engineering quantum computers

15
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Engineering Quantum Computers William D. Oliver MIT Research Laboratory of Electronics & Department of Physics, MIT Lincoln Laboratory 06 December 2018 NSF – CIQM meeting

Upload: others

Post on 20-Nov-2021

11 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Engineering Quantum Computers

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Engineering Quantum Computers William D. Oliver

MIT Research Laboratory of Electronics & Department of Physics, MIT Lincoln Laboratory

06 December 2018

NSF – CIQM meeting

Page 2: Engineering Quantum Computers

ILP WDO 09/12/18

Computing Development Timeline

Classical Computing (Electronic)

Vacuum tube (1906)

ENIAC (1946)

TX-0 (1956)

Transistor (1947)

5.5M transistors Pentium Pro

(1995)

2k transistors i4004 (1971)

18 cores 5.5B transistors Xeon Haswell

(2014)

32 cores 19.2B transistors

Epyc GPU (2017)

Integrated circuit (1958)

Quantum Computing

Quantum simulator proposed

(1981)

Shor’s algorithm & CSS error correction

(1994-95)

Few-qubit processors

& error detection (2012-2016)

Quantum annealing & adiabatic QC

(1998-2000)

Cloud-based quantum

computers (2017)

Grover’s algorithm (1996)

Quantum computing is transitioning from scientific curiosity to technical reality.

Advancing from discovery to useful machines takes time & engineering

You must be in the game to play

Page 3: Engineering Quantum Computers

ILP WDO 09/12/18

Canada • Inst. for Quantum Computing (2002) • Inst. Quantique (2015)

China • Key Lab, Quantum Information, CAS (2001) • Satellite quantum communication (2016) • Alibaba – CAS cloud computer - $15B (2018)

Superconducting qubits Quantum optics NV centers Ion trap qubits Semiconducting qubits

Quantum Worldwide (not an exhaustive list)

Singapore • Research Center on Quantum Information Science and Technology (2007)

Australia • ARC Centers of Excellence

– Center for Quantum Computing Technology (2000) – Engineered Quantum Systems (2011)

• CommBank – Telstra – UNSW (2015)

Japan • Gate-model and QA programs • JST ImPACT program (2014)

– Quantum artificial brain – Quantum secure network – Quantum simulation

Europe • Netherlands: QuTech (2014) • United Kingdom: National Quantum Technologies Program, $0.5B (2014) • EU: Quantum Flagship, $1B (2016) • Sweden: Wallenberg Center for Quantum Technology, $0.2B (2017)

United States • Joint Quantum Institute (2007) • Joint Center for Quantum Info & Computer Science (2014) • National Quantum Initiative (?)

Potential value of quantum computing for economic and information security is driving significant worldwide investment – estimated at $6 billion / year by 2020*.

* European Commision

Page 4: Engineering Quantum Computers

ILP WDO 09/12/18

Japan • Gate-model and QA programs • JST ImPACT program (2014)

– Quantum artificial brain – Quantum secure network – Quantum simulation

Canada • Inst. for Quantum Computing (2002) • Inst. Quantique (2015)

China • Key Lab, Quantum Information, CAS (2001) • Satellite quantum communication (2016) • Alibaba – CAS cloud computer - $15B (2018)

Superconducting qubits Quantum optics NV centers Ion trap qubits Semiconducting qubits

Quantum Worldwide (not an exhaustive list)

Singapore • Research Center on Quantum Information Science and Technology (2007)

Australia • ARC Centers of Excellence

– Center for Quantum Computing Technology (2000) – Engineered Quantum Systems (2011)

• CommBank – Telstra – UNSW (2015)

Europe • Netherlands: QuTech (2014) • United Kingdom: National Quantum Technologies Program, $0.5B (2014) • EU: Quantum Flagship, $1B (2016) • Sweden: Wallenberg Center for Quantum Technology, $0.2B (2017)

United States • Joint Quantum Institute (2007) • Joint Center for Quantum Info & Computer Science (2014) • National Quantum Initiative

MIT Quantum Engineering Initiative a Lincoln – RLE endeavor

Quantum Engineering Initiative: the next step in building a quantum ecosystem in quantum information science and engineering

Page 5: Engineering Quantum Computers

ILP WDO 09/12/18

Quantum Computing Approaches & Applications

2048 1024 512 256 128 64

Bit-length of RSA Key

1 hour

1E-12

1E-06

1E+00

1E+06

1E+12

1E+18

age of the universe

4096

Quantum Classical

Proc

essi

ng T

ime

(h

ours

)

