environmental development and local human impact in the … · falko turner, key laboratory of...

16
95 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License E & G Quaternary Science Journal Volume 64 / Number 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 www.quaternary-science.net GEOZON SCIENCE MEDIA ISSN 0424-7116 Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven Johann Friedrich Tolksdorf, Falko Turner, Oliver Nelle, Swetlana Peters, Helmut Brückner How to cite: Tolksdorf, J.F., Turner, F., Nelle, O., Peters, S. & Brückner, H. (2015): Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven. – E&G aternary Science Journal, 64 (2): 95–110. DOI: 10.3285/eg.64.2.04 Abstract: While archaeological records indicate an intensive Mesolithic occupation of dune areas situated along river valleys, relatively lile knowledge exists about environmental interactions in the form of land-use strategies and their possible local impacts. e combination of geoarchaeological, chronological, geochemical and palaeoecological research methods and their application both on a Mesoltihic site situated on top of a dune and the adjacent palaeochannel sediments allows for a detailed reconstruc- tion of the local environmental development around the Soven site in the Jeetzel valley (Northern Germany) since ~10.5 ka cal BP. Based on the results, we identified four phases that may be related to local human impact twice during the Mesolithic, the Neolithic and the Iron Ages and are discussed on the backdrop of the regional selement history. Although nearby Meso- lithic occupation is evident on archaeological grounds, the identification of synchronous impacts on the vegetation in the local environmental records remains tentative even in respect of the broad methodical spectrum applied. Vice versa, human impact is strongly indicated by palaeoecological and geochemical proxies during the Neolithic period, but cannot be connected to ar- chaeological records in the area so far. A younger phase of human impact – probably consisting of seasonal livestock farming in the wetlands – is ascribed to the Iron Age economy and comprises local soil erosion, raised concentrations of phosphates and urease, and the facilitation of grazing related taxa. Umweltveränderungen und lokaler anthropogener Einfluss in der Jeetzel-Niederung (Norddeutschland) seit 10 ka BP im Spiegel eines gekoppelten äolisch-limnischen Sedimentarchivs bei Soven Kurzfassung: Während die archäologischen ellen eine intensive mesolithische Besiedlung der in den Flussniederungen gelegenen Dünen anzeigen, gibt es bislang erst wenige Erkenntnisse zur Mensch-Umwelt-Interaktion in Form von Landnutzungsstrategien und ihres potentiellen Einflusses auf die Landschaſt. Die Kombination geoarchäologischer, chronologischer, geochemischer und pa- läoökologischer Methoden und ihre Anwendung sowohl auf den Bereich der mesolithischen Fundstelle auf einer Dünenkuppe als auch die Verlandungssedimente eines benachbarten Altarmes erlaubte eine detaillierte Rekonstruktion der Landschaſtsge- schichte bei Soven in der Jeetzel-Niederung (Norddeutschland) seit etwas 10,5 ka cal BP. Ausgehend von diesen Ergebnissen wurden vier Zeitphasen identifiziert, die mit lokalem menschlichen Umwelteinfluss während des Mesolithikums, des Neoli- thikums und der Eisenzeit in Verbindung stehen könnten und vor dem Hintergrund der Landnutzungsgeschichte diskutiert werden. Obwohl eine mesolithische Besiedlung wegen der archäologischen Befunde unzweifelhaſt ist, bleibt die Identifizierung zeitgleicher Umweltbeeinflussungen in den Landschaſtsarchiven trotz des breiten Methodenspektrums hypothetisch. Im Gegen- satz dazu legen die paläoökologischen und geochemischen Indikatoren einen menschlichen Umwelteinfluss für die neolithische Epoche nahe, doch fehlen nun die archäologischen Funde für diesen Zeitraum im näheren Umfeld. Eine jüngere Phase mensch- licher Umweltveränderung – wahrscheinlich in Form saisonaler Weidewirtschaſt in der Niederung – wird der Eisenzeit zuge- schrieben und umfasst Bodenerosion, erhöhte Phosphat- und Ureasekonzentrationen und die Ausbreitung von Weidezeigern. Keywords: Iron Age, Neolithisation, Mesolithic, OSL, human impact, aeolian sands, pollen, arcoal Addresses of authors: Johann Friedri Tolksdorf*, Archaeological Heritage Office Saxony. E-Mail: [email protected]; Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL), Institute of Tibetan Pla- teau Research, Chinese Academy of Sciences, Beijing; Institute for Geosystems and Bioindication, Technical University of Braunschweig; Oliver Nelle, State Heritage Office in Baden-Würemberg, Dendrochronology Laboratory; Swetlana Peters, University of Frankfurt, Institute of Physical Geography; Helmut Brüner, University of Cologne, Institute of Geography. *corresponding author

Upload: others

Post on 20-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

95E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

E&G Quaternary Science Journal Volume 64 / Number 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04

www.quaternary-science.net

GEOZON SCIENCE MEDIA

ISSN 0424-7116

Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven

Johann Friedrich Tolksdorf, Falko Turner, Oliver Nelle, Swetlana Peters, Helmut Brückner

How to cite: Tolksdorf,J.F.,Turner,F.,Nelle,O.,Peters,S.&Brückner,H.(2015):EnvironmentaldevelopmentandlocalhumanimpactintheJeetzelvalley(NGermany)since10kaBPasdetectedbygeoarchaeologicalanalysesinacoupledaeolianandlacustrinesedimentarchiveatSoven.–E&GQuaternaryScienceJournal,64(2):95–110.DOI:10.3285/eg.64.2.04

Abstract: WhilearchaeologicalrecordsindicateanintensiveMesolithicoccupationofduneareassituatedalongrivervalleys,relativelylittleknowledgeexistsaboutenvironmentalinteractionsintheformofland-usestrategiesandtheirpossiblelocalimpacts.Thecombinationofgeoarchaeological, chronological, geochemical andpalaeoecological researchmethodsand their applicationbothonaMesoltihicsitesituatedontopofaduneandtheadjacentpalaeochannelsedimentsallowsforadetailedreconstruc-tionofthe localenvironmentaldevelopmentaroundtheSovensite intheJeetzelvalley(NorthernGermany)since~10.5kacal BP.Basedontheresults,weidentifiedfourphasesthatmayberelatedtolocalhumanimpacttwiceduringtheMesolithic,theNeolithicandtheIronAgesandarediscussedonthebackdropoftheregionalsettlementhistory.AlthoughnearbyMeso-lithicoccupationisevidentonarchaeologicalgrounds,theidentificationofsynchronousimpactsonthevegetationinthelocalenvironmentalrecordsremainstentativeeveninrespectofthebroadmethodicalspectrumapplied.Viceversa,humanimpactisstronglyindicatedbypalaeoecologicalandgeochemicalproxiesduringtheNeolithicperiod,butcannotbeconnectedtoar-chaeologicalrecordsintheareasofar.Ayoungerphaseofhumanimpact–probablyconsistingofseasonallivestockfarminginthewetlands–isascribedtotheIronAgeeconomyandcompriseslocalsoilerosion,raisedconcentrationsofphosphatesandurease,andthefacilitationofgrazingrelatedtaxa.

Umweltveränderungen und lokaler anthropogener Einfluss in der Jeetzel-Niederung (Norddeutschland) seit 10 ka BP im Spiegel eines gekoppelten äolisch-limnischen Sedimentarchivs bei Soven

Kurzfassung: WährenddiearchäologischenQuelleneineintensivemesolithischeBesiedlungderindenFlussniederungengelegenenDünenanzeigen,gibtesbislangerstwenigeErkenntnissezurMensch-Umwelt-InteraktioninFormvonLandnutzungsstrategienundihrespotentiellenEinflussesaufdieLandschaft.DieKombinationgeoarchäologischer,chronologischer,geochemischerundpa-läoökologischerMethodenundihreAnwendungsowohlaufdenBereichdermesolithischenFundstelleaufeinerDünenkuppealsauchdieVerlandungssedimenteeinesbenachbartenAltarmeserlaubteeinedetaillierteRekonstruktionderLandschaftsge-schichtebeiSoveninderJeetzel-Niederung(Norddeutschland)seitetwas10,5ka cal BP.AusgehendvondiesenErgebnissenwurdenvierZeitphasen identifiziert,diemit lokalemmenschlichenUmwelteinflusswährenddesMesolithikums,desNeoli-thikumsundderEisenzeit inVerbindungstehenkönntenundvordemHintergrundderLandnutzungsgeschichtediskutiertwerden.ObwohleinemesolithischeBesiedlungwegenderarchäologischenBefundeunzweifelhaftist,bleibtdieIdentifizierungzeitgleicherUmweltbeeinflussungenindenLandschaftsarchiventrotzdesbreitenMethodenspektrumshypothetisch.ImGegen-satzdazulegendiepaläoökologischenundgeochemischenIndikatoreneinenmenschlichenUmwelteinflussfürdieneolithischeEpochenahe,dochfehlennundiearchäologischenFundefürdiesenZeitraumimnäherenUmfeld.EinejüngerePhasemensch-licherUmweltveränderung–wahrscheinlichinFormsaisonalerWeidewirtschaftinderNiederung–wirdderEisenzeitzuge-schriebenundumfasstBodenerosion,erhöhtePhosphat-undUreasekonzentrationenunddieAusbreitungvonWeidezeigern.

Keywords: Iron Age, Neolithisation, Mesolithic, OSL, human impact, aeolian sands, pollen, charcoal

Addresses of authors:Johann Friedrich Tolksdorf*,ArchaeologicalHeritageOfficeSaxony.E-Mail:[email protected];Falko Turner,KeyLaboratoryofTibetanEnvironmentChangesandLandSurfacesProcesses(TEL),InstituteofTibetanPla-teauResearch,ChineseAcademyofSciences,Beijing;InstituteforGeosystemsandBioindication,TechnicalUniversityofBraunschweig; Oliver Nelle,StateHeritageOfficeinBaden-Württemberg,DendrochronologyLaboratory;Swetlana Peters, UniversityofFrankfurt,InstituteofPhysicalGeography;Helmut Brückner, UniversityofCologne,InstituteofGeography.*corresponding author

Page 2: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

96 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

1 Introduction

Onecrucialaspectofunderstandingprehistoriceconomi-cal systems is their ability to spread into marginal areasand toadapt todifferent resourcesand inhabitatedareason a locale scale. Situated in central Northern Germany,theareaoftheJeetzelvalleyissuchamarginalareacharac-terisedbyextensivelow-lyingwetlandsandisolatedduneridges providing potential areas for past human occupa-tion. Intensive archaeological investigations during the

lastdecadeshaveprovidedevidenceforphasesofhumanpresenceinthesewetlandsandespeciallyondunessincetheLatePalaeolithic,butareconstructionoflocalhumanimpacthasbeenassumedtobedifficultduetotherarityoflargepeatbogareasprovidingacontinuoussedimenta-tionsequenceforenvironmentalreconstruction.Withre-specttothesmall-scaledandpotentiallyephemeralnatureofland-useinthisarea,traditionalattemptstouselargerlakes in the adjacent areas forpalynological studies (e.g.Christiansen2008,Beug2011,Jahnsetal.2013)areonly

Fig. 1: A – Location of the Soven site within the North European Plain and the Jeetzel valley; B – Simplified geological map of the area of the Jeetzel valley.

