enhancing separations performance for chemicals and polymers presentation

40
©2015 Waters Corporation 1 Enhancing Separations Performance for Chemicals and Polymers Tim J Jenkins Ph.D Director, Business Development

Upload: waters-corporation-chemical-materials

Post on 17-Jul-2015

311 views

Category:

Science


5 download

TRANSCRIPT

©2015 Waters Corporation 1

Enhancing Separations Performance for Chemicals and Polymers

Tim J Jenkins Ph.D

Director, Business Development

©2015 Waters Corporation 2

Rebirth of Polymer Science

©2015 Waters Corporation 3

Renewed Focus on Polymer Analysis

Ion mobility enabled HDMS

Comprehensive 2D Separations

Thermal Analysis & Rheology

APC : Polymer MWD

©2015 Waters Corporation 4

Evolution of Separation Technology

Gas Chromatography Convergence Chromatography

GC

Capillary GC

HPLC

UPLC

SFC

UPC2

Liquid Chromatography

©2015 Waters Corporation 5

Definitions

Convergence Chromatography is a category of separation science

that provides orthogonal and increased separation power,

compared to liquid or gas chromatography, to solve separation

challenges.

UltraPerformance Convergence Chromatography [UPC2] is a

holistically designed chromatographic system that utilizes

liquid CO2 as a mobile phase to leverage the chromatographic

principles and selectivity of normal phase chromatography

while providing the ease-of-use of reversed-phase LC.

©2015 Waters Corporation 6

Driving UPC2 performance

–Selectivity that can be addressed

–Management of supercritical fluids

–Innovative chemistries

©2015 Waters Corporation 7

What Drives UPC2 Performance? - Addressable Selectivity

Solvent Pentane, Hexane, Heptane

Xylene

Toluene

Diethyl ether

Dichloromethane

Chloroform

Acetone

Dioxane

THF

MTBE

Ethyl acetate

DMSO

Acetonitrile

Isopropanol

Ethanol

Methanol

Stationary Phase

Silica / BEH

2-ethylpyridine

Cyano

Aminopropyl

Diol

Amide

PFP

Phenyl

C18 < C8

Reversed-phase

Selectivity Space

Normal Phase Selectivity

Space

©2015 Waters Corporation 8

Convergence Chromatography Selectivity Space

What Drives UPC2 Performance? - Addressable Selectivity

Solvent Pentane, Hexane,

Heptane

Xylene

Toluene

Diethyl ether

Dichloromethane

Chloroform

Acetone

Dioxane

THF

MTBE

Ethyl acetate

DMSO

Acetonitrile

Isopropanol

Ethanol

Methanol

Stationary Phase

Silica / BEH

2-ethylpyridine

Cyano

Aminopropyl

Diol

Amide

PFP

Phenyl

C18 < C8

Wea

k Str

ong

Supercritical CO2

Organic Modifier

©2015 Waters Corporation 9

What Drives UPC2 Performance? - Managing Supercritical Fluids

Historical challenges for SFC Lack of robustness

– Shifting retention times – Low accuracy for partial loop injections – Unstable modifier delivery at low percentages of co-solvent (< 5%)

Lack of instrument performance – Insufficient instrumentation reliability (pumping system, injection

mechanism, backpressure regulator) – Large system dispersion and dwell volumes prevented adoption of

smaller particles and high throughput analysis

Low sensitivity – High detector and pump noise – Refractive index effects of CO2

©2015 Waters Corporation 10

What Drives UPC2 Performance? - Innovative Chemistries

ACQUITY UPC2 BEH 2-EP • Good retention, peak shape and selectivity • Lipids, steroids, pesticides

ACQUITY UPC2 BEH

• Heightened interaction with polar groups such as phospholipids • OLED’s, polymer additives, pesticides

ACQUITY UPC2 CSH Fluoro-Phenyl • Good retention of weak bases • Alternate elution for acidic and neutral compounds • Vitamin D metabolites, steroids, natural products

ACQUITY UPC2 HSS C18 SB • Reversed-phase-like selectivity • Fat soluble vitamins, lipids (Free fatty acids)

Scalable to larger particle sizes ACQUITY UPC2/Viridis BEH (1.7, 3.5 and 5 µm) ACQUITY UPC2/Viridis BEH 2-EP (1.7, 3.5 and 5 µm) ACQUITY UPC2/Viridis CSH Fluoro-phenyl (1.7, 3.5 and 5 µm) ACQUITY UPC2 HSS C18 SB (1.8 and 3.5 µm)

