environmental impacts of arctic oil spills and arctic...

13
Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies Executive Summary Section 1. The Physical Environment Section 2. Arctic Ecosystems and Valuable Resources Section 3. The Transport and Fate of Oil in the Arctic Section 4. Oil Spill Response Strategies Section 5. Biodegradation Section 6. Ecotoxicology of Oil and Treated Oil in the Arctic Section 7. Population Effects Modeling Section 8. Ecosystem Recovery Section 9. Net Environmental Benefit Analysis for Oil Spill Response Options in the Arctic Executive Summary Program Objectives and Participants The International Association of Oil and Gas Producers (OGP) in support of the Arctic Oil Spill Response Technology – Joint Industry Programme (JIP) funded this review of available information on the environmental impacts from oil spills in the Arctic and impacts that may be associated with the application of specific treatment technologies that may be applied during an oil spill response. The objective of the review was to compile significant findings of prior investigations and suggest priority areas of work needed to improve assessment of the consequences of the various treatment strategies prior to application under Arctic conditions. The primary outcome is development of a process to integrate ecological consequence assessments within net environmental benefit analyses (NEBA) to Photo E-1. Summer storm in the Arctic Quick Links to Executive Summary Content Program Objectives and Participants The PanArctic Region: Highlights of the Literature Review Behavior and fate of oil in the Arctic VECs and ecotoxicity Role of Ecosystem Consequence Analyses in NEBA Applications in the Arctic Arctic population resiliency and potential for recovery Priority Recommendations to Enhance NEBA Applications in the Arctic Development of ARCAT matrices Influence of oil on unique Arctic communities Biodegradation in unique communities Modeling of acute and chronic population effects of exposure to OSRs

Upload: others

Post on 22-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

Environmental Impacts of Arctic Oil Spills and Arctic Spill Response Technologies  

   Executive  Summary  Section  1.    The  Physical  Environment  Section  2.    Arctic  Ecosystems  and  Valuable  Resources  Section  3.    The  Transport  and  Fate  of  Oil  in  the  Arctic  Section  4.    Oil  Spill  Response  Strategies  Section  5.    Biodegradation  Section  6.    Ecotoxicology  of  Oil  and  Treated  Oil  in  the  Arctic  Section  7.    Population  Effects  Modeling  Section  8.    Ecosystem  Recovery  Section  9.    Net  Environmental  Benefit  Analysis  for  Oil  Spill  Response  Options  in  the  Arctic  

Executive Summary

Program  Objectives  and  Participants  

The  International  Association  of  Oil  and  Gas  Producers  (OGP)  in  support  of  the  Arctic  Oil  Spill  Response  Technology   –   Joint   Industry   Programme   (JIP)   funded   this   review   of   available   information   on   the  environmental   impacts   from   oil   spills   in   the   Arctic   and   impacts   that   may   be   associated   with   the  application   of   specific   treatment   technologies   that  may   be   applied   during   an   oil   spill   response.     The  objective  of   the   review  was   to   compile   significant   findings  of   prior   investigations   and   suggest   priority  areas  of  work  needed  to  improve  assessment  of  the  consequences  of  the  various  treatment  strategies  prior   to   application   under   Arctic   conditions.   The   primary   outcome   is   development   of   a   process   to  integrate   ecological   consequence   assessments   within   net   environmental   benefit   analyses   (NEBA)   to  

Photo E-1. Summer storm in the Arctic

Quick Links to Executive Summary Content

Program  Objectives  and  Participants  The  Pan-­‐Arctic  Region:    Highlights  of  the  Literature  Review  Behavior  and  fate  of  oil  in  the  Arctic  VECs  and  ecotoxicity  

Role  of  Ecosystem  Consequence  Analyses  in  NEBA  Applications  in  the  Arctic   Arctic  population  resiliency  and  potential  for  recovery  