Abb. 1: A – Lage der Fundstelle Soven in-nerhalb der Norddeutschen Tiefebene und der Jeetzel-Niederung; B – Vereinfachte geologische Übersichtskarte der Jeetzel-Niederung.

Page 3: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

97E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

of partial use for the detection of small-scale human ac-tivity.Theyare too remoteand localminorenvironmen-taldisturbancesaredifficulttodetectinsuchrecordsthatcomprise regional signals fromawiderarea (e.g.Sugita1994).Therefore,extensivepollencountsandhighresolu-tionanalysisinthesedistantrecordscannotreplacethede-sideratumformorelocalarchives.

Given the good results from palaeochannel sedimentsas localgeo-bio-archives(Turneretal.2013)andthere-location of aeolian sediments as sensitive indicator forsoilerosioninducedbyland-use(Tolksdorfetal.2013a),acombinationofbotharchivesisapromisingstrategytoinvestigate the land-usehistory in the Jeetzelvalley.Thereconstruction of land-use history will subsequently becomparedtothelocalarchaeologicalevidencetotestifitismirroredbytheenvironmentalproxies.

2 Geology and topography

Thestudy site is locatednearSoven in the Jeetzelvalley(northern Germany). The wider area is characterised by(glacio-)fluviatilesandsdepositedduring theWeichselianperiodintheElbeglacialvalley.Morainesascribedtodif-ferentphasesof theSaaliancomplexareformingasteepslopedelimitingthe Jeetzelvalleytothewest (Drawehn)as well as isolated ridges (Höhbeck, Langendorfer Geest,Öring,Lemgow)intheElbevalley(Meyer2000).LateGla-cialclimatedynamicswererelatedtohighfluviatileacitiv-itywithchangefromabraidedtomeanderingriverregimeintheJeetzelvalley.Duringchangesfromarelativelydrytohumidclimate,newrivercoursesformedduringthemid-YoungerDryasandthePreboreal-Borealtransition.Largepartsoftheabandoned,oldchannelsystemsremainedaspalaeochannellakesandwerefilledbylacustrineandtel-maticsedimentsconsecutively(Turneretal.2013).Dunesand aeolian cover sands have been deposited along the

Jeetzelriverandintheeasternpartofthearea(GartowerTannen)duringthePleniglacialandLateGlacial;theywerepartlyremobilisedbyhumanactivityduringtheHoloceneperiod (Tolksdorf et al. 2013a). That these dunes, espe-ciallythedunenearSovenstudiedhere(Fig.1),provideda favourablearea forprehistorichumanactivitieswithinthe surrounding wetlands is corroborated by a consider-ablenumberofMesolithicartefactsandcharredorganics(wood,shellsofhazelnut)thatwereexposedandcollectedfromseveraloutcrops resulting fromsandminingactivi-tiesandroadconstructioninthelasttwodecades.Regard-ingtheprevalenceofsimplemicrolithicpointsandscalenetriangleswithintheartefactassemblage,theoccupationofthedunenearSovenwaspreliminarilydatedtotheEarlytoMid-Mesolithicperiodfromapprox.10500to9000cal BP(Breest 1997a, Brodowski 1998). Younger artefacts havenot been detected in the direct vicinity so far. Based onhistoricalmapsfromthelate18thcenturythesurroundingareasmusthavebeenunderagriculturaluseatleastsincethattime(Fig.2A).

A reassessment of the site in 2009–2011 with a topo-graphic survey using DGPS measurements, aerial photo-graphsandsedimentcoresrevealedaseriesofpalaeochan-nelsintheimmediatevicinityofthedune.Toestimatethestratigraphical order of the channel generations, samplesweretakenfromthebasallacustrinesedimentsofthechan-nelfillsforpalynological investigations.Thespeciescom-positionwas compared to records from the Jeetzel valley(Lesemann1969,Christiansen2008,Turner2012,Turn-eretal.2013,Tolksdorfetal.2013b)toestimatetheirbi-ostratigraphicalposition.Basedontheseresults,apalaeo-channelwith theonsetof lacustrinesedimentation in theearlyHolocenewasidentifiedattheoutskirtsoftheduneaspotentialarchiveforthereconstructionofthelocalvegeta-tiondevelopmentduringtheHolocene(Fig.2B).Threepro-filesweresampledinastraightlinefromthetopofthedune

Liep ehöfen

Jeet

zel

SOV1

SOV2

SOV3

1

2

2

0 100mN

1 Channel abandoned since the Late Glacial

2 Channel abandoned since the Early HoloceneVillage

Sand pit

Conifer forest

Aeolian sandsProfilesCoring siteRoadRiver coursePool

B

Liepehöfen

Soven

Prabstorf

VillageMeadows/pasturesArable landRiver course

58815005882000

4441500

4441000

Land use around AD 1779

4441000

4441500

58815005882000

A

Fig. 2: A – Historical land-use based on a map from 1779 (Kurhannoversche Landesaufnahme); B – Site topography with analysed profiles SOV1–SOV3 and generations of river palaeochannels as derived from aerial photos and palynostratigraphically analysed sediment cores.

Abb. 2: A – Historische Landnutzung des Gebietes auf Grundlage einer Karte von 1779 (Kurhannoversche Landesaufnahme); B – Topographie der Fundstelle mit den analysierten Profilen SOV1–3 und den anhand von Luftbildern und palynostratigraphisch korrelierten Bohrungen rekonstruierten Altarmgenerationen.

Page 4: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

98 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

tothecentreofthepalaeochannelforarchaeological,sedi-mentologicalandpalaeobotanicalanalyses(Figs.2and3).

3 Methods3.1 Sampling strategy

The dune ridge with a maximum elevation of 15 m a.s.l.risesforaboutthreemetresabovethevalleyfloorandrep-resentsthemostprominenttopographicfeatureinthearea(Figs. 1 and 2). Profile SOV1 is located where Mesolithicartefactsandcharcoalswereexposed inasmallsandpit.Threeluminescencesamples(SOV1-1toSOV1-3)werecol-lectedtostudythesedimentationageoftheaeoliansands.For radiocarbon dating (14C) and anthracological studies,twocharcoalsampleswereextractedbydrysievingattwodifferentplaces from the rimof the sandpit in2009and2011;onesamplewastakenforpalynologicalanalysisfromthesamedepthasthearchaeologicalartefacts.TheprofileSOV2was recoveredat the southernbaseof theduneatthetransitionfromthevalleyfloortothepalaeochannel;itaimedatdetectingpotentialsedimentrelocationsinthisarea by sedimentological and palaeobotanical criteria, aswellasOSLageestimates(luminescencesamplesSOV2-1andSOV2-2).ThecoreSOV3was takenfromthedeepestpart of this structure at the closest distance to the duneprofiles forpalynologicalandsedimentologicalstudiesofthepalaeochannelsediments(Figs.2Band3).

3.2 Radiocarbon 14C-dating

WhileoneAMS-14Cageestimatewasobtainedfromchar-coals of the Mesolithic layer in SOV1, three AMS-14C

samples were dated from SOV3 in order to develop anage-depth model of sedimentation for the early to mid-Holocene.ThelowestsampleischarcoalfromPinus,-butsincethecharcoalcontentwastoolowintheupperpart,uncharredmacro-remainswereselectedfortheuppermost14Csample(cf.Table1).TheageswerecalibratedwithCalib6.0 (Stuiver & Reimers 1993) and the IntCal09 database(Reimeretal.2009).Toderiveageinformationforthelow-erpartoftheSOV3-sequence,aBayesiantime-depthmodelwascalculatedusingOxCal4.2(BronkRamsey2009)andap-sequencemodel(BronkRamsey2008).Duetothelownumberofdates, the resultsareconsideredas roughageestimatesonly.

3.3 Optically stimulated luminescence (OSL) dating

Thelastexpositionofthesedimentstosunlight(~timeofdeposition)wasdeterminedonsamples fromtheprofilesSOV1 and SOV2 using OSL to reconstruct the history oflocalsedimentrelocation.Aftertheextractionofsampleswithopaquetubesinthefield,thefurtherprocessingwasperformedinthelaboratoryundersubduedredlight.Sub-sequently to the extractionof thegrain size fraction 175±25µm,organicmatter,clayandcarbonateswereelimi-natedby treatmentwithH2O2,Na2C2O4 andHCl, respec-tively.Thenthequartzgrainswereseparatedusingdensityfractioning, and the remaining material was etched withHF(45%)for45minandmountedonstainlessstealdiscs.The measurements were carried out with a Risø TL-DA15reader(bluelightdiodestimulation470±30nm;HoyaU340filter).Aftertheselectionofasuitablepre-heattem-peraturebyapre-heattest,thepalaeodoseofthesamples

15

14

13

12

11

Elevation[m a.s.l.]

SOV2

SOV3

SOV1

Aeolian sands

Modern dump

Fluviatile sands with laminae

(Glacio-)Fluviatile sand

Plough horizon

Minerogenic channel infill

Peat

sand pit

North South

approx. 75 m

Fig. 3: Schematic transect presenting the sedimentary sequence from the dune ridge to the channel with the location of the profiles SOV1, SOV2 and the coring SOV3.

Abb. 3: Schematischer Transekt mit Sedimentabfolge von der Dünenkuppe bis zum Altarm mit Lage der Profile SOV1, SOV2 und Kern SOV3.

Page 5: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

99E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

(DE)wasdeterminedapplyingtheSAR-protocol(Murray&Wintle2000)onaminimumof30subsamples.Foragecalculationboththecentralagemodel(CAM)andthemin-imumagemodel(MAM)wereapplied(Tab.2;Galbraithetal.1999).Toassurethatalldoseswerebelowthesatura-tionlevelandexperimentallyreproducible,adoserecoverytestwasperformed.Tocalculatethedoserate(D0)withinthesediment,thecontentsofU,ThandKweredeterminedbyBecquerelLaboratories(Canada)usingneutron-activa-tion-analysis.BasedonthesedatatheindividualageswerecalculatedwithADELE(Kulig2005)assumingaconstantwatercontentof7%withinthesedimentsasforothersitesinthearea(Tolksdorfetal.2013a).

