enhanced electrochemical reduction of hydrogen peroxide at surfactant/salt modified electrodes

1
Enhanced Electrochemical Reduction of Hydrogen Peroxide at Surfactant/Salt Modified Electrodes Laura Gonzalez-Macia 1 , Malcolm R. Smyth 2 and Anthony J. Killard 1* 1 Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK 2 School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9 , Ireland *email address: [email protected] Hydrogen peroxide (H 2 O 2 ) is widely used in many biological systems and industrial processes and its accurate and rapid determination is extremely important. Many metal materials such as Pt, Pd, Cu and Ag have been used as electrodes for the electrochemical determination of H 2 O 2 . Recently, an improvement of the catalytic activity of silver screen-printed electrodes towards H 2 O 2 reduction after electrode modification with a mixed surfactant/salt solution has been reported. In the present work, this phenomenon is further investigated with regard to the effect the type of metal electrode, surfactant and salt have on the reduction of H 2 O 2 . Silver paste electrodes were modified with a range of surfactants (DBSA, SDS, CATB, Triton X-100) and chloride salts and their ability to reduce H 2 O 2 was evaluated. The effect of the modification on the H 2 O 2 reduction was assessed by amperometry. Scanning Electron Microscopy (SEM) measurements were performed to characterize the electrode surfaces before and after the surfactant-based modification. In addition, the surfactant/salt modifications were performed on a range of metallic substrates such as Au, Pt and other Ag-based electrodes. Comparisons of H 2 O 2 reduction at these electrodes are shown and the effect of their modifications is also studied. Effect of surfactant type in the modification solution Amperometric responses (left) of silver screen-printed electrodes (Ag SPEs) measured at -0.1 V vs. Ag/AgCl: (---) unmodified, (---) SDS modified and (---) SDS/NaCl modified, with sequential additions of 1 mM H 2 O 2 . Ag SPEs were then exposed to the different surfactant solutions. The plot of the cathodic currents vs log [salt] (right) obtained during amperometric measurements at -0.1 V at 5 mM H 2 O 2 showed enhanced catalysis for all the surfactant/salt combinations: () DBSA/KCl, () Triton X-100/KCl, () CTAB/NaBr and () SDS/NaCl. Effect of Group I metal chloride salt in the modification solution Plot of current vs log [XCl] obtained during amperometric measurements of Ag SPEs at - 0.1 V, at 5 mM H 2 O 2 . Ag SPEs were previously dipped into solutions containing DBSA with a range of concentrations of: () LiCl; () NaCl; () KCl; () CsCl. All electrodes showed similar patterns of catalysis with an onset above approx. 10 - 4 M and peaking at 10 -1 M (except LiCl peaking at 1 M). Effect of the metallic electrode following surface modification with surfactant/salt Ag-based Ag-based electrodes electrodes a) b) Amperometric responses of silver (99.9%) metal electrodes (left) at -0.1 V (vs Ag/AgCl): (---) unmodified and (---) DBSA/KCl modified, at H 2 O 2 concentrations from 1 to 5 mM. SEM images of the metallic Ag (99.9%) electrodes (right) before and after DBSA/KCl modification. No formation of surface structures as well as enhancement on H 2 O 2 reduction was observed following the modification as with Ag SPEs. Au and Pt-based Au and Pt-based electrodes electrodes Electrode Area (cm 2 ) j unmod / (A/cm 2 ) j mod / (A/cm 2 ) j mod /j unmod Au SPE AT (Dropsens) 0.126 0.7 8.0 12.2 Au SPE BT (Dropsens) 0.126 0.3 0.5 1.9 Au SPE (DuPont) 0.045 (unmod)/ 0.040 (mod) 1.7 11.2 6.6 Au (99.9%) 0.031 41.1 31.7 0.8 Ag SPE 0.126 3.1 273.6 88.8 Pt SPE (Dropsens) 0.126 481.0 956.3 2.0 Pt SPE (Dupont) 0.035 959.4 910.0 0.9 The observed enhancement of the electrocatalytic reduction of H The observed enhancement of the electrocatalytic reduction of H 2 O 2 on on Ag SPE surfaces following surfactant/salt modification has been shown Ag SPE surfaces following surfactant/salt modification has been shown to occur with a range of surfactant and salt combinations including to occur with a range of surfactant and salt combinations including DBSA/KCl, SDS/NaCl, CTAB/NaBr and Triton X-100/KCl. The optimum ratio DBSA/KCl, SDS/NaCl, CTAB/NaBr and Triton X-100/KCl. The optimum ratio of surfactant and salt was found to be approximately 3:1 and may of surfactant and salt was found to be approximately 3:1 and may relate to the formation of ordered crystalline structures that appear relate to the formation of ordered crystalline structures that appear at the electrode surface. It is also suggested that the size of the at the electrode surface. It is also suggested that the size of the electrolyte counter-ion affects catalysis by affecting the packing electrolyte counter-ion affects catalysis by affecting the packing and structural morphology of these structures. The interaction of the and structural morphology of these structures. The interaction of the surfactant/salt structures with various noble metallic electrode surfactant/salt structures with various noble metallic electrode surfaces was also assessed. surfaces was also assessed. t/s 0 100 200 300 400 500 600 700 i /A 0.0 5.0e-6 1.0e-5 1.5e-5 2.0e-5 log [salt] -12 -10 -8 -6 -4 -2 0 2 i/A 0.0 5.0e-6 1.0e-5 1.5e-5 2.0e-5 2.5e-5 3.0e-5 log [XC l] -12 -10 -8 -6 -4 -2 0 2 i/A 0.0 5.0e-6 1.0e-5 1.5e-5 2.0e-5 2.5e-5 t/s 0 100 200 300 400 500 i/A 0 1e-7 2e-7 3e-7 4e-7