Priority  Recommendations  to  Enhance  NEBA  Applications  in  the  Arctic  Development  of  ARCAT  matrices  Influence  of  oil  on  unique  Arctic  communities      

Biodegradation  in  unique  communities  Modeling  of  acute  and  chronic  population  effects  of  exposure  to  OSRs  

 

Page 2: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

better   evaluate   the   environmental   effects   to   valuable   ecosystem   components   (VECs)   within   key  environmental   compartments   (ECs)   c   that   would   result   from   using   different   response   actions   in   the  Arctic.    Specifically,  development  of  Arctic  response  consequence  analysis  table  matrices  (ARCAT)  and  a  semi-­‐quantitative  analytical  tool  will  optimize  decision-­‐making  and  lessen  environmental  impact  related  to  arctic  oil  spills  in  the  Arctic.    The  process  is  proactive  rather  than  responsive  to  a  spill  event  improving  the  ability  to  reduce  environmental  damage  by  chosing  mitigating  measures  with  the  minimized  effect  on   the  environment.    As  a   result  of   this  proactive  approach   there  will   also  be  broader  consensus  and  acceptance  of  decisions  among  regulators  and  stakeholders.    

To  increase  confidence  in  evaluations  and  environmental  impact  statement  (EIS)  of  oil  spills  and  oil  spill  response  (OSR)  technologies  proposed  for  the  Arctic,  a  comprehensive  review  of  the  existing  literature  was   conducted   to   identify   priority   areas   for   future   research   efforts.     Because   of   the   breadth   of   topic  areas  supporting  consequence  analysis  approaches,  this  effort  called  for  a  multidisciplinary  team  with  an  understanding  of  food  webs  throughout  the  Arctic;  behavior  of  oil  in  surface  waters,  at  depth,  and  in  ice;  the   effectiveness   of   OSR   countermeasures   in   cold-­‐water   surface   and   subsurface   environments;   the  toxicity  of  petroleum  treatment   residues  on  Arctic   species;  and  models  used   to  predict   individual  and  population   effects   in   Arctic   ecosystems   based   on   the   concept   of   resilience.     This   literature   review  followed   a   pan-­‐arctic   approach   that   recognizes   regional   similarities   and   differences   based   on   peer-­‐reviewed   literature   and   technical   reports   from   government   and   research   institutions   representing  circumpolar   interests.     The   review   is   based   on   more   than   960   literature   citations   and   the   personal  experience   of   the   work   group   participants.     To   best   utilize   the   expertise   assembled   on   this   team,  representatives  from  different  regions  and  disciplines  worked  in  subgroups  and  all  were  able  to  review  the  entire  document  since  many  of  the  investigators  have  multi-­‐disciplinary  research  backgrounds.  The  team  was  divided   into  nine   technical  working   groups,   each  with   a   focused   assessment   goal   and   each  with  the  assignment  to  identify  areas  of  priority  research:  

The   Physical   Environment   –   Summarize   available   literature   to   describe   the   different  environmental   compartments   present   in   the   Arctic   and   the   physical   characteristics   of   those  compartments  that  could  potentially  affect  the  fate  and  effects  of  oil,  as  well  as  defining  what  response  measures   are   an   option   for   those   environment   compartments.     Seasonality   in   Arctic  eco-­‐regions  is  addressed  (ice  or   ice-­‐free  conditions)  as  well  as  unique  habitats  and  use  of  those  compartments  by  VECs  (e.g.  areas  with  significant  riverine  input).      

Arctic   Ecosystems   and   Valuable   Resources   –   Identify   environmental   compartments,   food   web  connections   within   those   environmental   compartments,   key   Valuable   Ecosystem   Components  (VEC   species/taxa)   within   each   compartment   that   connects   those   food   webs   and   variations  among  VEC  species/taxa  between  sub-­‐regions  within  the  Arctic.  