3.4 Archaeological age estimation and charcoal spectra from the occupation layer

Achronological assessmentof theMesolithicoccupationperiodwasbasedonastatisticalfittingofthemicrolithicassemblageintotheseriationofthemicrolithicassemblag-esfromthemicro-stratifiedFriesacksite(northernGerma-ny; Gehlen 2009) by B. Gehlen (University of Cologne).The statistical tool of seriation is used in archaeology toobtainchronologicalinformationabouttherelativeageofassemblagesbasedon thepresence, absence andpropor-tionofartefact types.Amaindrawback is the still smallnumberofwelldatedMesolithicsiteswithshort-timedset-tlement or separated layers of occupation. Moreover thetasksperformedat adistinct site or local cultural trendsmay additionally have influenced the occurrence of tooltypeswithinanassemblage.Thus,theresultsofthisanaly-sisshouldbeseenasstatisticalageestimatesonlyandneedcross-checkby14Cdates(seeabove).

Charcoalspecimensfromthetwoseparatesamplescol-lectedin2009and2011fromtheartefactlayerswereusedforanthracological analyses (Tab. 3).Assuming that theyderive fromanthropogenicburning, they canprovide in-formationabouttheuseofthelocalvegetation.Taxonomi-cal identification was performed by a stereo microscope(NikonSMZ1500,magnificationsof7.5x–112.5x)andanin-cident reflected light microscope (Nikon ME600) at mag-nificationsof100x,200xand500x.Anatomywasobservedonfreshlybrokensurfacesincrosssectionsaswellasra-dialandtangentialorientation,accordingtoSchweingru-ber (1990a, b).Determinationswereadditionally checkedwiththereferencecollectionofthePalaeoecologyWorkingGroup,InstituteforEcosystemResearch,UniversityofKiel.

3.5 Loss-on-ignition (LOI) and grain size

Withrespecttotheenvironmentalsetting,theproportionandsizeofminerogenicmaterial,bothintheprofileswithaeolian material (SOV1 and 2) and palaeochannel sedi-ments(SOV3),wereanalysedtodetectsedimentrelocationbyaeoliantransportorsoilerosionintothechannelsys-tem.Inafirststeptheproportionoforganictominerogen-icmaterialwasdeterminedbycombustionoftheformerat550°Cfor2h.TheLOIvalueisgivenasweightpercentageindrymass.Subsequently,theresiduespresentingthemin-erogenicsharewereusedtomeasurethegrainsizedistri-butionbylaserdiffraction(FritschAnalysette22).

3.6 Carbonate and phosphate

Changesofcarbonatecontentinthesedimentsoftencor-relatewith thebiogenicproductionof carbonateswithinthewaterbody;theymaytherebybesensitivetomajorcli-matefluctuations(Kaiser2004).Thecarbonatecontentwasmeasured throughout the core SOV3 using the Scheiblermethod.This isbasedon thevolumetricmeasurementofCO2fromtheconversionofCaCO3byHCl.Phosphatewasdeterminedbyphotometric analysis of the reactionwithammonium molybdate (Philips PU8620 Spectralphoto-meter)asdescribedbyRump(2000).Itisgenerallyassumedthattheverticalmobilityofphosphateswithinsedimentsinverylimited.Thereforetheycanbeusedasanindicatorfortheinputrateofdecayedorganicmatterandfaeces,andtherebyasproxyofchanginghumaneconomyandsettle-mentphases(Seligetal.2007).

3.7 Urease analysis

Inordertodetectthepresenceofhumans,animalsorlive-stock grazing in the area, the content of urease was de-terminedonthesamplesfromSOV3.Ureaseisanenzymewhichissecretedbymicroorganismstodegradeureade-rivingfromexcrements.Itcatalysesureaintocarbondiox-ide(CO2)andammonia(NH3),andistherebyanevenmorespecific proxy for the influx of faeces than phosphatesthattraceawiderrangeofdecompositionprocesses.Theamountofureasewithinthesoilisproportionaltotheini-tialamountofdegradableureaandconcentrationremainsonthislevel,whenureahasbeendepletedwithinthesoilandthereactionhascometoanend.Theanalysiswascon-ductedusing themethoddevelopedbyBorisov (Borisovetal.2013),which isespeciallyuseful toprocessa largerquantityofsamplesandtogainrelativevalues(Cherny-shevaetal.2014;2015).Allsampleswereincubatedwithureaas substrateat37°Ctogetherwithaphenol redso-lution (C19H14O5S). The intensity of colour change in therange from yellow to dark red is dependant on the NH3concentrationthatitselfisanindirectmeasureoftheure-aseconcentrationatthestartofthereaction;thecontentofNH3inµgpergdrysoilcanbecalculatedbasedontheparallelcalibrationsampleswithdefinedamountsofNH3.

3.8 Palynology

Forpalynologicalanalysisabulksamplewas taken fromthe layerwithartefactscatter inSOV1,sixsamplesweretakenfromorganiclayersinSOV2,andthecoreSOV3wassampledat2cm intervals.All sampleswerepreparedap-plyingthestandardacetolysemethod(Berglund&Ral-ska-Jasiewiczowa1986)andcountedtoatotalsumofatleast500arborealpollengrains.Pollenandsporeidentifi-cationandtaxonomyfollowMooreetal.(1991)andBeug(2004).Pollenpercentagesandcharcoalparticleswerecal-culatedinrelationtothetotalpollensum,excludingpol-lenofaquaticplantsandspores.FornumericalanalysisofthepollenrecordfromSOV3,percentagesweresquareroottransformed.Zonationwasbasedonaconstrainedclusteranalysis(CONISS,Grimm1987)usingtheR-packagesrioja(Juggins2012)andvegan(Oksanenetal.2012).TheBray-

Page 6: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

100 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

Curtisdissimilarity indexwasused toquantify the com-positionaldifferencesbetweensites(Bray&Curtis1957).Thenumberofsignificantzoneswasdeterminedusingthebroken-stickmodel(Bennett1996).Afteradetrendedcor-respondenceanalysis(detrendingbysegments,non-linearrescaling, downweighting of rare taxa), which revealedrathershortgradients(TerBraak&Prentice1988),prin-cipalcomponentanalysis(PCA)wasconductedonthecor-relationmatrixtoidentifythemaingradientsinthepollenassemblagedata (TerBraak1983).Theapproximatesta-tisticalsignificanceoftheordinationaxeswasdeterminedbycomparisonwiththebroken-stickmodel(Legendre&Legendre2012).NumericalanalysiswasperformedonthefullpollenrecordSOV3andareduceddataset,whichcon-tained only the samples from the early to mid-Holoceneperiod(55–103cmdepth,mainlycomprisingtheAtlanticperiod) to identify theminorchanges in localvegetationduringthisperiod.

4 Results4.1 Archaeology

CharcoalfromtheartefactbearingsedimentlayerinSOV1(Fig.4A;45–60 cmdepth)revealeda14Cageof9443–9255cal BP.Furtherarchaeologicalageassumptioncanbemadeby comparing the artefact assemblage to other sites bymeansofpresentartefact types.Asespeciallymicrolithicpointshavebeenestablished tobe chronologically sensi-tivetypesoftools,thepresenceofsimplepointstogetherwith a considerable number of non-isoscalene triangularpointsatSovengenerallyindicatestheBorealtimeperiod(Fig.4B).IncludingtheSovenassemblageintoseriatedMe-solithicsequencesfromnorthernGermanyindicatedanagespanof9200–9000cal BPorslightlyolder(B.Gehlen,pers.comm.).Althoughweareawarethattheseresultsremainhighlytentativeduetoasingle14C-ageestimate, thepre-sumedconnectionbetweencharcoaldepositionandhuman

20

40

60

80

100

120

140

160

0

180

200

Aj

IIfAhe

IIfBh

IIfBs

IIC

IIGo

IIGr

00 20 40 60 80 100 5

14,73

1

2

clay silt fine medium coarsesand

2 63 200 630 2000 µm

3

1

2

3

B

OSL-sample (Tab.1)B Depth of artefact scatter (Fig. 4B)

DC

C Charcoal spectra with 14C age (Fig. 5C; Tab.2))D Pollen spectrum (Fig. 5)

Stratigraphy Pedology ChronologyOSL agesHorizonLOIGrain sizeElevation

[cm below surface]

[m asl.] [%] [%] [KA5]

13.2 ± 2.1 ka

13.0 ± 1.3 ka

9255-9443 caBP11.1 ± 1.1 ka

Modern (modernbrick fragements)

A B

2 cm

Archaeological age estimate:> late 10th millenium BP

1 2 3 4

5 6 7 8 9

10 11 12

Fig. 4: A – Profile SOV1 with OSL and 14C ages; B – Artefacts from the Soven site (selection, drawing by K. Breest 1997a), and archaeological age estimate: 1–3: microlithic points, 4–10: triangles, 11: segment, 12: scraper

Abb. 4: A – Profil SOV1 mit OSL und 14C Alterseinschätzungen; B – Archäologische Funde (Auswahl, Zeichnung K. Breest 1997) mit archäologischer Alterseinschätzung: 1–3: einfache Spitzen, 4–10: Dreiecke, 11: Segment, 12: Kratzer.

Page 7: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

101E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

occupationplusthelackofsystematicallyexcavatedareas,these results indicate human presence during the secondhalfofthe10thmillenniumBP.Youngerartefactswerenotpresentintheimmediatesurroundingsofthestudyarea.

4.2 Profile SOV1

The sediments recorded in profile SOV1 consist of aeo-liansandswhichweredepositedsinceLateGlacial timesas indicated by OSL ages of 13.16  ±  2.1 ka (MR-797) and12.98  ±  1.3 ka (MR-796) (Fig. 4A; Tab. 1). Regarding the

standarddeviation,theuppermostOSLageof11.13 ± 1.1ka(MR-795)fromtheAe-horizoneitherindicatesaeoliansed-imentationduringtheYoungerDryasorongoingaeolianactivityduringtheEarlyHolocene.Theartefactsandchar-coals became embedded in these sediments; they wereprobablypartlyrelocateddownwardsbybioturbation.ThetwocharcoalsamplesfromthefAhe-horizonpresenttwoverydifferentspectra.Whilethesmallspectrumsampledin2009isdominatedbyPinus,thelargerspectrumanalysedin2011predominantlyconsistsofQuercus (Fig.5A).MinorcomponentsinbothsamplesetsareCorylusandMaloide-

Profile Lab.No. Depth H2O1 U Th K Over-dispersion

ED2 D0

3 Age Model4

Age

[cm] [%] [ppm] [ppm] [ppm] σ % [Gy] [Gy/1000a] [ka]

SOV1-1 MR-795 40 4.70.20

± 0.030.70

± 0.040.44

± 0.0212 7.60 ± 0.41 0.68 ± 0.07 CAM 11.13 ± 1.13

SOV1-2 MR-796 65 5.30.25

± 0.050.90

± 0.050.56

± 0.0215 9.96 ± 0.55 0.77 ± 0.08 CAM 12.98 ± 1.28

SOV1-3 MR-797 180 8.40.36

± 0.061.50

± 0.070.68

± 0.0318 11.18 ± 1.49 0.84 ± 0.13 CAM 13.16 ± 2.06

SOV2-1 MR-836 25 5.90.33

± 0.040.90

± 0.040.43

± 0.02CAM 2.05 ± 0.288

SOV2-2 MR-837 65 6.30.20

± 0.031.00

± 0.050.67

± 0.0313

9.86 (-0.52 +0.53)

0.84 ± 0.08 MAM11.78 (-1.13 + 1.14)

1 for age calculation a continuous water content of 7±3% was used; 2 equivalent dose; 3 dose rate; 4 CAM = Central Age Model, MAM = Minimum Age Model

72 %

17 12

Σ Trees/Shrubs Σ Wetland plants

Σ Herbs

5 5 5 5 5 5 5 5 5 5 5 5 5

Amaranthace

ae

Rumex

Polygo

num avicu

lare

Achille

a-type

Ligulifl

orae

Centau

rea cy

anus

Calluna v

ulgaris

Cerastiu

m-type

Lamiac

eae

Poacea

e

Cyperac

eae

Brassic

aceae

Ranuncu

laceae

ind.