Shor’s Algorithm for Prime Factorization: RSA Key Decryption

Universal, Fault-Tolerant Quantum Computer

Key Gate-Based Applications: • RSA key decryption • Database searching • Linear equation sampling

Quantum speed-up exists over known classical algorithms

Key Annealing Applications: • Supply transport optimization • Sensor & satellite tasking • Pattern recognition

Quantum Annealer

Route Optimization: Traveling Salesman Problem

Unknown if quantum speed-up exists over known classical algorithms

Simulation of Reaction Mechanisms: Biological Nitrogen Fixation to Produce Ammonia

Digital & Analog Quantum Simulator

Quantum speed-up exists over known classical algorithms

Key Simulation Applications: • Quantum chemistry • Drug development • Materials science

PNAS 114, 7555-7560 (2017); arXiv:1605.03590

FeMo Cofactor in Nitrogenase Protein

To realize this promise, we must engineer quantum systems that are

robust, reproducible, and extensible.

Page 6: Engineering Quantum Computers

ILP WDO 09/12/18

Decoherence & Gate Time

Coherence time tcoh: The qubit’s lifetime

Gate time tgate: Time required for a single gate operation

Time

State lost

Environmental disruptions

Long coherence times are not sufficient, it’s the number of gates before an error

State decaying Quantum state

Figure of Merit * : # of gates per coherence time = tcoh/tgate

( * Rigorous metric: gate & readout fidelity)

Page 7: Engineering Quantum Computers

ILP WDO 09/12/18

1QB and 2QB Benchmarking

1

10

100

1,000

10,000

100,000

1,000,000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

1QB and 2QB Comparison

Best Performance

# op

erat

ions

bef

ore

erro

r

Gate Speed (Hz)

Silicon Quantum Dots

Neutral Atoms

NV Center (13C)

P-doped Si (nuclear)

P-doped Si (electron)

Silicon MOS G

ate

Fide

lity

90%

99%

99.9%

99.99%

99.999%

99.9999%

1-qubit gates 2-qubit gates

faster gates higher fidelity 2QB

Higher fidelity

Trapped Ions

Superconducting Qubits

Thanks to: P. Cappallaro, J. Chiaverini, D. Englund, T. Ladd, A. Morello, J. Petta, M. Saffman, J. Sage

Ike Chuang

Physics, EECS Rajeev Ram

EECS John Chiaverini

QuIIN Jeremy Sage

QuIIN

Will Oliver

Physics, QuIIN

MIT Campus MIT Lincoln Lab

Jamie Kerman

QuIIN Terry Orlando

EECS

and large teams at MIT & LL

Simon Gustavsson

RLE

Page 8: Engineering Quantum Computers

ILP WDO 09/12/18

1QB and 2QB Benchmarking

1

10

100

1,000

10,000

100,000

1,000,000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

1QB and 2QB Comparison

Best Performance

# op

erat

ions

bef

ore

erro

r

Gate Speed (Hz)

Silicon Quantum Dots

Neutral Atoms

NV Center (13C)

P-doped Si (nuclear)

P-doped Si (electron)

Silicon MOS G

ate

Fide

lity

90%

99%

99.9%

99.99%

99.999%

99.9999%

1-qubit gates 2-qubit gates

faster gates higher fidelity 2QB

Higher fidelity

Trapped Ions

Superconducting Qubits

Thanks to: P. Cappallaro, J. Chiaverini, D. Englund, T. Ladd, A. Morello, J. Petta, M. Saffman, J. Sage

Many candidate technologies under development to realize the promise of

quantum computation

Misha Lukin Harvard Physics

Vladin Vuletic MIT Physics

Dirk Englund

EECS Paola Cappellaro

NSE Danielle Braje

QuIIN

Ron Walsworth

Harvard

Marco Loncar Harvard SEAS

NV Center (13C)

Page 9: Engineering Quantum Computers

ILP WDO 09/12/18

Quantum Engineering

Quantum Engineering is the bridge connecting science, mathematics, and classical engineering

Future Quantum Systems

Classical Engineering

Physics Materials & Fabrication

Experimental Subsystems

Quantum Testbeds

Predictions of Performance

• Optimal control • Error suppression techniques • Control electronics, optics, and calibration

Few-device Experiments

• High-coherence materials and fabrication • Packaging and 3D integration • Thermal, mechanical, electromagnetic management