©2015 Waters Corporation 11

Built upon proven UPLC Technology – Quantifiable increase in productivity – Ultra-low dispersion enable the use of small

diameter particles

Exceptional increase in available selectivity – Solve routine & complex separation challenges

2012 Pittcon Editors Gold Award 2013 Green Innovation Award 2013 Best New Separation Product 2013 R&D 100 Award

©2015 Waters Corporation 12

ACQUITY UPC2 Flow Path and Components

Inject valve

Auxiliary Inject valve

Column Manager

PDA detector

Back Pressure Regulator (Dynamic and Static)

Waste Modifier CO2 Supply CO2

Pump Modifier

Pump

mixer Thermo-electric heat exchanger

Make-up Pump

Mass Spec

Splitter

©2015 Waters Corporation 13

UPC2 Configuration for MS

UV Detector Make-Up Pump

Convergence Manager MS

©2015 Waters Corporation 14

The Key Benefits of UPC²

Simplify the workflow with UPC2

– Combine multiple techniques (LC & GC into CC) – Access robust normal phase separations – Eliminate solvent exchange steps for organic extracts

Deal with compound Similarity challenges – Chiral Separations (enantiomers & diastereomers) – Positional isomers (differ in location of functional groups)

Deliver Orthogonal separations

– Different relative retention helps ensure full characterization – Check method specificity by comparison to a second

procedure – Reveal “hidden” impurity or degradation peaks – Increase confidence in characterization of complex samples

SIMPLICITY

SIMILARITY

ORTHOGONALITY

©2015 Waters Corporation 15

Oligomeric Materials

©2015 Waters Corporation 16

UPC2 Polymer Separations:- Polystyrene

AU

0.00

0.20

0.40

0.60

0.80

AU

0.00

0.20

0.40

0.60

0.80

AU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Column: Waters ACQUITY UPLC HSS Cyano 1.8 um, 3x100 mm. Gradient: 10 %B to 45 %B over 3 min, hold for 30 s, back to 10 % B in 30 s Flow rate: 1.7 mL/min, ABPR: 2800 psi

PS-1000

PS-2500

PS-1300

©2015 Waters Corporation 17

UPC2 Polymer Separations:- PMMA

AU

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Minutes1.00 2.00 3.00 4.00 5.00 6.00

AU

0.000

0.002

0.004

0.006

0.008

Minutes2.00 4.00 6.00 8.00 10.00 12.00 14.00

Column: Waters ACQUITY UPLC HSS Cyano 1.8 um, 3x100 mm. Flow rate: 2.0 mL/min, ABPR: 2000 psi. Gradient: 5 %B to 30 %B over 15 min, hold for 1 min, back to 5 %B in 0.1 min

PMMA-2500

PMMA-4250

Column: Waters ACQUITY UPLC HSS Cyano 1.8 um, 3x100 mm. Flow rate: 2.0 mL/min, ABPR: 2000 psi Gradient: 5 %B to 25 %B over 5 min, then to 30 %B over 1 min, back to 5 %B in 0.1 min.

©2015 Waters Corporation 18

UPC2 Polymer Separations:- Triton X-100

Non-ionic surfactant: used in cosmetics, industrial materials, and as detergents

Composition requires monitoring – Differences in ethoxy chain length affect viscosity, solubility, polarity,

and other characteristics of the product

NP-HPLC

HT-GC

SFC

©2015 Waters Corporation 19

UPC2 Polymer Separations:- Triton X-100

System: ACQUITY UPC2 with UPC2PDA Column: ACQUITY UPC2 BEH 2.1mm x 50mm, 1.7µm Mobile Phase: A: CO2 B: Methanol Wash Solvents: 70:30 Methanol:Isopropanol Separation Mode: Gradient starting at 2% B to 35% over 1.25 minutes, back to 2% B in 5 s Flow Rate: 2.0 mL/min ABPR: 1500 psi Column Temp.: 40°C Injection Volume: 1.0 µL Run Time: 2 minutes Detection: PDA 3D Channel: PDA, 210-400nm; PDA 2D Channel: 222nm @ 4.8nm Resolution (Compensated 380-480nm) CDS: Empower® 3 CDS

©2015 Waters Corporation 20

Peak1 -

0.2

71

Peak2 -

0.4

55

Peak3 -

0.5

74

Peak4 -

0.6

62

Peak5 -

0.7

33

Peak6 -

0.7

92

Peak7 -

0.8

41

Peak8 -

0.8

84

Peak9 -

0.9

21

Peak10 -

0.9

54

Peak11 -

0.9

85

Peak12 -

1.0

13

Peak13 -

1.0

41

Peak14 -

1.0

67

Peak15 -

1.0

93

Peak16 -

1.1

19

Peak17 -

1.1

58

Peak18 -

1.1

88

Peak19 -

1.2

17

Peak20 -

1.2

48

AU

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

Minutes0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Triton X 100

UPC2 Polymer Separations:- Triton X-100

• CO2 and Methanol gradient @ 40°C • 75s to elute all components • Approx. 20 oligomers separated and detected