Calyste

gia

Fagop

yrum

2 2

5 20 5 5 5 5 5

Betula

PinusQuerc

us

Picea

Fagus

Corylus

Alnus

10

Cereali

a

20 40 60

Σ = 10

Σ = 46

Sample 2011Sample 2009 14C age [2σ range]9443 - 9255 cal BP(USGAMS 4609)

Pinus

Quercus

Hardwoo

d ind.

Charred

non-w

ood

Corylus

cf. M

aloide

ae

vitrif

ied in

d.

Bark in

d.

10203040

5

Pinus

Quercus

Hardwoo

d ind.

Charred

non-w

ood

Corylus

cf. M

aloide

ae

vitrif

ied in

d.

Bark in

d.

A

B

[% of pollen sum]

[%]

[%]

[n][n]

Tab. 1: OSL-dating results. All measurements were performed in the Marburg Luminescence Lab (MLL).

Tab. 1: Ergebnisse der OSL-Datierungen. Alle Messungen wurden am Marburger Lumineszenzlabor (MLL) durchgeführt.

Fig. 5: A – Anthracologi-cal spectra analysed 2009 and 2011 with 14C-dating result obtained from spectrum 2009; B – Paly-nological spectrum from Ae-horizon in SOV1

Abb. 5: A – Anthrakolo-gische Spektren, die 2009 und 2011 separat geborgen und analysiert wurden, zusammen mit einem 14C-Alter des Spektrums aus 2009. B – Palynologisches Spektrum des Ae-Horizon-tes in Profil SOV1.

Page 8: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

102 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

ae.Possibleexplanationsofthedifferencesare(i)differentages of the sample sets; (ii) resulting from two differentfeatures,e.g.twohearthswithdifferentfuelorfoodprepa-ration;(iii)theresultoflocalin situdisintegrationofbig-gerfragments.TheabsenceoftaxalikeFagus sylvaticaorCarpinusoccurringinthisareafromtheSubborealperiodonwards (Christiansen2008;Turner2012)and the 14C-ageof9443–9255cal BP(UGAMS-4609)providefurtherevi-dencethattheoccupationand/orfireactivityisnotyoung-erthantheAtlanticperiod,endingaround5800cal BPinthisarea(Dörfleretal.2012).

ThepollensampledfromtheupperfAhe-horizon(Fig.5B) was sufficiently preserved for analysis. It presents alocal spectrum dominated by Cerealia-type pollen andweedstypicalforagriculturallandscapes(Amaranthaceae,Rumex, Polygonum aviculare).PollengrainsofFagoyprum andCentaurea cyanus suggest a lateMedieval age at theearliest (Behre2008,Beug2011). It cannotbedecided, ifthisindicatesayoungerageintheupperfAhe-horizonorifitisaneffectcausedbyin-sedimentdislocationofpollengrainsandsmall-scalebioturbation.

4.3 Results from profile SOV2

ThelowerpartofprofileSOV2ismadeupoffluviatilesandswiththinintercalatedlayersofmoreorganicsands(Fig.6).

While thepollenpreservation in the latterwas toopoorforcounting,thepresenceofPediastrum algae inthesedi-mentsconfirmstheirfluvio-lacustrineorigin(Turneretal.2014).AnOSLageof11.78 ± 1.1ka(MR-837)indicatesanaccumulationduringtheYoungerDryasorEarlyHoloceneperiod. The uppermost part of SOV2 consists of aeoliansandclearlyvisibleinthemorefine-grainedcompositionwithpodzolisation.BasedonanOSL-ageof2.05 ± 0.3ka(MR-836)thedepositionoftheaeoliansedimentsoccurredduringtheIronAge.

4.4 Results from profile SOV3

Above the fluviatile sand, the palaeochannel sequenceSOV3 consists of sediments with varying organic con-tent that is of lacustrine origin, as shown by the occur-renceofPediastrumalgaepluspollengrainsandmacrofos-silsofaquaticplantslikeNymphaea alba,Nuphar pumila,Myriophyllum verticillatum, Potamogeton spec., Oenanthe aquatica and Hottonia palustris. Three radiocarbon datesfromthelowerpartofthesequenceyieldedagesof10220–10405  cal  BP (KIA-48658; 92–94 cm depth), 9604–10116cal BP(KIA-48657;78–80cmdepth),and9011–7158calBP(KIA-48656;60–64cmdepth)(Tab.2).Duetotheabsenceofotherterrestrialorganicmaterial,theradiocarbonanalyseswere conducted on charcoal (KIA-48657 and KIA-48658),

clay silt fine medium coarsesand

2 63 200 630 2000 µm

1 Pollen sample

10

20

30

40

50

60

70

80

90

100

0

IIfAe

Aj

IIIC

IIfBs

IVGr

0 10

12.75

2

n.d.

0 20 40 60 80 100

11.8 ± 1.1 ka

n.d.

OSL sample (Tab.1)

2.1 ± 0.3 ka1

2

1

2

12

356

6

1 too poorpreservation

for counting(Pinus;Betula;Pediastrum)

Stratigraphy Pedology ChronologyOSL agesHorizonLOIGrain sizeElevation

[cm below surface]

[m asl.] [%] [%] [KA5]

GeneticInterpretation

fluviatile

aeolian

anthro-pogenic

n.d.= not determined

Fig. 6: Profile SOV2 with OSL ages and location of palynological samples

Abb. 6: Profil SOV2 mit Er-gebnissen der OSL-Analyse und Position der palynolo-gischen Proben.

Page 9: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

103E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

andonacollectionof terrestrialanda fewaquaticplantmacrofossils(KIA-48656)toavoidpotentialcontaminationbymodernroots(Tab.1).Thus,thedatesrepresentmaxi-mumagesduetoapossiblerelocationofcharcoalfromthedune,whileeffectslikedifferentisotopefractionationseemunlikelybasedonthed13Cvalues.Theage-depthmodelin-dicatesthatlacustrinesedimentationinthechannelstartedshortlybefore10.5 kacal BP(Fig.7),whichisingoodac-cordancewiththebiostratigraphicalattributiontothelatePreboreal / early Boreal period (Fig. 8). In addition, theAtlantic/SubborealboundarymarkedbytheElmdecline(~52 cm)isdatedto5.6–6.0 ka cal BPandmatchesaccurate-lydatedsequencesfromNorthwesternGermany(Dörfleret al. 2012) and compilations form Northwestern Europe(Parkeretal.2002).

UsingCONISSand thebroken stickmodel, thepollenrecord was split into four significant zones (Fig. 8). Thedescription of grain size composition and geochemistry(phosphate,urease,LOI,carbonate)followsthiszonation,sincemajorchangesintheserecordscorrespondwiththepalynologicalzoneboundaries.

Zone A (109–101  cm depth) is characterised by thechangefromfluviatiletolacustrinesedimentation,markedbyfiningupdepositsand increasingLOI.While theper-centages of Betula and Cyperaceae pollen decrease frommaximumvalues,Pinuspollenshowsacorrespondingin-crease.

TheboundarytozoneB(101–50 cmdepth)ismarkedbyanincreaseinpollenofQuercusand-onaslightlyhigherlevel-AlnusandUlmus.ThiszonepresentsthemaximumvaluesofUlmus andCorylus pollen,whilePinus remainsthedominatingtaxon.Clayandsiltdominatethegrainsizespectrum,whileLOIandcarbonatevaluesvaryonacom-parablyhighlevelwithdistinctmaximaintheupperpartofthezone(Fig.8).

ThetransitiontozoneC(50–29 cmdepth)ispalynologi-callymarkedbyastrongdecreaseinpollenofUlmusandCorylus.ZoneCischaracterisedbyanincreaseinlight-de-mandingwetlandandgrasslandtaxa,especiallyPolygonum periscaria-typeandtoalesserextentAster-type,Plantago lanceolata and Liguliflorae plus some peaks in charcoalparticles,phosphateconcentrationandsandinput(Fig.8).

TheuppermostzoneDshowsdecreasingpercentagesofthesumoftreepollen,mainlydrivenbyadecreaseofPi-nus, thecontinuouspresenceofFagusandJuniperus,andmaximalvaluesofPoaceae,Liguliflorae,CallunaandCe-realia(mainlySecale) plusotheranthropogenicindicators.Highphosphateconcentrationscorrespondtostrongsandinputintothechannel(Fig.8).

Principalcomponentanalysis(PCA)wasusedtoexplorethesampleswithabroadrangeofvariables(pollencounts)forenvironmentaltrends.Asthisstatisticaltoolisbasedonthe stepwise reductionof dimensionswithin thedataset,theoptimalnumberofaxestoexplainmostofthetotalvar-ianceswasdeterminedbythebrokenstickmodel.Itresult-edinthreesignificantaxes,with36.3%,26.8 %and13.2 %ofthetotalvarianceexplained.ThePCAbiplotconfirmsthezonationresults,assamplesofdifferentzonesareclearlyseparated (Fig.9A).Beyondtheordination, resultsof thepalynologicaldatasetmainlyrepresentchangesintreepol-len composition that are relatively difficult to explain intermsoflocalenvironmentalgradientsanddisturbances.

