ens466 week11.final

Upload: kaetham

Post on 01-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 ENS466 Week11.Final

    1/13

    11/20

    ENS/ELT466

    TelecommunicationSystemsLab

    Fall2013

    Week11 Nov.19

    TransmissionLines&RF

    Techniques

    TelecommunicationSystemsLab(ENS466)

    Fall2013

    Week11 Nov.19

  • 8/9/2019 ENS466 Week11.Final

    2/13

    11/20

    RadioFrequencies

    Classification Frequency(f) Wavelength()

    Lowfrequency(LF) 30KHz300KHz 10km1km

    Mediumfrequency(MF) 300KHz3MHz 1km100m

    Highfrequency(HF) 3MHz30MHz 100m10m

    Veryhighfrequency(VHF) 30MHz300MHz 10m1m

    Ultrahighfrequency(UHF) 300MHz3GHz 1m10cm

    Superhighfrequency(SHF) 3GHz30GHz 10cm1cm

    Extremelyhighfrequency(EHF) 30GHz300GHz 1cm1mm mmwaves

    shortwaves

    microwaves

    mediumwaveslongwaves

    DataTransferRate

    Inweek5,weintroducedradiofrequency(RF)wavesandmicrowaves,whichare

    electromagnetic(EM)waveswithfrequenciesfrom3x104 Hzto3x1011 Hz.

    Higherfrequenciesoffermorebandwidthfordatatransmission,buttheyrequire

    specialtechniquesindevicedesignandcircuitwiring.

    Wavelengthvs.WireLengthWhenEMwavestravelthroughvacuumorair,theirvelocityisclosetothespeedof

    lightinavacuum,c,andtheirwavelengthisgivenby:

    c

    f

    8299,792,458 m/sec 3 10 m/secc x

    Onceadeviceorawirebecomesaslongasafractionofawavelength(sayL~/10),thewavescrestswillreachdifferentpartsofthedeviceatdifferenttimes,

    invalidatinglowfrequencyanalysisandrequiringtheuseofRFtechniques.

    Forexample,ifa1kmwireisusedtoconnectahometoatelephoneswitchingoffice,

    lowfrequencytechniquescannotbeusedforf>30kHz. Abreadboardcircuitinthe

    labmayuseonly~1morsooftotalwiring,suggestingalimitof30MHz,butthe

    inductancesandcapacitancesinthecircuitcontributedelaysaswell,makingthelimit

    lower,ontheorderofafewMHz.

  • 8/9/2019 ENS466 Week11.Final

    3/13

    11/20

    GuidedWavesEMwavescanalsopropagatealongwires,inwhichcasetheyarecalledguided

    waves.

    Many

    cases

    of

    interest

    involve

    two

    conductors

    whose

    cross

    section

    and

    spacingaremaintainedconstantalongtheirlength. Examplesofsuchtransmission

    lines

    includetwinleadandcoaxialcable:

    Coaxial

    cable

    is

    the

    workhorse

    of

    RF

    systems,

    including

    cable

    TV

    distribution

    networks,labinstruments,andmobilephonetowerwiring. Coaxialcableishighly

    resistanttoelectricalinterferencefromexternalfields.

    twinlead coaxialcable

    PropagationVelocityMaxwellsequationscanbeusedtosolveforthespeedofEMwavesinatransmission

    line.

    r

    cv

    Foracoaxialcablewithidealconductorsandnonmagneticinsulators,theformulais:

    where isthedielectricconstant(a.k.a.relativepermittivity)ofthedielectric

    material.r

  • 8/9/2019 ENS466 Week11.Final

    4/13

    11/20

    TransmissionLineCircuitModelThecircuitmodelofauniform(lossless)

    transmission

    line

    consists

    of

    identical

    LC

    sectionsgangedtogether. Aseachsection

    chargesup,itpassesthewavealongtothe

    nextsection.

    1v

    LC

    Withinthiscircuitmodel,thepropagation

    velocityis:

    where istheinductanceperunitlength

    and isthecapacitanceperunitlengthof

    theparticularcableused.

    L

    C

    DelayExampleIfacellphonetransmitterisconnectedtoitsantennabya200mRG8A/Ucable

    whoseinductanceis73.75nH/ft andwhosecapacitanceperunitlengthis29.5pF/ft,

    howmuchtimedelaydosignalsexperienceinthecable?

    9 12

    1

    200 39.3773.75 10 29.5 10

    12

    0.97

    x xt x LC

    v LC

    t

    t s

    Whenapplyingtheformulas,makesureyourlengthandtimeunitsareconsistent!