1.5 mins

©2015 Waters Corporation 21

Column Name: SampleName: triton h/e 65 deg 3-20 gr 20 mni Date Acquired: 8/16/2012 8:44:13 AM EDT Instrument Method Id: 8156 Injection Id: 8174

AU

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

UPC2 Polymer Separations:- Triton X-100

Optimise separation for resolution (20 mins run time) See significant fine structure Ability to detect and monitor minor components and by-products

©2015 Waters Corporation 22

UPC2 Polymer Separations:- Condensation co-polymer synthesis

Bisphenol A and formaldehyde condensation co-polymer

Formaldehyde

Bisphenol A

Resin “Trimer”

©2015 Waters Corporation 23

UPC2 Polymer Separations:- Condensation co-polymer synthesis

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00

Unknown m/z 227

Dimer m/z 467

Trimer m/z 707

UPC2 with UV and MS detection

©2015 Waters Corporation 24

UPC2 Polymer Separations:- Condensation co-polymer synthesis

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Minutes0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Combined - SQ 1: MS Scan 1: 200.00-2000.00 ES-, Centroid, CV=Tune

227.0

271.0

Inten

sity

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

m/z200.00 250.00 300.00 350.00 400.00

Sample Mass spectrum

Bisphenol-A standard

Mass spectrum

©2015 Waters Corporation 25

UPC2 Polymer Separations:- Poly [Phenylglycidyl ether–co-formaldehyde]

Potentially complex mixture of oligomers depending on where linkage occurs between the units.

3 Potential dimers are shown below

Phenylglycidyl ether

+ Formaldehyde

Dimers

(1)

(2)

(3)

©2015 Waters Corporation 26

UPC2 Polymer Separations:- Poly [Phenylglycidyl ether–co-formaldehyde]

Dim

er 1

Trim

er 1

Dim

er 2

D

imer

3

Trim

er 2

Tr

imer

3

Trim

er 5

Tr

imer

4

Trim

er 6

Trim

er 7

UPC2 with UV detection

©2015 Waters Corporation 27

UPC2 Polymer Separations:- Poly [Phenylglycidyl ether–co-formaldehyde]

Inte

nsity

0.0

5.0x107

1.0x108

1.5x108

2.0x108

Minutes0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

Dimers m/z 312

Trimers m/z 474 Tetramers

m/z 636

m/z 404 m/z

402

m/z 404 m/z 402

UPC2 with MS detection

©2015 Waters Corporation 28

Extractable Materials

©2015 Waters Corporation 29

“Hot Topic” – Extractables & Leachables

Focus from .. Packaging and Coatings Industries Consumer Product Manufacturers Cosmetics and Personal care Producers

Focus on … Extractables Leachables Intentionally added substances (IAS) Non-intentionally added substances (NIAS)

Focus because … Regulation

©2015 Waters Corporation 30

Typical extractables, IAS and NIAS

Impurities in starting materials

Chemical additives, plasticizers, antioxidants and contaminants present in individual polymers

Monomers & oligomers from incomplete polymerization

Volatile compounds from secondary packaging; inks, adhesives

Residual compounds from the surfaces of the molding equipment, antistatics etc

©2015 Waters Corporation 31

Controlled extraction study

4 material types – High Density Polyethylene bottle (HDPE) – Low Density Polyethylene container (LDPE) – Ethylene Vinyl Acetate plasma bag (EVA) – Polyvinyl Chloride blister pack (PVC)

3 different extraction solvents /

techniques – Water (Conventional oven) – Isopropanol (with Microwave and ASFE) – Hexane (with Microwave and Soxhlet)

3 separation techniques – GC – UPLC – UPC2 Apps Note 720004509en.pdf

Apps Note 720004490en.pdf

©2015 Waters Corporation 32

Irgafos 168

5-chloro-2-hydroxy-4-methylbenzophenone (5-Cl-2-OH-4-methyl BP)

Diphenyl phthalate Uvitex OB

Irganox 245

Irganox 1076

4-hydroxy-2-octyloxybenzophenone (4-OH-2-octyloxy BP)