In addition to the main palynological zones A-D pre-sentedabove,fourrelativelyshort-time“disturbancephas-es”arerecognisableinthepalynologicalandgeochemicalrecords(Figs.8and9B).They(1=lowestto4=uppermost;see Fig. 8) are characterised by the occurrence or an in-creaseofpollen typesrepresenting lightdemanding taxa(Polygonum persicaria-type,Liguliflorae,Aster-type,Cary-ophyllaceae) and charcoal particles, together with local

Profile Lab.No.1 Material and archaeological context 14C 14C (calibrated2; 1σ)

14C (calibrated2; 2σ)

δ 13C

[BP] [cal BP] [cal BP] [‰ PDB]

SOV1 UGAMS-4609 Charcoal from artefact scatter 8320 ± 30 9298–93339338–9405

9255– 9443 -23.6

SOV3 KIA-48656 Botanical macroremains in channel sediment (60–64 cm depth)(Scirpus lacustris fruit (2x), Betula fr. (2x), Poaceae fr., cf. Phalaris arundinacea (5x), Potamogeton fr. (1x), Nymphaea fr. (1x), Carex fr. (1x), Lycopus europaeus fr. (1x), indet. fr. (3x), Juncus seed (1x), bud scale (1x), charcoal, (1x))

6125 ± 35 6944–70257059-70657116–7154

6911–69216928-7158

-26.9

SOV3 KIA-48657 Charcoal (Pinus) in channel sediment (78–80 cm depth)

8780 ± 40 9703–97259726–98309833–98339840–9888

9604–992410070–10116

-25.2

SOV3 KIA-48658 Charcoal (Pinus) in channel sediment (92–94 cm depth)

9125 ± 40 10228–1029610358–10369

10220–10405 -25.9

1 UGAMS = Center for Applied Isotope Studies, University of Georgia (USA), KIA = Leibniz-Laboratory for Radiometric Dating and Isotope Research Kiel2 IntCal09; Calib6.0

Tab. 2: 14C-dating results.

Tab. 2: Ergebnisse der 14C-Datierungen.

Page 10: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

104 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

minimaofCorylusandTypha latifolia-typepollen.Thegeo-chemicalanalysesshowthatthesedisturbancephasesarealsomarkedbylowerLOI(=higherinputofminerogeniccontent),anincreaseinfinesandwhichmightindicatesoilerosionfromthedune,andinthecaseofphases1and2byhigherphosphateinputasevidenceofdecayingorganicmaterialor faeces.Moreover,phases2 to4showrises intheureaseconcentration indicating local increase in fae-cesinput.Onlyphase3isconnectedwiththeoccurrenceofCerealiapollenandmoreoverpresentsariseinherbalpollenon theexpenseofPinuspollen.Thesedisturbancephases are followed by local minima of LOI, CaCO3 andpollenofearlysuccessionalshrubsandtreespeciessuchasSalix,BetulaandAlnus(Fig.8).

As the three lowermost phases may represent Meso-lithictoNeolithiclocalhumanimpact,theywerestudiedusingareduceddataset(55–103cmdepth)wheresamplesfrom thedisturbancephases show thehighest scoresonaxis2inthePCAordinationresult(biplot)(Fig.9B).Ac-cording to thebroken stickmodel thefirstfive axes arestatisticallysignificantandexplain22,6 %,15,1 %,12,8 %,9,7 %and7,7 %ofthetotalvariance.Whilethefirstaxisismainlyinfluencedbythechangesinpercentageamongthedifferenttreespecies,theabovenamedtaxaPolygonum persicaria-type,Aster-typeandLigulifloraeshowhighestscoresonthesecondaxis,whilethesuccessionalspeciesSalix,BetulaandAlnusshowlowest.Furthermore,phos-phate ispositivelycorrelatedtoPCA-axis2andsampleswith higher phosphate concentration show significantlyhigherscoresonthepalynologicalaxis2;thus,thepollen

compositionandphosphateinputwereprobablytriggeredbythesameenvironmentalfactors.

5 Discussion5.1 General site development

BasedontheOSLagesfromSOV1andSOV2(sample2)andthelowermostpollensamplesfromSOV3,theformationofthedunetookplaceduringtheLateGlacialandprobablythePreborealinthesinuosityofastillactiveriverchannelthatdepositedfluviatilesandsonitsbanks.ThisisingoodaccordancetootherenvironmentalreconstructionsintheJeetzelvalley(Turneretal.2013,Tolksdorfetal.2013a).

ZoneAofthepalynologicalsequenceSOV3coversthetimeperiodfromthelatePreborealtotheBorealwhenthedunewasmostlystabilized,theriverchannelbecameaban-donedandlacustrinesedimentationstarted.Itshowsatyp-icalchangeinforestvegetationwithPinusreplacingBetulaintheregion(Christiansen2008,Turneretal.2013)andbecomingthelocallydominanttaxonontheduneareadur-ing the entire Holocene. No signs of short-time changesindicatinghumanimpactcanbedetectedinthevegetationdevelopmentwithinthiszone,howeverthesedimentationintheoxbowlakewasprobablynotcontinuousbecauseofstrongchangesinhumidity,waterlevelandthehydrologi-calregime(Turneretal.2013).

Aftertheestablishmentofastablehydrologicalregimewithahighwater levelacontinuoussedimentaccumula-tionstarted inzoneBthatcovers the lateBorealandAt-lantic periods. This zone shows the typical establishment

40

20

10

KIA-48656

8080

100

KIA-48657

KIA-48658

10000 5000 0

modelled age (cal BP)

no permanent TBK settlement on sandy soils in study area?

Mesolithic Neo-lithic

BronzeAge

IronAge

MigrationPeriod

Medieval

Mod

Slavonic

Roman

Pre-Roman

GermanTBK

Bernburger C.

Schönfelder C.

dept

h (c

m)

Fig. 7: Age-depth model of sequence SOV3 based on the 14C-ages and comparison with archaeologi-cal zonation.

Abb. 7: Alter-Tiefen-Modell der Bohrung SOV3 aufGrundlage der 14C-Alter sowie Zuordnung zu den archäologischen Zeitaltern.

Page 11: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

105E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

Salix Querc

usTiliaUlm

us Picea Carpinus

Fagus Junipe

rusCory

lus Hedera Viscum Alnus Artemisia

Amaranthace

ae

Thalictr

um

Rumex Cereali

a-typ

e

Plantag

o lan

ceolat

a

Fagop

yrum

Centau

rea cy

anus

Anthoceros

puncta

tus

Polygo

num avicu

lare-t

pye

Aster-t

ypeLigu

liflora

e

Calluna v

ulgaris

Caryop

hyllace

ae ind.

Poacea

eCype

raceae

Rumex hydr

olapa

tum

Polygo

num persi

caria

Typha l

atifol

ia-tpy

e

Equise

tumCharc

oal p

articl

e

cf. Ju

niperus

Σ Aquati

cs

Σ Herb

s

Σ Trees/S

hrubs

Betula

Pinus

20 40 60 80 100

120

Gra

in si

ze

4080

11

24

820

60[%

][c

m]

LOI

[%]

CaC

O3

[%]

[ppm

][µ

g/g]

PO4

NH

3

20

% o

f pol

len

refe

rred

to su

m o

f lan

d po

llen;

gre

y sh

aded

are

as d

ispl

ay 1

0x e

xagg

erat

ion

4060

8010

1010

1010

1010

1010

2010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1020

263

200

630

2000

µm

Cla

ySi

ltfin

em

ediu

mco

arse

Sand

Fluv

iatil

e sa

nds

Low

er o

rga-

nic

cont

ent

Plou

ghed

zone

Peat

clay

Pedo

logy

Paly

nolo

gyC

hron

olog

y

Zonati

on

D C B A

4 3 2 1

„Dist

urban

ce phase

s“

Biochron

ology

Age-dep

th

model

youn

ger

Suba

tl.

Bore

al

Pre-

bore

al

Atla

ntic

olde

rSu

batl.

Sub-

bore

al

PB=

Preb

orea

lB

O=

Bor

eal

Suba

tl=Su

batla

ntic

Dep

th

n.m

.

n.m

.

n.m

.

n.m

. = n

ot m

easu

red

1000

060

0020

00

cal B

P

23

4

14C

sam

ple

for t

heag

e-de

pth

mod

elcf

. Fig

. 7 fo

r det

ails

Fig.

8: S

trat

igra

phy

and

zona

tion

of c

ore

SOV3

, res

ults

of s

edim

ento

logi

cal a

nd g

eoch

emic

al a

naly

ses,

as w

ell a

s fr

eque

ncie

s of

sel

ecte

d m

ore

impo

rtan

t pol

len

type

s.

Abb

. 8: S

trat

grap

hie

und

Glie

deru

ng d

es B

ohrk

erns

SO

V3, E

rgeb

niss

e de

r se

dim

ento

logi

schen

und

geo

chem

isch

en A

naly

sen

und

rela

tive

Häu

figke

iten

ausg

ewäh

lter,

wich

tiger

Pol

lent

ypen

.

Page 12: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

106 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

ofQuercus,AlnusandUlmuswithintheforestedenviron-ment. The relatively high proportions of Quercus and es-peciallyAlnuspolleninsedimentsfromthelateBorealpe-riod(~10–9.5 kacal BP)seemtobeacharacteristicfeatureofpalynologicalrecordsfromtheregion(Fig.10),perhapsreflectingtheearlyspreadormigrationofthesespeciesinlargerivervalleys(Johanssonetal.1996).Thisiscorrobo-ratedby thediscoveryof tree trunks in sedimentsof theElberiverdatingto9.8 kacal BP(Hilleretal.1991).Many

lakesedimentsinNWEuropeshowa(further)spreadofAl-nus–oftentogetherwiththeotherdeciduoustreetaxalikeQuercus,UlmusandTilia–around9.5kacal BP(Gieseckeetal.2011).IntheclassicalconceptofEuropeanHolocenevegetation development this marks the Boreal / Atlanticboundary(e.g.Firbas1949).ThisincreaseinpercentagesofAlnus-polleniswell-definedinallrecordsformtheElbegla-cialvalleyandnearbylandscapes(Lesemann1969,Merktetal.1993,Christiansen2008,Beug2011,Turner2012).

Polygonum persicaria

Liguliflorae

Aster-typePicea

FagusRanunculaceae indet.

Tilia

Polypodium-type

Alnus

Amaranthaceae

Salix

Betula

Equisetum

CorylusFilices indet.

Ulmus

97

99

75

77

65

6163

81

87

95

93 71

91

6789 57

103

69

79101

55

59

PCA-axis 1

PCA

-axi

s 2

1

0,5

-0,5

-1-1 -0,5 0,5 1

91Palynological sample [number refers to depth below surface]

Zone A

Zone B

Zone C

Zone D

PCA-axis 1

PCA

-axi

s 21

0,5

-1

-1,5

-1 0,5-0,5-1,5 1

-0,5Poaceae

Alnus

Cyperaceae

Betula

Typha ang.

SalixEquisetum

Ulmus Corylus

Filices indet.