  • 8/9/2019 ENS466 Week11.Final

    5/13

    11/20

    CharacteristicImpedanceSolvingMaxwellsequationsforguidedwavesrevealsaconsistentrelationbetween

    the

    current

    flowing

    in

    the

    conductors

    and

    the

    voltage

    between

    them,

    defining

    the

    characteristic

    impedance

    (Z0)ofthetransmissionline. Likethewavevelocity,Z0dependsonthesizeandpositionoftheconductorsandthedielectrics. Foranideal

    coaxialcable,thecharacteristicimpedanceis:

    0 10 0

    138log

    r

    D LZ or Z

    d C

    wheredisthediameteroftheinnerconductorandDistheinnerdiameterofthe

    outerconductor.

    Z0istiedtomanyimportantpropertiesofthecableitself,aswellasaffectingthe

    circuitstowhichthecableisattached.

    AttenuationTheattenuationorlossofRFcables,oftenstatedindB/m,riseswithfrequency. This

    isduetoskineffectintheconductorsaswellasdielectriclosses. Theattenuationis

    alsohigherinsmallercables.

    AttenuationalsodependsontheZ0ofthecoaxialcable.

    from microwaves101.comdB/meter@

    f=10GHz

    d=0.25

    Frequency(MHz)

    Attenuation(dB/km)

    d=0.102

    d=0.032

    Thismeansatradeoffbetweencableweight/flexibility/costandattenuation.

  • 8/9/2019 ENS466 Week11.Final

    6/13

    11/20

    Z0ExampleWhatisthecharacteristicimpedanceofacablewhosecenterconductorhasa

    diameter

    of

    0.0362,

    whose

    shield

    has

    an

    inner

    diameter

    of

    0.1175,

    and

    whose

    dielectrichasarelativepermittivityof2.0?

    Infact,thisisastandardsizeofsemirigidcoppercoaxusuallyreferredtobyits

    outerdiameterof0.141.

    Generally,labinstrumentsandRFinterconnectsuseZ0=50,whilecableTVsystemsuseZ0=75.

    D

    d0 10 10

    0

    138 138 0.1175log log

    0.03622

    138.511 49.9

    1.414

    r

    DZ

    d

    Z

    Matched(NonResonant)LineWhentheloadimpedanceattachedtotheendofthetransmissionlineispurely

    resistiveandequaltoZ0,thereisnoreflectionandalloftheRFpowerisdeliveredto

    theload.

    Z0Zin=Z0 RL=Z0

    TheimpedanceZinseenbythesourceispurelyresistiveandequaltoZ0regardlessof

    thelinelengthx orfrequency.

    lengthx

  • 8/9/2019 ENS466 Week11.Final

    7/13

    11/20

    Mismatched(Resonant)LineWhentheloadimpedanceattachedtotheendofthetransmissionlineisnotequalto

    Z0,

    reflections

    occur.

    Part

    (or

    all)

    of

    the

    RF

    power

    is

    reflected

    back

    to

    the

    source.

    IfRL>Z0thereflectionwillhavethesamesignastheincidentwave,butifRL< Z0the

    reflectionwillhaveinvertedsign.

    Z0Zin=?? RL>Z0

    Z0Zin=?? RLZ0

    ProblemslikethisareoftensolvedbytheuseofagraphiccalculatorcalledtheSmith

    chart. (Note:wewillnotstudySmithchartsinthisclass.)

    0

    0

    0

    tan 2

    tan 2

    L

    TL

    in

    L

    TL

    xZ jZ

    Z Z

    xZ jZ

  • 8/9/2019 ENS466 Week11.Final

    8/13

    11/20

    QuarterWaveTransformerAstheelectricallengthofthemismatchedtransmissionlineapproachesonequarter

    of

    a

    wave

    (i.e.

    x

    TL/4)

    the

    input

    impedance

    Zinbecomes

    :

    Thus,anysourceresistancecanbematchedtoanyloadresistance(foraspecific

    frequency)byinsertingaTL/4 transmissionline sectionwithimpedanceZ0,where:

    00in

    L

    ZZ Z

    Z

    0 in LZ Z Z

    Thisincludesthecasewherethesourceitselfisanothertransmissionline.

    StandingWavesTravelingwave+backreflection=standingwave.

    time=0

    time=1T/8

    time=2T/8

    time=3T/8

    time=4T/8

    time=5T/8

    time=6T/8

    time=7T/8

    distance0/2

    openckt

    voltagewaves currentwaves

    foldbackfor

    reflectedwave

    Thesumofthetraveling

    wavesintheforward&

    backwarddirectionsisa

    wavethatjustoscillates

    inthesameplace.

  • 8/9/2019 ENS466 Week11.Final

    9/13

    11/20

    StandingWaves(II)Reflectionfromashortcircuitcreatesstandingwaveswithvoltage&current

    interchanged.

    time=0

    time=1T/8

    time=2T/8

    time=3T/8

    time=4T/8

    time=5T/8

    time=6T/8

    time=7T/8

    distance0/2

    shortckt

    currentwaves voltagewaves

    foldbackfor

    reflectedwave

    Thestandingwavefrom

    ashortcircuithas

    voltagenullsatx=0,

    x=/2,x=,...