Tinuvin 328 Irganox 1010 Lowinox 44B25

Irganox 1330

BHT

Naugard 445

Tinuvin P

Structures of Polymer Additives Investigated

©2015 Waters Corporation 33

4 min separation by UPC2 vs. 9.5 min by UPLC

UPC2

BH

T

5-Cl-

2-O

H-4

-met

hyl B

P

Tinu

vin

P

Tinu

vin

328

Irga

fos

168

2-O

H-4

-oct

ylox

y BP

Irga

nox

1076

Dip

heny

lpht

hala

te

Uvi

tex

OB

Nau

gard

445

Irga

nox

1330

Irga

nox

1010

Ir

gano

x 24

5 Lo

win

ox 4

4B25

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Minutes 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00

5-Cl-

2-O

H-4

-met

hyl B

P

UPLC

Tinu

vin

P

Dip

heny

l pht

hala

te

BH

T

Irga

nox

245

Low

inox

44B

25

4-O

H-2

-oct

ylox

y BP

Uvi

tex

OB

Nau

gard

445

Tinu

vin

328

Irga

nox

1076

Irga

nox

1330

Irga

nox

1010

Irga

fos

168 A

U

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Minutes 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00

Chromatographic separations

©2015 Waters Corporation 34

Irgafo

s 1

68

Irganox 1

076 Ir

ganox 1

010

AU

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00

UV chromastogram of LDPE SFE extract analysed by UPC2

©2015 Waters Corporation 35

Inte

nsity

0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

Minutes0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Combined - SQ 1: MS Scan 1: 200.00-1200.00 ES+, Centroid, CV=Tune

475.5

476.5 531.6

548.6

549.6

553.6

554.6 569.5

Inte

nsity

0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

2.0x107

m/z450.00 460.00 470.00 480.00 490.00 500.00 510.00 520.00 530.00 540.00 550.00 560.00 570.00 580.00 590.00 600.00

Confirmation of identity using MS

Inte

nsity

0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

Minutes0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Combined - SQ 1: MS Scan 1: 200.00-1200.00 ES+, Centroid, CV=Tune

475.5

476.5 531.6

548.6

549.6

553.6

554.6 572.6

Inte

nsity

0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

2.0x107

2.2x107

m/z450.00 460.00 470.00 480.00 490.00 500.00 510.00 520.00 530.00 540.00 550.00 560.00 570.00 580.00 590.00 600.00

Peak in LDPE extract

Peak from Irganox 1076 std

©2015 Waters Corporation 36

Workflow Benefit of ACQUITY UPC2 for the Analysis of Polymer Extracts

Non-Polar Solvent Extraction

Polar Solvent Extraction

Inject direct on GC

Evaporate and reconstitute in a more polar solvent for

LC injection

Inject direct on LC

Back-extract with a non-polar solvent for GC injection

Polar or Non-Polar Extraction

Inject direct On UPC2

©2015 Waters Corporation 37

Analytical Scale SFE (MV-10 ASFE) Advantages of SFE

Little to No Residual Solvents Superior Yield and Purity Lower Operating Costs Processes Thermolabile Compounds Safe Scalable Variable solvent power (Tunable) Gas-like mass transfer Zero surface tension SC-CO2 has high affinity with organic solvents

©2015 Waters Corporation 38

Analytical Supercritical Fluid Extraction

Low IPA SFE

High IPA SFE

Soxhlet

Microwave

Column Name: 2-EP SampleName: LDPE high IPA SFE Date Acquired: 9/6/2012 9:28:52 PM EDT Instrument Method Id: 1953 Injection Id: 2310

AU

-0.005

0.000

0.005

0.010

0.015

Column Name: 2-EP SampleName: LDPE low IPA SFE Date Acquired: 9/6/2012 8:41:45 PM EDT Instrument Method Id: 1953 Injection Id: 2266

AU

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Column Name: 2-EP SampleName: LDPE IPA sox Date Acquired: 9/6/2012 6:38:07 PM EDT Instrument Method Id: 1953 Injection Id: 2151

AU

-0.005

0.000

0.005

0.010

0.015

0.020

Column Name: 2-EP SampleName: LDPE IPA mw Date Acquired: 9/6/2012 5:50:59 PM EDT Instrument Method Id: 1953 Injection Id: 2107

AU

-0.005

0.000

0.005

0.010

Minutes0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00

©2015 Waters Corporation 39

SIMPLICITY

SIMILARITY

ORTHOGONALITY

©2015 Waters Corporation 40

Expanding selectivity with Convergence Chromatography (CC) – Principles of CC

Understanding the technology and the instrument

Getting started with CC Method development Applications

[Click Here] for Web Overview

Order a Paper Copy [Here]

Available Now Convergence Chromatography Primer