Transport  and  Fate  of  Oil  in  the  Arctic  –  The  various  treatment  strategies  may  enhance  or  reduce  the   amount   of   oil   that   is   transported   away   from   sites   of   surface   or   subsea   released   oil.    This  section  discusses  the  mechanisms  behind  short  and  long  term  transport  of  spilled  oil  in  the  Arctic.  

Oil  Spill  Response  and  Related  Effects  –  Identify  the  implications  of  various  response  actions  to  increase   or   decrease   the   exposure   to   various   treatment   residuals   within   environmental  compartments.  Identify  alternative  response  options  for  surface  and  subsurface  spills  of  oil  under  Arctic  seasonal  conditions  and  describe  the  environmental  effects  of  those  response  actions.  

Biodegradation   –   Identify   the   measurement   tools   that   can   quantify   the   use   of   oil   by   Arctic  microbes   including   direct   uptake   and   use   of   carbon   containing   petroleum   compounds,  mineralization   of   petroleum   hydrocarbons   to   CO2   and   chemical   changes   of   parent   petroleum  

Page 3: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

compounds  to  other  compounds  under  different  treatment  options  and  how  those  changes  are  modified  in  different  ECs  

Ecotoxicology  of  Oil  and  Treated  Oil  in  the  Arctic  –  The  four  lines  of  ecotoxicity  research  include  acute   and   chronic   response   assessments   and   biomarker   and   body   burden   assessments   of  exposure.    Evaluate  the  literature  to  establish  the  environmental  relevance  of  these  four  lines  of  evidence.    Identify  gaps  in  experimental  programs  to  address  the  ecotoxicology  of  oil  in  separate  environmental  compartments.  

Population  Effects  Modeling  –  Petroleum  treatment   residuals  are  environmental   stressors   that  have  the  potential  to  produce  adverse  impacts  on  individuals  or  populations  of  VECs.    Determine  which   parameters   are   necessary   components   of   a   population   impact  model   for   VECs;   identify  models  useful   in  predicting  the  effects  of  treatment  options  on  these  species/taxa.    Parameters  of  interest  include  changes  in  the  toxicity  of  biodegraded  oil,  transfer  of  impact  related  effects  to  other   trophic   level   VECs,   or   consideration   of   the   resiliency   of   populations   to   recover   from   a  stress.  

Ecosystem   Recovery   –   The   ecotoxicology   and   biodegradation   of   oil   spill   residuals   is   better  understood   than   the   ability   of   a   compartment   or   VEC   to   recover   from   the   impacts   of   a   spill.    Environmental  compartments  have  different  abilities  to  recover  from  oil  impacts.    Application  of  treatment  methods  need  to  account  for  and  minimize  the  movement  of  oil  to  locations  or  species  that   have   a   low   resiliency   to   respond   to   oil.     This   section   examines   the   duration   of   continued  impact   of   an   oil   release   and   expected   recovery   of   different   environmental   compartments   and  VECs.  Response  actions  need  to  minimize  encroachment  on  less  resilient  ECs  and  VECs.  

Net   Environmental   Benefit   Analyses   for   Oil   Spill   Response   Options   in   the   Arctic   –   The  environmental  consequences  of  an  oil  spill  response  strategy  will  influence  the  overall  impact  of  an  oil  spill  (surface  or  subsurface).     In  typical  applications  of  net  environmental  benefit  analysis  (NEBA)   framework,   the   consequences   of   a   treatment   option   are   generally   associated  with   the  near-­‐term   impacts  and   less  so  with  consideration  of   the   longer   term  consequences  to  recovery  resulting   from   impacts   to   less   resilient   environmental   compartments  or  VECs.    As  an  example,  far-­‐field   impacts   can   result   from  not   selecting  a  dispersant  option  which   result   in   stranding  of  untreated   oil   on   cobble   shorelines   where   the   effects   can   be   observed   decades   after   a   spill.    Alternatively,   selection   of   the   dispersant   option   will   result   in   greater   impacts   to   the   more  resilient  zooplankton  community  while  reducing  the  effects  on  less  resilient  seabird  and  marine  mammals  that  might  contact  oil  on  the  sea  surface.    The  goal  of  this  workgroup  was  to  develop  a  preliminary  consequence  analysis  of  treatment  decisions  and  demonstrate  through  an  adaptive  NEBA  process  the  interrelationships  between  treatment  decisions  and  shortening  or  lengthening  of   recovery   from  all   forms  of   environmental   effects,   not   restricted   to   the   immediate  near-­‐field  impacts.    