Upload: bertha

Post on 24-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

Enhanced Electrochemical Reduction of Hydrogen Peroxide at Surfactant/Salt Modified Electrodes. Laura Gonzalez-Macia 1 , Malcolm R. Smyth 2 and Anthony J. Killard 1 * 1 Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Enhanced Electrochemical Reduction of Hydrogen Peroxide at  Surfactant/Salt Modified Electrodes

Enhanced Electrochemical Reduction of Hydrogen Peroxide at Surfactant/Salt Modified Electrodes

Laura Gonzalez-Macia1, Malcolm R. Smyth2 and Anthony J. Killard1* 1Department of Applied Sciences, University of the West of England, Coldharbour Lane,

Bristol, BS16 1QY, UK2School of Chemical Sciences and National Centre for Sensor Research, Dublin City

University, Dublin 9 , Ireland*email address: [email protected]

Hydrogen peroxide (H2O2) is widely used in many biological systems and industrial processes and its accurate and rapid determination is extremely important. Many metal materials such as Pt, Pd, Cu and Ag have been used as electrodes for the electrochemical determination of H2O2. Recently, an improvement of the catalytic activity of silver screen-printed electrodes towards H2O2 reduction after electrode modification with a mixed surfactant/salt solution has been reported.In the present work, this phenomenon is further investigated with regard to the effect the type of metal electrode, surfactant and salt have on the reduction of H2O2. Silver paste electrodes were modified with a range of surfactants (DBSA, SDS, CATB, Triton X-100) and chloride salts and their ability to reduce H2O2 was evaluated. The effect of the modification on the H2O2 reduction was assessed by amperometry. Scanning Electron Microscopy (SEM) measurements were performed to characterize the electrode surfaces before and after the surfactant-based modification. In addition, the surfactant/salt modifications were performed on a range of metallic substrates such as Au, Pt and other Ag-based electrodes. Comparisons of H2O2 reduction at these electrodes are shown and the effect of their modifications is also studied.