Pinus

Polygonum persicaria

CallunaPiceaLiguliflorae

Polypodium-typeFagus

Cerealia

Biostratigraphicalclassification

A B

dist. phase 3

dist. phase 2 (high phosphate values)dist. phase 1 (high phosphate values)

Fig. 9: A – Biplot of principal component analysis (PCA) of all samples from SOV3 used to corroborate the estimated palynological zones. B – Biplot of PCA of the reduced dataset. Samples from the discussed disturbance phases 1–3 are highlighted.

Abb. 9: A – Biplot der Hauptkomponentenanalyse aller Proben zur Bestätigung der palynostratigraphischen Gruppierung. B– Biplot der Hauptkomponen-tenanalyse mit reduziertem Datensatz. Die Proben aus den diskutierten Störungsphasen 1–3 sind hervorgehoben.

Fig. 10: Maximal proportion of Al-nus, Quercus and Corylus pollen in samples attributed to the late Boreal within SOV3 and other late Boreal records of the region: In addition to available chronological informa-tion, the Boreal/Atlantic boundary was defined by a strong increase in the values of Alnus pollen, which is well-defined in all records beside Soven: 1: Jeetzel, Turner (2012); 2: Siemen, 3: Laase, Lesemann (1969); 4: Heuweg, Lesemann (1969), Chris-tiansen (2008); 5: Soven (this study); 6: Rambow, Merkt et al. (1993), Christiansen (2008); 7: Arendsee, Christiansen (2008).

Abb. 10: Maximale Anteile an Alnus-, Quercus- und Corylus-Pollenkörnern in dem in das späte Boreal datierten Abschnitt von SOV3 im Vergleich zu anderen spätborealen Pollenspek-tren der Region. Neben vorhandener chronologischer Information wurde der Übergang vom Boreal zum Atlan-tikum anhand des starken Anstiegs von Alnus-Pollen festgelegt.

Page 13: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

107E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

In the SOV3-sequence, percentages in pollen grainsof Alnus remain remarkably low and fluctuate comparedto other sites in the low-lying area with a high naturalgroundwatertableandmanyeutrophicriverinepeatlands(Lesemann1969,Christiansen2008).Onepossibleexpla-nationisthatthepalaeochannel–asarecordofratherlo-calvegetation(Sugita1994)–wastoosmalltoallowforthegrowthofacontinuouscoverofaldertreesalongtheriverbank,andpinepluselm-oakforestsdominatedinthenearby floodplain. This is corroborated by values of Ul-muspollenofmore than25% inonesample fromanun-datedpreliminarycore in relativelyclosedistance to thesequenceSOV3(Tolksdorf2011). Inaddition, thepollenrecord of SOV3 may be strongly influenced by the localdominanceofpineforestontheadjacentdune.Localpinestandsas strongpollenproducer canmask the spreadofthedeciduoustreesinthearea(Dambach2000,Broströmetal.2008,Sugitaetal.2010).Theverygoodfloatablepinepollenmayadditionallyhavebeentransportedbysurfacerunoff directly into the channel in considerable amounts(Amman1994).

The transition to zone C is well marked by a drop inpercentages of Ulmus pollen (Elm decline) at a depth of52 cmandclearlymarks theAtlantic /Subborealbound-ary. It isdatedtoapprox.5.8kacal BPbytheagemodelandistherebyinverygoodaccordancetotheagesgivenbyParkeretal.(2002)andDörfleretal.(2012).ZoneDshouldmainlybeattributedtotheyoungerSubatlanticpe-riodbasedon increasingamountsofanthropogenic indi-catorsrecordedinthepollenspectrum,especiallytheoc-currence of Fagopyrum pollen and higher proportions ofCerealiapollen.Additionally,theincreasedsandinfluxintotheoxbowlake(Fig.8)andareactivationoftheadjacentdune,interpretedfromOSLagesinSOV2(Fig.6),pointtoincreasedanthropogenicland-useandvegetationopening.A map from the late 18th century shows the area almostcompletelydeforested(Fig.2A).Theyoungestperiodmaynotbecoveredbythepollenrecordastheuppermoststra-tacouldnotbeanalysedduethedecompositionfollowingmoderndrainageandagriculturaluse;itis,however,prob-ablyreflectedbythepollenspectrumoftheSOV1-sample(Fig.5).

5.2 Phases of local anthropogenic impact

Thefirstthreeidentifiedphasesof“vegetationdisturbanc-es”fallintothetimespanof~10.3to5.8ka cal BP.Whiletheoldestphases1and2havetobediscussedbelowonthecul-

turalbackdropoftheMesolithic, thedisturbancephase3shouldbeplacedintotheculturalcontextoftheNeolithic.

While it is known that hunter-gatherer societies cancausechangesonthevegetationintheimmediatevicinityoftheircampsites(Hicks1993),theintensityandnatureofhumanimpactontheenvironmentisgenerallyundercon-troversialdisputefortheMesolithicperiod(Mason2000,Bos&Urz2003,Ryan&Blackford2010,Tolksdorfetal.2013a).Duetoitspresumedephemeralnature,thedetectionofpotentialtracesofhumanimpactandtheirdifferentia-tionfromnaturaldisturbances(e.g.wildfires,wind-throws,flooding) remains difficult (Kuneš et al. 2008). Nonethe-less intentional burning of reed vegetation is proven forthesiteofStarCarr(Hather1998)andvegetationburn-inghasbeenpostulatedasintegralpartofMesolithicland-useinBritain(Simmons&Innes1996,Innes&Blackford2003).AlthoughthepresenceofMesolithicoccupationontheduneridgenearSovenduringthe10thmillenniumBPcannot be doubted, a correlation with the weak “distur-bancephases”1and2remainstentative,althoughthelat-ter isdatedto~9.5–9.1kacal BPbytheage-depthmodelandtherebytothesametimeperiodasthehumanoccupa-tion.Theevidentcorrelationofthepalynological“distur-bancephases”,which–consideringtherelativelylowreso-lution of the diagram – may reflect repeated small-scaleopenings/disturbancesinthelocalwetlandsupportingthegrowthoflightdemandingherbaceousplants,plushigherphosphate and urease-activity in corresponding samplescouldbeconsideredashintfortheiranthropogenicorigin.Compared to sites like Friesack, where local soil erosioncausedbyMesolithicoccupationwasdetectedontheflankofadune(Gramsch2000),directevidenceforsoilerosioncannotbegivenforthestudyareaasthetimespanfortheuppermostOSL-agefromSOV1coversboththelatePleis-toceneandtheearlyHoloceneandnosignificantriseintheinputofsandymaterialcanbedetectedinthepalaeochan-nelrecord.

Moreevidentarethevegetationchangesdesignatedbyphase3,whicharealsoaccompaniedbyrisesintheinputofaeoliansandsaswellasphosphatesandurease.Theyin-dicatelocalvegetationdisturbancebyhumanimpact.ThisissupportedbyCerealia-typepollenindicatingcropculti-vationinthearea,althougharchaeologicalevidenceisstillmissinginthevicinityandespeciallyontheduneridge.BypollenanalysisofsedimentsfromthelargelakeArendseeat30 kmdistancetotheSovensite,however,Christiansen(2008)describesafirstincreaseofanthropogenicindicatorsinacomparablebiostratigraphicalposition.Thedeclineof

Sample Pinus Corylus Quercus cf. Maloideae

Hardwood indet.

Bark indet.

CharredNon-wood

Indet. vitrified

Comment Σ det. pieces

Weight det. pieces [mg]

SOV-2009 5 1 3 1 6 5

SOV-2011 2 2 36 1 1 4 charred hazelnut shell

41 128

Tab. 3: Results of charcoal analysis.

Tab. 3: Ergebnisse der Holzkohlebestimmungen.

Page 14: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

108 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

direct indicators of human impact after this disturbancephase3,similarlyrecorded intheArendseesediments, isremarkableandevokesthequestionaboutthenatureanddurationoftheland-usethatcausedtheseenvironmentalchanges.Itemphasizesthatourknowledgeaboutthedy-namicsofNeolithicland-useinmarginalareasisstillverysparseandespeciallylacksfromwell-datedarchaeologicalsites.Itmay,therefore,bethatdisturbancephase3repre-sentsafirstattemptofNeolithiccropfarmingintheareathatfailedanddidnotpersistassupposedforotherareas(Stevens&Fuller2012).

StudiesfromtheNetherlandsandBelgiumhaveshownthat the spread of Neolithic economical elements intolow-lying wetlands was complex and often made use oftheisolateddryerhighgroundsprovidedbyinlanddunes(Cappers&Raemaekers 2008, Deforce et al. 2012).TheBobergerdunesitesnearHamburgbearassemblageswithamixtureoflocalMesolithicmaterialandimportedceram-ics fromtheNeolithicgroups further to the south (Ram-minger2012).Inacomparableenvironmentalsetting,thisprovidesanexamplethatthetransitiontoNeolithicecon-omy might have been a complex and non-linear processwith varying influence from southern Neolithic groups.IsolatedNeolithicimportshavealsobeenfoundintheJeet-zelarea(Breest1997b;Breest&Veil2001).ThedeclineofNeolithicfarmingactivityseenintheSovenrecordmayinadditionhavebeenconnectedtorisingwaterlevels inthelowlyingareasofnorthernGermanyduringtheBorealandAtlanticperiods(Kaiseretal.2012).

Basedonthepalynologicalspectrum,zoneCfallsintotheSubboreal andearlySubatlanticperiod.Especially inthe lower part of zone C distinct environmental distur-bancescanbeseen,asphase4isbasedontheincreaseinopenwetlandandgrazing-facilitatedtaxaandthehighin-putof charcoalparticlesplusphosphate,urease andfinesand from the immediate vicinity. This input of aeoliansandmaycorrelatewiththelastphaseofaeoliandeposi-tiondatedinprofileSOV2to2.1±0.3ka,i.e.theIronAgeinarchaeologicalterms.OthersitesintheNorthernEuropeanplainindicatethatbothaeolianremobilisation(Tolksdorf&Kaiser2012)andsoilerosion(Dreibrodtetal.2010)oc-curredduringthisperiodprobablyasaresultofintensifiedorchangedland-use.TherisingvaluesofPolygonum per-sicaria-type,Aster-typeandLigulifloraeandthecompara-tivelylowvaluesofCerealia-typepollenduringthisphasepointtoaprobablyseasonaluseofthelow-lyingwetlandareaforstockgrazing,whichisatypicalfeatureofBronzeandIronAgeeconomy(Lüningetal.1997;Beneckeetal.2003), but has also been part of land-use in river valleysfromNWGermanyuntiltheearly20thcentury(e.g.Pott&Hüppe1991,2001).IntheJeetzelvalleyitmayberelatedto the phase of settlement expansion reconstructed fromthearchaeological(Nüsse2002)andpalynologicalrecords(Christiansen2008)forthefirstcenturiesAD.Addition-ally,cerealcultivationmayhavebeenhamperedbyhighwaterlevelsintheareaasreconstructedbyTurneretal.(2013).

