cos (๐‘ก๐œ” โˆ’ 5.505๐‘ฅ)

Using ๐œ” = 2๐œ‹86 400 = 7.29 ร— 10

โˆ’5 rad/sec. Now we can use the above to estimate fluctuation ofheat over 24 hrs period. But we need to fix ๐‘ฅ for each case. Here ๐‘ฅ = 0 means on the earthsurface and ๐‘ฅ say 10, means at depth 10 meters and so on as I understand that ๐‘ฅ is starts at0 at surface or earth and increases as we go lower into the earth crust. Plotting at the abovefor ๐‘ฅ = 0, 0.5, 1, 1.5, 2 I see that when ๐‘ฅ > 2 then maximum value of ๐‘’โˆ’5.505๐‘ฅ cos (๐‘ก๐œ” โˆ’ 5.505๐‘ฅ)is almost zero. This seems to indicate a range of heat reach is about little more than2 meters below the surface of earth.

This is a plot of the fluctuation in temperature at di๏ฟฝerent ๐‘ฅ each in separate plot, then latera plot is given that combines them all.

314

Page 319: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-1.0

-0.5

0.0

0.5

1.0

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 0

0 20000 40000 60000 80000

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 0.5

0 20000 40000 60000 80000

-0.004

-0.002

0.000

0.002

0.004

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 1

315

Page 320: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-0.0002

-0.0001

0.0000

0.0001

0.0002

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 1.5

0 20000 40000 60000 80000

-0.000015

-0.000010

-5.ร—10-6

0.000000

5.ร—10-6

0.000010

0.000015

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 2

0 20000 40000 60000 80000

-1.ร—10-6

-5.ร—10-7

0

5.ร—10-7

1.ร—10-6

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at depth x = 2.5

This plot better show the di๏ฟฝerence per depth, as it combines all the plots into one.

316

Page 321: Engineering Physics (EP) 548 Engineering analysis II...University Course Engineering Physics (EP) 548 Engineering analysis II University of Wisconsin, Madison Spring 2017 My Class

5.2. Exam 2 CHAPTER 5. EXAMS

0 20000 40000 60000 80000

-1.0

-0.5

0.0

0.5

1.0

The time in the day (in seconds)

T(x,t)

Flucuation in temperature T at different depth x

u(0, t)

u(0.5, t)

u(1, t)

u(1.5, t)

317