Effect of surfactant type in the modification solution

Amperometric responses (left) of silver screen-printed electrodes (Ag SPEs) measured at -0.1 V vs. Ag/AgCl: (---) unmodified, (---) SDS modified and (---) SDS/NaCl modified, with sequential additions of 1 mM H2O2. Ag SPEs were then exposed to the different surfactant solutions. The plot of the cathodic currents vs log [salt] (right) obtained during amperometric measurements at -0.1 V at 5 mM H2O2 showed enhanced catalysis for all the surfactant/salt combinations: () DBSA/KCl, () Triton X-100/KCl, () CTAB/NaBr and () SDS/NaCl.

Effect of Group I metal chloride salt in the modification solution

Plot of current vs log [XCl] obtained during amperometric measurements of Ag SPEs at -0.1 V, at 5 mM H2O2. Ag SPEs were previously dipped into solutions containing DBSA with a range of concentrations of: () LiCl; () NaCl; () KCl; () CsCl. All electrodes showed similar patterns of catalysis with an onset above approx. 10-4 M and peaking at 10-1 M (except LiCl peaking at 1 M).

Effect of the metallic electrode following surface modification with surfactant/salt

Ag-based electrodesAg-based electrodesAg-based electrodesAg-based electrodes

a) b)

Amperometric responses of silver (99.9%) metal electrodes (left) at -0.1 V (vs Ag/AgCl): (---) unmodified and (---) DBSA/KCl modified, at H2O2 concentrations from 1 to 5 mM. SEM images of the metallic Ag (99.9%) electrodes (right) before and after DBSA/KCl modification. No formation of surface structures as well as enhancement on H2O2 reduction was observed following the modification as with Ag SPEs.

Au and Pt-based electrodesAu and Pt-based electrodesAu and Pt-based electrodesAu and Pt-based electrodes

Electrode Area (cm2) junmod /

(A/cm2)

jmod /

(A/cm2)

jmod/junmod

Au SPE AT

(Dropsens)

0.126 0.7 8.0 12.2

Au SPE BT

(Dropsens)

0.126 0.3 0.5 1.9

Au SPE

(DuPont)

0.045 (unmod)/

0.040 (mod)

1.7 11.2 6.6

Au (99.9%) 0.031 41.1 31.7 0.8

Ag SPE 0.126 3.1 273.6 88.8

Pt SPE

(Dropsens)

0.126 481.0 956.3 2.0

Pt SPE

(Dupont)

0.035 959.4 910.0 0.9

The observed enhancement of the electrocatalytic reduction of HThe observed enhancement of the electrocatalytic reduction of H22OO22 on Ag SPE on Ag SPE

surfaces following surfactant/salt modification has been shown to occur with a range surfaces following surfactant/salt modification has been shown to occur with a range of surfactant and salt combinations including DBSA/KCl, SDS/NaCl, CTAB/NaBr and of surfactant and salt combinations including DBSA/KCl, SDS/NaCl, CTAB/NaBr and Triton X-100/KCl. The optimum ratio of surfactant and salt was found to be Triton X-100/KCl. The optimum ratio of surfactant and salt was found to be approximately 3:1 and may relate to the formation of ordered crystalline structures approximately 3:1 and may relate to the formation of ordered crystalline structures that appear at the electrode surface. It is also suggested that the size of the that appear at the electrode surface. It is also suggested that the size of the electrolyte counter-ion affects catalysis by affecting the packing and structural electrolyte counter-ion affects catalysis by affecting the packing and structural morphology of these structures. The interaction of the surfactant/salt structures with morphology of these structures. The interaction of the surfactant/salt structures with various noble metallic electrode surfaces was also assessed. various noble metallic electrode surfaces was also assessed.

t / s

0 100 200 300 400 500 600 700

i / A

0.0

5.0e-6

1.0e-5

1.5e-5

2.0e-5

log [salt]

-12 -10 -8 -6 -4 -2 0 2

i / A

0.0

5.0e-6

1.0e-5

1.5e-5

2.0e-5

2.5e-5

3.0e-5

log [XCl]

-12 -10 -8 -6 -4 -2 0 2

i / A

0.0

5.0e-6

1.0e-5

1.5e-5

2.0e-5

2.5e-5

t / s

0 100 200 300 400 500

i / A

0

1e-7

2e-7

3e-7

4e-7