The youngest zone D contains a significant share ofFagopyrum thathasbecomecommonas cereal-substituteinnorthernGermanyduringthe12th–15thcentury(Behre2008, Beug 2011). This uppermost zone D probably con-

nects the channel record to the spectrum obtained fromthe uppermost part of the SOV1 profile, which probablyrepresents theuseof theareaasarable landafterexten-sivedeforestationshownonthemapfromthe18thcentury(Fig.2A).BoththepositionofthearablelandsignatureonthehistoricalmapandthedominanceofCerealia(mainlySecale)togetherwithverylowpercentagesofarborealtaxastronglyindicatethelocalcultivationofcropsdirectlyonthedrydune.

6 Conclusion

The application of geoarchaeological, chronological, geo-chemicalandpalaeoecologicalresearchmethodsonanon-site record (Mesolithicsite situatedonaduneridge)andthenearoff-site record (palaeochannelat the footof thedune) allowed for a detailed reconstruction of the localenvironment since ~10.5  ka  cal  BP. The combination andcross-check of various methods both in terrestrial (on-site)andlacustrine(off-site)archiveshasgreatpotentialtoovercometheproblemsthatstillexistintheidentificationofweakerhumanimpactorland-useofnon-agrariansoci-etiesinthepollenrecordalone.However,themainchal-lengesaretoestablishadensechronologicalframeworkforthecorrelationofthedifferentarchives,andtodealwithdiscontinuousrecords.

Acknowledgments

WethankFriederikeBungenstock,Wilhelmshaven,andananonymousreviewerforhelpfulcommentsonthismanu-script.

References

Amman,B.(1994):Differentialflotationofsaccatepollen–anuisanceandachance.–DissertationesBotanicae,234:101–110.

Behre,K.E.(2008):LandschaftsgeschichteNorddeutschlands.UmweltundSiedlungvonderSteinzeitbiszurGegenwart.–308S.;Neumünster(Wachholtz).

Benecke, N., Donat, P., Gringmuth-Dallmer, E. & Willerding, U.(2003):FrühgeschichtederLandwirtschaft inDeutschland.–372S.;Langenweissbach(Beier&Beran).

Benett,K.D.(1996):Determinationofthenumberofzonesinabiostrati-graphicalsequence.–NewPhytologist132(1):155–170.

Berglund,B.E.&Ralska-Jasiewiczowa,M(1986):Pollenanalysisandpollendiagrams.–In:Berglund,B.E.(ed.):HandbookofHolocenepalaeoecologyandpalaeohydrology:455–486;Chichester(Wiley)

Beug,H.J.(2004):LeitfadenderPollenbestimmungfürMitteleuropaundangrenzendeGebiete.–542S.;München(Pfeil).

Beug,H.J.(2011):VegetationchangesduringtheSlavicperiod,shownbyahighresolutionpollendiagramfromtheMaujahnpeatbognearDan-nenberg,HanoverWendland,Germany.–VegetationHistoryandAr-chaeobotany,20(3):199–206.

Borisov,A.,Peters,S.,Chernysheva,Y.V.,Korobov,L.S.&Reinhold,S. (2013): Khimicheskie I mikrobiologicheskie svojstva kulturnogosloya poselenij kobanskoj kultury (XIII-IX BC) v Kislovodskoj do-line.(inRussian).–Vestnikarcheologii,antropologiiietnografii,23:142–154.

Bos,J.A.A.&Urz,R.(2003):LocalimpactofEarlyMesolithicmanontheenvironmentinthemiddleLahnrivervalley(Hessen),central-westGermany-pollenandmacrofossilevidence.–VegetationHistoryandArchaeobotany,12:19–36.

Bray,J.R.&Curtis,J.T.(1957):Anordinationofuplandforestcommuni-tiesofsouthernWisconsin.–EcologicalMonographs,27(4):325–349.

Breest, K. (1997a): Studien zur Mittleren Steinzeit in der Elbe-Jeetzel-Niederung(LandkreisLüchow-Dannenberg).–In:Wegner,G.(ed.):

Page 15: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

109E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

BeiträgezurSteinzeitinNiedersachsen.Veröffentlichungenderurge-schichtlichenSammlungdesLandesmuseumsHannover47:141–389;Oldenburg(Isensee).

Breest,K.(1997b):DreiOberflächenfundplätzemitInventarenmesoliti-scherFeuersteinartefakteundEinzelfunden„donauländischer“Stein-geräteimLandkreisLüchow-Dannenberg,Niedersachsen.–Archäo-logischesKorrespondenzblatt,27:403–413.

Breest, K. & Veil, S. (2001): Die Ausgrabungen 2000 auf dem me-solithischen Dünenfundplatz Schletau, Lkr. Lüchow-Dannenberg.Zwischenbericht.MitBeiträgenvonB.Heinemann,A.HilgersundU.Willerding.–DieKunde,52:239–254.

Brodowski,R.(1998):EinneuerFundplatzdesdreieckdominiertenMit-telmesolithikums im Landkreis Lüchow-Dannenberg. – Die Kunde,49:41–60.

BronkRamsey,C.(2008):Depositionmodelsforchronologicalrecords.–QuaternaryScienceReviews,27:42–60.

BronkRamsey,C.(2009):Bayesiananalysisofradiocarbondates.–Ra-diocarbon,51:337–360.

Broström,A.,Nielsen,B.,Gaillard,M.-J.,Hjelle,K.,Mazier,F.,Bin-ney,H.,Bunting,J.,Fyfe,R.,Meltsov,V.,Poska,A.,Räsänen,S.,Soepboer,W.,vonStefingk,H., Suutari,H.&Sugita,S. (2008):PollenproductivityestimatesofkeyEuropeanplanttaxaforquanti-tativereconstructionofpastvegetation:areview.–VegetationHis-toryandArchaeobotany,17:461–478.

Cappers,R.T.J.&Raemaekers,D.C.M.(2008):CerealCultivationatSwift-erbant?NeolithicWetlandFarmingontheNorthEuropeanPlain.–CurrentAnthropology,49:385–402.

Chernysheva,E.,Kashirskaya,N.,Korobov,D.&Broisov,A. (2014):Biological activity of soddy-calcareous soils and cultural layers inAlaniansettlementsoftheKislovodskbasin.–EurasianSoilScience,47,884–891.

Chernysheva,E.,Korobov,D.,Khomutova,T.E.&Broisov,A.(2015):Ureaseactivityinculturallayersatarchaeologicalsites.–JournalofArchaeologicalScience,57,24–31.

Christiansen, J. (2008): Vegetationsgeschichtliche Untersuchungen inder westlichen Prignitz, dem östlichen Hannoverschen WendlandunddernördlichenAltmark.–92S.;Göttingen(PhDthesis).

Dambach,K.(2000):EinVersuchzurQuantifizierungdergerodetenLand-oberfläche einzelner Landschaften Mitteleuropas mit Hilfe der Pol-lenanalyse.–DissertationesBotanicae,336:1–151.

Deforce,K.,Bastiaens,J.,vanNeer,W.,Ervynck,A.,Lentacker,A.,Sergan,J.&Crombé,P.(2012):Woodcharcoalandseedsasindica-tors for animal husbandry in a wetland site during the late meso-lithic–earlyneolithictransitionperiod(Swifterbantculture,ca.4600–4000B.C.) inNWBelgium.VegetationHistoryandArchaeobotany,22:51–60.

Dörfler, W., Feeser, I., van den Bogaard, C., Dreibrodt, S., Er-lenkeuser,H.,Kleinmann,A.,Merkt,J.&Wiethold,J. (2012):Ahigh-qualityannuallylaminatedsequencefromLakeBelau,NorthernGermany:Revisedchronologyanditsimplicationsforpalynologicalandtephrachronologicalstudies.–Holocene,22:1413–1426.

Dreibrodt, S., Lubos, C., Terhorst, B., Damm, B. & Bork, H. (2010):HistoricalSoilErosionbyWater inGermany:ScalesandArchives,Chronology,ResearchPerspectives.–QuaternaryInternational,222,80–95.

Firbas,F. (1949):Spät-undnacheiszeitlicheWaldgeschichteMitteleuro-pasnördlichderAlpen– In:AllgemeineWaldgeschichte.– 480S.;Jena(GustavFischer).

Galbraith,R.F.,Roberts,R.G.,Laslett,G.M.,Yoshida,H.&Olley,J.M.(1999): Optical dating of single and multiple grains of quartz fromJinmiumrockshelter,northernAustralia:PartI,Experimentaldesignandstatisticalmodels.–Archaeometry,41(2):339–364.

Gehlen,B.(2009):AMicrolithicsequencefromFriesack4,Brandenburg,andtheMesolithic inGermany.–In:Crombé,P.,vanStrydonck,M.,Sergant,J.,Bats,M.&Boudin,M.(eds.):ChronologyandEvo-lution of the Mesolithic in Northwest-Europe: 363–393; Cambridge(CambridgeScholarsPublishing).

Giesecke,T.,Bennett,K.D.,Birks,H.J.,Bjune,A.E.,Boziloca,E.,Feur-dean,A.,Finsinger,W.,Froyd,C.,Pokorný,P.,Rösch,M.,Seppä,H., Tonkov, S., Valsecchi, W. & Wolters, S. (2011): The pace ofHolocenevegetationchange–testingforsynchronousdevelopments.–QuaternaryScienceReviews,30:2805–2814.

Gramsch,B.(2000):Friesack:LetzteJägerundSammlerinBrandenburg.– JahrbuchdesRömisch-GermanischenZentralmuseumsMainz,47:51–96.

Grimm,E.C.(1987):CONISS:AFortran77programforstratigraphicallyconstrained cluster analysis by the method of incremental sum ofsquares.–Computer&Geosciences,13(1):13–35.

Hather,J.G.(1998):IdentificationofMacroscopicCharcoalAssemblages.–In:Mellars,P.&Dark.P.(eds.):StarCarrincontext:newarchae-ologicalandpalaeoecological investigationsat theEarlyMesolithicsiteofStarCarr,NorthYorkshire.–183–196;Oxford(Oxbow).

Hicks,S.(1993):PollenevidenceoflocalizedimpactonthevegetationofnorthernmostFinlandbyhunter-gatherers.–VegetationHistoryandArchaeobotany,2:137–144.

Hiller, A., Litt, T. & Eissmann, L. (1991): Zur Entwicklung der jung-quartären Tieflandstäler im Saale-Elbe-Raum unter besondererBerücksichtigungvon14C-Daten.–E&GQuaternaryScienceJournal,41:26–46.