Mathematics Control & DSP

Analog & Digital Circuits

Architecture

• Algorithms • Fault tolerant architectures • Software

• Benchmarking • Hamiltonian simulation • New qubit and coupling designs

Science and Mathematics

Page 10: Engineering Quantum Computers

ILP WDO 09/12/18

Superconducting Qubits @ MIT & Lincoln Laboratory

Page 11: Engineering Quantum Computers

ILP WDO 09/12/18

Superconducting Qubits: Advanced Fab @ MIT & Lincoln Laboratory

Page 12: Engineering Quantum Computers

ILP WDO 09/12/18

7 um from focus

Near focus

Trapped Ions: Integrated Photonic Control

• Integrated photonics – SiN waveguide with SiO2 buffer – Grating-coupled beam diameter: 4 um

• Single ion addressability – Ion separation: 5 um – Qubit rotations: Fπ > 99% – Crosstalk: < 10-3 @ 12 um from focus

• Current status: – Developing multi-waveguide-layer, multi-

wavelength capability in CMOS-compatible process (200-mm Si wafers)

Integrated Photonic Waveguides

Addressing Single Ions with Integrated Photonics

Page 13: Engineering Quantum Computers

ILP WDO 09/12/18

Education: MIT Quantum Computing Curriculum

MOOCs: 6-course series started

January 15, 2018

Professional Development: 4-course series started

April 9, 2018

quantumcurriculum.mit.edu

Running again in January 2019!

Page 14: Engineering Quantum Computers

ILP WDO 09/12/18

• Materials and fabrication – Eliminate sources of dielectric loss, anomalous heating, flux noise, quasiparticles, … – 3D-integrated, 2D-qubit arrays with high coherence

• Quantum system connectivity – Combine robust entanglement with efficient communication interfaces – High-fidelity optical-frequency & microwave-to-optical photon conversion

• Algorithms – Develop NISQ algorithm that shows quantum advantage for a real problem – Solve or identify work-arounds for the data-loading problem

• Quantum control – Extend fidelity of quantum operations and detection to fundamental engineering limits – Develop means to auto-calibrate a large quantum system

• Validation and verification – Define and demonstrate an extensible V&V scheme

Quantum Computing Grand Challenges

Page 15: Engineering Quantum Computers

ILP WDO 09/12/18

The Model: One Team – Two Locations Superconducting Qubits

Qubit Coherence Quantum Control 3D Integration & Cryogenic Electronics

Nature Physics (2011); Nature Comm. (2016) Phys. Rev. Lett. (2013); Nature Comm. (2014)

Prof. William D. Oliver * Prof. Terry Orlando Dr. Dan Campbell Dr. Simon Gustavsson Dr. Morten Kjaergaard Dr. Philip Krantz Dr. Joel Wang Dr. Fei Yan Mr. Andreas Bengtsson Mr. Luke Eure

Mr. Evan Golden Mr. Mike Hellstrom Dr. Cyrus Hirjibehedin Mr. Eric Holihan Mr. Gerry Holland Dr. Bethany N. Huffman Dr. David Kim Dr. Mollie Kimchi-Schwartz Mr. John Liddell Ms. Karen Magoon

MIT Lincoln Laboratory MIT Campus

Joint Campus/Lincoln Team Members (“one team – two locations”)

Ms. Amy Greene Mr. Bharah Kannan Mr. Ben Lienhard Mr. Uwe Luepke Mr. Tim Menke Mr. Jack Qiu Mr. George Stefanakis Mr. Youngkyu Sung Ms. Meghan Yamoah

Mr. Gabriel Samach Mr. Arjan Sevi Mr. Rick Slattery Mr. Cory Stull Mr. Chris Thoummaraj Dr. Sergey Tolpygo Mr. David Volvson Dr. Steve Weber Mr. Terry Weir Dr. Wayne Woods Dr. Jonilyn Yoder Ms. Donna Yost

Artificial Atoms Q-Limited Amps Error Mitigation

Uncooled Teff ~ 150 mK

Cooled Teff < 3 mK

0

1 0

1

Science (2005) Science (2006) Nature (2008) Science (2016) Science (2015)

TSVs

Niobium Multi-Layer Routing & Electronics

Qubits

IEEE Trans. Supercond. (2015) Phys. Rev. Applied (2017) Patent (2016)

Superconducting qubit team is an exemplar for the Quantum Engineering Initiative vertically integrated effort, one-team model

Dr. Eric Dauler Dr. William D. Oliver * Dr. Andrew J. Kerman Mr. Mike Augeri Mr. Peter Baldo Dr. Jeff Birenbaum Mr. Vlad Bolkhovsky Dr. John Cummings Dr. Rabi Das Ms. Alexandra Day Mr. George Fitch

Lee Mailhiot Dr. Alex Melville Dr. Justin Mallek Mr. Jovi Miloshi Mr. Peter Murphy Dr. Kevin Obenland Dr. Mike O’Keeffe Ms. Brenda Osadchy Mr. Jason Plant Dr. Danna Rosenberg