Recent  literature  was  reviewed  for  each  topic  area,  and  the  information  was  compiled  into  a  Microsoft  Access®  database.    Approximately  650  documents  have  been  cited  within  the  body  of  this  report,  and  at  this   time  there  are  over  1300  documents  represented   in  the  Access  database  that  has  been  produced  for   recent   JIP   programs.     The   database   is   searchable   and   can   generate   a   list   of   references   related   to  Arctic  ecology,   food  webs,  deep  water  food  webs,  petroleum-­‐related  fate  and  effects,  biodegradation,  and  ecosystem-­‐level  case  studies;  aquatic  toxicity  and  chemistry  data  can  be  queried  via  pivot  graphs  to  dynamically   represent   the  data  compiled   to  date.      Based  on   results  of   these  summary   investigations,  recommended   new   environmental   studies   are   identified   and   prioritized.   The   recommended   research  will   help   reduce   uncertainties   related   to   each   topic   area   and   strengthen   the   NEBA   approach   in   the  

Page 4: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

Arctic.     The   organizations   and   team  members   participating   in   this   synergistic   effort   are   presented   in  Figure  ES-­‐1.  

 

 

Figure E-1. Organizational matrix  

(Workgroup  chairmen  and  co-­‐chairmen  are  noted  in  bold  text)  

1.    The  Physical  Environment  

Dr.  Jack  Word  Ms.  Lucinda  Word  Dr.  Robert  Perkins  

 

4.    Oil  Spill  Response  and  Related  Effects  

Mr.  Francois  Merlin  Dr.  Stephane  Le  Floch  

Dr.  Jack  Word  Dr.  James  Clark  

Dr.  Liv-­‐Guri  Faksness  Dr.  Janne  Fritt-­‐Rasmussen    

 

Principle  Investigator  

Dr.  Jack  Q  Word  

9.    Review  of  NEBA  

Dr.  Gina  Coelho  Dr.  James  Clark  Mr.  James  Staves  Ms.  Laura  Essex  Dr.  Per  Daling  

Dr.  CJ  Beegle-­‐Krause  Mr.  Francois  Merlin  Dr.  Andrei  Zhilin  

 

2.    Arctic  Ecosystems  and  Valuable  Resources  

Mr.  William  Gardiner,    Dr.  Ida  Beathe  Øverjordet  

Dr.  Oleg  Titov  Dr.  Andrei  Zhilin  

Dr.  Thierry  Baussant  Dr.  Jack  Word  

7.    Population  Effects  Modelling  

Dr.  Benny  Gallaway    Dr.  Jack  Q  Word  Dr.  James  Clark    Dr.  Ivar  Singass  Dr.  Will  Hafner  Dr.  Oleg  Titov  

3.    Transport  and  Fate  of  Oil  in  the  Arctic  

Dr.  Alf  Melbye  Dr.  Liv-­‐Guri  Faksness  Dr.  Torgeir  Bakke  

Dr.  Janne  Fritt-­‐Rasmussen  Dr.  Oleg  Titov  

5.    Biodegradation  

Dr.  Odd  Brakstad  Dr.  Donald  Stoeckel  Dr.  Charles  Greer  

8.    Ecosystem  Recovery  

Dr.  Bjørn  Henrik  Hansen  Dr.  Jack  Q  Word  Dr.  James  Clark  Dr.  Gina  Coelho  

Dr.  Morten  Hjorth  Dr.  Torgeir  Bakke  

 