Innes,J.&Blackford,J.(2003):TheEcologyofLateMesolithicWoodlandDisturbances:ModelTestingwithFungalSporeAssemblageData.–JournalofArchaeologicalScience,30:185–194.

Jahns,S.,Beug,H.J.,Christiansen,J.,Kirleis,W.&Sirocko,F.(2013):Pollenanalytische Untersuchungen am Rudower See und Rambow-er Moor zur holozänen Vegetations- und Siedlungsgeschichte inder westlichen Prignitz, Brandenburg. – In: Heske, I., Nüsse, H.J.& Schneeweiss, J. (eds.): Landschaft, Besiedlung und Siedlung. –ArchäologischeStudienimnordeuropäischenKontext:277–293;Neu-münster(Wachholtz).

Johansson, M.E., Nilsson, C. & Nilsson, E. (1996): Do rivers functionascorridors forplantdispersal?– JournalofVegetationScience,7:593–598.

Juggins,S.(2012):rioja:AnalysisofQuaternaryScienceData,Rpackageversion0.7-3.

Kaiser, K. (2004): Geomorphic characterization of the Pleistocene-Holocene transition in Northeast Germany. – In: Terberger T. &Eriksen B. (eds.): Hunters in a changing world: environment andarchaeology of the Pleistocene-Holocene transition (ca. 11000–9000B.C.)inNorthernCentralEurope.–53–73;Rahden(Leidorf).

Kaiser,K.,Lorenz,S.,Germer,S.,Joschus,O.,Küster,M.,Libra,J.,Bens,O.&Hüttl,R.F.(2012):LateQuaternaryevolutionofrivers,lakesandpeatlands innortheastGermanyreflectingpastclimaticandhumanimpact–anoverview.–E&GQuaternaryScienceJournal,61:103–132.

Kulig, G. (2005): Erstellung einer Auswertesoftware zur Altersbestim-mungmittelsLumineszenzverfahrenunterbesondererBerücksichti-gung des Einflusses radioaktiver Ungleichgewichte in der 238U-Zer-fallsreihe.–35S.;Freiberg(BScthesis).

Kuneš;P.,Pokorný,P.&Šída,P.(2008):DetectionoftheimpactofearlyHolocenehunter-gatherersonvegetationintheCzechRepublic,us-ing multivariate analysis of pollen data. – Vegetation History andPalaeobotany,17:269–287.

Legendre,P.&Legendre,L.(2012):Numericalecology.–990S.;Amster-dam(Elsevier).

Lesemann,B.(1969):PollenanalytischeUntersuchungenzurVegetations-geschichte des Hannoverschen Wendlandes. – Flora (Abt. B), 158:480–518.

Lüning,J.,Jockenhövel,A.,Bender,H.&Capelle,T.(1997):DeutscheAgrargeschichte.Vor-undFrühgeschichte.–479S.;Stuttgart(Ulmer).

Mason, S. (2000): Fire andMesolithic subsistence–managingoaks foracornsinnorthwestEurope?–Palaeogeography,Palaeoclimatology,Palaeoecology,164:139–150.

Merkt,J.,Müller,H.&Strahl,J.(1993):Zwischenberichtzurpollenana-lytischenUntersuchungenvon20ProbenauseinemProfilnordöstlichdesRambowerSees(Mecklenburg-Vorpommern).–Unveröffentlich-terBericht,NLfB/BGR.

Meyer, K.-D. (2000): Geschiebekundlich-stratigraphische Untersuchun-genimHannoverschenWendland(Niedersachsen).–Brandenburgi-scheGeowissenschaftlicheBeiträge,7:115–125.

Moore, P.D., Webb, J.A. & Collinson, M.E. (1991): Pollen Analysis.–216S.;Oxford(Blackwell).

Murray,A.S.&Wintle,A.G.(2000):Luminescencedatingofquartzusinganimprovedsingle-aliquotregenerativeprotocol.–RadiationMeas-urement,32(1):57–73.

Nüsse,H.-J. (2002):UntersuchungenzurBesiedlungdesHannoverschenWendlands von der jüngeren vorrömischen Eisen- bis zur Völker-wanderungszeit.–407S.;Göttingen(PhDthesis).

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R.,O’Hara,R.B.,Simpson,G.L.,Solymos,P.,Stevens,M.H.H.&Wag-ner,H.(2012):vegan:CommunityEcologyPackage.Rpackagever-sion2.0-5.

Page 16: Environmental development and local human impact in the … · Falko Turner, Key Laboratory of Tibetan Environment Changes and Land Surfaces Processes (TEL ... Institute for Geosystems

110 E&G / Vol. 64 / No. 2 / 2015 / 95–110 / DOI 10.3285/eg.64.2.04 / © Authors / Creative Commons Attribution License

Parker,A.G.,Goudie,A.S.,Andersen,D.E.,Robinson,M.A.&Bonsall,C. (2002):Areviewof themid-Holoceneelmdecline in theBritishIsles.–ProgressinPhysicalGeography,26:1–45.

Pott,R.&Hüppe,J.(1991):DieHudelandschaftenNordwestdeutschlands.–AbhandlungenausdemWestfälischenMuseumfürNaturkunde,53:1–313.

Pott,R.&Hüppe,J.(2001):FlussauenundVegetationsentwicklungandermittlerenEms.ZurGeschichteeinesFlussesinNordwestdeutschland.– Abhandlungen aus dem Westfälischen Museum für Naturkunde,63(2):1–119.

Ramminger,B.(2012):MultipleGrenzen:DasBeispielBobergerDünen.–In:Doppler,T.,Ramminger,B.&Schimmelpfennig,D.(eds.):Gren-zenundGrenzräume:297–320;Kerpen-Loogh(WeltundErde).

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Black-well,P.G.,BronkRamsey,C.,Buck,C.E.,Burr,G.S.,Edwards,R.L.,Friedrich,M.,Grootes,P.M.,Guilderson,T.P.,Hajdas,I.,Heaton,T.J.,Hogg,A.G.,Hughen,K.A.,Kaiser,K.F.,Kromer,B.,McCor-mac,F.G.,Manning,S.W.,Reimer,R.W.,Richards,D.A.,Southon,J.R.,Talamo,S.,Turney,C.S.M.,vanderPlicht,J.&Weyhenmey-er,C.E.(2009):IntCal09andMarine09RadiocarbonAgeCalibrationCurves,0–50,000Yearscal BP.–Radiocarbon,51:1111–1150.

Rump, H.H. (2000): Laboratory manual for the examination of water,wastewaterandsoil.–232S.;Weinheim(Wiley-VCH).

Ryan,P.&Blackford,J.(2010):LateMesolithicenvironmentalchangeatBlackHeath,southPennines,UK:atestofMesolithicwoodlandman-agementmodelsusingpollen,charcoalandnon-pollenpalynomorphdata.–VegetationHistoryandArchaeobotany,19:545–558.

Schweingruber,F.H.(1990a):AnatomyofEuropeanwoods:anatlasfortheidentificationofEuropeantrees,shrubsanddwarfshrubs.–800S.;Bern(Haupt).

Schweingruber, F.H. (1990b): Microscopic wood anatomy. Structuralvariabilityofstemsandtwigsinrecentandsubfossilwoods.–226S.;Teufen(Flück-Wirth).

Selig,U.,Leipe,T.&Dörfler,W. (2007):PaleolimnologicalRecordsofNutrientandMetalProfilesinPrehistoric,HistoricandModernSedi-mentsofThreeLakes inNorth-easternGermany.–Water,Air,andSoilPollution,184:183–194.

Simmons,I.G.&Innes,J.B.(1996):PrehistoricCharcoalinPeatProfilesatNorthGill,NorthYorkshireMoors,England.– JournalofArchaeo-logicalScience,23:193–197.

Stuiver,M.,Reimer,P.(1993):Extended14CdatabaseandrevisedCALIBradiocarboncalibrationprogram.–Radiocarbon,35:215–230.

Sugita,S.(1994):PollenrepresentationofvegetationinQuaternarysedi-ments:theoryandmethodinpatchyvegetation.–JournalofEcology,82:881–897.

Sugita,S.,Parshall,T.,Calcote,R.&Walker,K. (2010):Testingthelandscapereconstructionalgorithmforspatiallyexplicitreconstruc-tionofvegetation innorthernMichiganandWisconsin.–Quater-naryResearch,74:289–300.

TerBraak,C.F.J.(1983):Principalcomponentbiplotsandalphaandbetadiversity.–Ecology,64:454–462.

TerBraak&C.F.J.,Prentice,I.C.(1988):Atheoryofgradientanalysis.–AdvancesinEcologicalResearch,18:271–317.

Tolksdorf,J.F.(2011):MesolithischesLandschaftsmanagementoderkli-matisch-ökologischeKrise?StudiezudenUrsachenfrüh-undmittel-holozäneräolischerSedimentumlagerungen.–195S.;Marburg(PhDthesis).

Tolksdorf, J.F. & Kaiser, K. (2012): Holocene aeolian dynamics in theEuropeansand-beltasindicatedbygeochronologicaldata.–Boreas,41:408–421.

Tolksdorf,J.F.,Klasen,N.&Hilgers,A.(2013a):TheexistenceofopenareasduringtheMesolithic:evidencefromaeoliansedimentsintheElbe-Jeetzelarea,northernGermany.–JournalofArchaeologicalSci-ence,40:2813–2823.

Tolksdorf,J.F.,Turner,F.,Kaiser,K.,Eckmeier,E.,Stahlschmidt,M.,Housel,R.A.,Breest,K.&Veil,S.(2013b):MultiproxyanalysesofstratigraphyandpalaeoenvironmentoftheLatePalaeolithicGrabowfloodplainsite,NorthernGermany.–Geoarchaeology,28:50–65.

Turner, F. (2012): Biogeowissenschaftlich-paläoökologische Untersu-chungen zur spätglazialen und holozänen Entwicklung von Land-schaftundFlusssystemanderJeetzelimmittlerenElbetal.–207S.;Hannover(PhDthesis).

Turner,F.,Tolksdorf,J.F.,Viehberg,F.,Schwalb,A.,Kaiser,K.,Bitt-mann, F., von Bramann, U., Pott, R., Staesche, U., Breest, K. &Veil, S. (2013): Lateglacial/early Holocene fluvial reactions of theJeetzelriver(Elbevalley,northernGermany)toabruptclimaticandenvironmentalchanges.–QuaternaryScienceReviews,60:91–109.

Turner,F.,Pott,R.,Schwarz,A.,&Schwalb,A.(2014):ResponseofPe-diastruminGermanfloodplainlakestoLateGlacialclimatechanges.–JournalofPaleolimnology,52:293–310.