    VSWRAlthoughmismatchedlinescanbeusefulinsomesituations,reflectionsin

    communicationchannelsaregenerallyabadthing. Reflectionsduetomismatch

    cause:

    lossofsignalpower

    Instabilityofsourceswhenbackwardpoweriscoupledintothem

    Overloadingoflines

    Multipathinterferencefrommultiplereflectionpoints.

    max

    min

    1

    1

    VVSWR

    V

    MismatchreflectionsareoftencharacterizedbytheVSWR

    (voltage

    standing

    wave

    ratio),givenby:

    whereisthereflectioncoefficientdefinedearlier. NotethatVSWRis1foraperfectmatchand foranopenorashortcircuit.

  • 8/9/2019 ENS466 Week11.Final

    10/13

    11/20

    MaximumFrequency MultimodingAtlowfrequencies,thereisonlyonepossiblesolutionforMaxwellsequationsin

    coaxial

    cable.

    However,

    as

    the

    frequency

    rises

    beyond

    the

    single

    mode

    cutoff,

    additionalsolutions(modes)appearwithdifferentvelocitiesandcharacteristic

    impedances.

    Inthemultimoderegion,pulsesbecomedistortedandreflectionsarepractically

    impossibletoeliminate,socoaxisrarelyusedatthosefrequencies. Thesinglemode

    cutoffforanidealcoaxisapproximately:

    min

    max2

    2

    TL

    r r

    D d cf

    D d

    The

    practical

    effect

    of

    this

    formula

    is

    that

    smaller

    coax

    diameters

    must

    be

    used

    at

    higherfrequencies,leadingtohigherlosspermeterandlowermaximumpower

    rating.

    CoaxConnectors

    from microwaves101.com

    Justlikethecablesthemselves,coaxconnectorsgetsmallerastheworkingfrequency

    goesup:

    Thehighestfrequencyconnectorsarethemostdelicate theymustbekeptcleanand

    neverovertightened. Torquewrenchesarerequiredforinstrumentgraderesults.

  • 8/9/2019 ENS466 Week11.Final

    11/13

    11/20

    Striplines (RFonBoard)Coaxialcableisnotsuitedtomicrofabrication,somonolithicICs&printedcircuit

    boards

    need

    a

    different

    solution.

    Two

    of

    the

    most

    common

    are

    microstrip line

    and

    coplanarwaveguide:

    metalguide

    structures

    dielectric

    substrate

    metal

    groundplane

    microstrip line coplanarwaveguide

    Summary ATRFandmicrowavefrequencies,wemustaccountforthephysicalsizeof

    componentsandsystems.

    Guidedwavesareelectromagneticwavesthatpropagatealongapairedconductorstructurecalledatransmissionline.

    Eachtypeoftransmissionlinestructurehasapropagationvelocityvsomewhatlowerthanc(thespeedoflightinavacuum)andacharacteristicimpedanceZ0.

    Themostcommontransmissionlineatradiofrequenciesisthecoaxialcable. Ithas

    Theattenuation(dB/m)ofatransmissionlineincreasesasitsconductorsgetsmaller.

    When

    Z0of

    the

    line

    matches

    the

    load

    resistance

    (non

    resonant

    line),

    all

    the

    power

    istransferredtotheload,thereisnostandingwave,andtheVSWR=1.

    WhenZ0ofthelinedoesnot matchtheloadresistance(resonantline),someorallpowerisreflected,theVSWR>1,andastandingwaveoccurs.

    ThemaximumfrequencyatwhichagivenT.L.isusefulissetbytheonsetofhighermodes.

    OnPCboardsandmicrowaveICs,microstrip lineandcoplanarwaveguidemaybeused.

    0 10

    138log

    r

    D LZ

    d C

    1

    r

    cv

    LC

  • 8/9/2019 ENS466 Week11.Final

    12/13

    11/20

    ENS466/ELT466 Assignments LabReport:

    Labreport#11willcoverLabAssignment11(thisweekslab);itisdueatthestart

    ofclasson11/26. Reading:

    tobepostedonBlackBoard.

    Nextweek:

    FiberOpticsandLaserSafety

    NewIEEEStudentChapter@CSIIEEE(theInstituteofElectricalandElectronicsEngineers)istheworldsleadingprofessionalsocietyforelectronicengineering.

    Localchapteractivitiesareagreatwaytomeetpeopleandlearnaboutdifferentbranchesofthefield. (andafreelunchissometimesincluded!)

  • 8/9/2019 ENS466 Week11.Final

    13/13

    11/20

    Backups/Alternates

    TelecommunicationSystemsLab

    (ENS466)

    Fall2013

    PSDsofBinaryFormats

    (unipolar)NRZ

    randomdata

    PSD

    (unipolar)NRZ

    101010...

    PSD

    Manchestercode

    randomdata

    f1

    bT

    2

    bT

    Millercode

    randomdata

    f1

    bT

    2

    bT

    PSD=PowerSpectralDensity;sinc(x)=sin(x)/x.