6.    Ecotoxicology  of  Oil  and  Treated  Oil  in  the  Arctic  

Dr.  Lionel  Camus  Mr.  William  Gardiner    Dr.  Bjørn  Henrik  Hansen  

Dr.  James  Clark  Dr.  Jack  Word  

Dr.  Steinar  Sanni  Dr.  Oleg  Titov  

 

Page 5: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

 

The Pan-Arctic Region: Highlights of the Literature Review Currently   five   of   the   eight   countries   bordering   the   polar   region   are   pursuing   exploration   and/or  development  of  oil  and  gas  resources  in  the  Arctic  [Canada,  Greenland  (Denmark),  Norway,  Russia,  and  the   United   States].     The   changing   environmental   conditions   in   the   Arctic   may   provide   increased  opportunity  for  development  of  these  resources  that  were  less  accessible  due  to  presence  of  ice  in  past  decades  and  the  improved  technological  advances  for  extracting  petroleum  resources.    Activities  of  the  petroleum   industry  are  based  on  promulgated   regulations   set  by  each  sovereign  nation  but   there  has  been  a  move   toward   international   cooperation  and  sharing  of  knowledge   related   to   the   technological  development   required   to   ensure   safe   drilling   operations   as   well   as   spill   response   preparedness.    International,   federal,  and   local  agencies   from  North  America,  Northern  Europe,  and  Russia  are   in   the  process  of  developing  baseline  ecosystem  and  biodiversity  assessments  and  research  programs  in  order  to  better  understand  and  protect  the  Arctic  marine  ecosystem  and  the  communities  that  rely  on  these  resources.       For   example,   the   Arctic   Monitoring   and   Assessment   Program   (AMAP)   has   completed   a  significant  effort  in  publishing  comprehensive  baseline  information  on  Arctic    geo-­‐political  activities  and  regulations,   available   drilling   technologies,   spill   response   initiatives,   and   potential   environmental    impacts  (AMAP  2010).    Additional  cooperative  research  sponsored  by  joint  industry  programs  (JIP)  have  augmented  the  knowledge  base  associated  with  the  oil  and  gas  industry  activities  (Sørstrøm  et  al.  2010;  NewFields   2012).     These   efforts   and   convened   workshops   have   integrated   contributions   from   the  scientific   community,   governmental   agencies,   public   interest   groups,   and   indigenous   people   of   the  Arctic.      

Additionally,  extensive  field  and  laboratory  studies  have  been  conducted  to  examine  the  behavior  and  fate  of  oil  and   its  potential  effects  on  Arctic  resources  under  the  disparate  seasonal  conditions.    Many  recent   studies   have   concentrated   on   understanding   the   influence   of   these   harsh   environmental  conditions  on   the   relative   sensitivity  of  Arctic   species   to  additional   stressors,   the   success  and   rates  of  microbial   degradation   of   oil   compounds,   and   more   recently   the   resilience   of   Arctic   populations   to  recover  from  responses  to  those  stressors.    Similar  to  other  parts  of  the  world  these  investigations  have  increased  our  understanding  of   the  basic  behavior  and  movement  of  oil,   its  potential   effects  on  VECs  and  the  ultimate  fate  of  released  oil   in  various  environmental  compartments.    The  Arctic  environment  has  added  complexities  resulting  from  seasonal  patterns  of  ice  and  light  that  need  to  be  considered  to  provide   the   foundation   for   development   of   strategic   spill   response   strategies   and   evaluation   of   the  environmental   consequences   of   released   oil   that   are   very   relevant   today.     Excellent   comprehensive  reviews  have  been  published  in  recent  years  (Potter  et  al.  2012,  SL  Ross  et  al.  2010,  and  USGS  2011).      

The  fundamental  role  of  comparing  the  adverse  biological  effects  of  different  response  options  in  NEBA  requires   an   information   base   that   identifies   VECs  within  multiple   environmental   compartments.     The  potential   adverse   effects   and   resiliency   of   these   VEC   organisms   within   each   of   these   various  compartments   are   then   compared   as   a   consequence   of   the   OSR   actions.     These   comparisons   should  examine   the  acute   and   long-­‐term  effects  of   spilled  oil   resulting   from   the   impacts  of   various   response  options  such  as  natural  attenuation,  surface-­‐applied  or  subsea-­‐injected  dispersants,  in-­‐situ  burning,  and  mechanical  or  naturally  occurring  containment  methods  followed  up  by  recovery  of  spilled  petroleum  in  Arctic  ecosystems.    Review  and  tabulation  of  published  data,  such  as  toxicity  effect  concentrations  and  population  recovery  times,  is  a  key  component  of  this  review.    However,  the  overall  objective  related  to  exploration  and  production  projects   in  the  Arctic   is  not  only  to  tabulate  this   information  or  determine  the  most  sensitive  end-­‐points  that  might  be  considered  but  to  demonstrate  the  relative  differences   in  the   magnitude   and   duration   of   effects   that   might   be   observed   at   various   ecosystem   compartments  

Page 6: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

associated   with   various   response   actions.     As   has   been   attempted   for   other   regions   where   new  exploration  and  production  activities  have  been  implemented,  demonstrating  these  relative  differences  will   require   additional   effort   aimed   at   bridging   the   gap   between   relatively   straightforward  measurements  of  toxicity  to  arctic  species  and  more  complex  investigations  to  assess  ecosystem-­‐level  or  population  level  impacts  and  recovery  dynamics.    This  report  considers  the  similarities  and  differences  in  species   sensitivity  between  arctic  and  non-­‐arctic   species.     To  effectively  monitor  habitat   recovery  and  identify  ecologically  relevant  endpoints   for  remediation  operations   in  Arctic  regions  there   is  a  need  to  increase   our   knowledge   on   natural   variability   among   populations   and   how   that   variability   relates   to  vulnerability  to  petroleum  exposure.    

Prior   to   the  granting  of  approvals   for  exploration  and  production  activities,   the  public  seeks   increased  assurances   that   industry   and   the   various   governmental   entities   have   the   capability   to   ensure   safe  exploration   and   extraction   of   oil   as   well   as   the   capability   to   respond   to   oil   spills.   To   meet   these  challenges  a  number  of  current  and  emerging  oil  spill  countermeasure  technologies  have  been  identified  for   use   in   the  Arctic.    While  use  of   different  OSR  methods   can  potentially   reduce   the   impact  of   spills  within  the  Arctic  under  various  environmental  conditions,  not  all  options  have  been  readily  accepted  by  the  public  and  regulators.    Lack  of  endorsement  of  some  OSR  options  is  related  to  the  perceived  change  in   impacts  and  biodegradation  rates  that  the  use  of  these  options  in  the  Arctic  marine  ecosystem  may  bring.    Several  studies  have  been  undertaken  to  address  such  concerns  for  different  response  measures;  however,  conflicting  interpretations  and  conclusions  impact  stakeholders’  confidence.    For  example,  the  assumptions  that  dispersant  treated  oils  are  more  toxic  than  undispersed  oil,  dispersants  are  more  toxic  than  oil,  dispersants  reduce  the  ability  of  microbes  to  degrade  oil,  and  Arctic  species  are  more  sensitive  to  oil  than  non-­‐arctic  species  are  incorrect  although  all  of  these  assumptions  may  be  proposed  as  facts  by  multiple  stakeholders.      

The  purpose  of  the  following  section  is  to  describe  those  key  areas  that  the  workgroup  recommended  for   further  evaluation  based  on   their   critical   review  of  available   information.    The  subjects   for   further  consideration   are   grouped   into   major   subject   headings   for   this   executive   summary.     Details   of   the  recommendations  will  be  found  in  each  of  the  sections  of  the  reports.      

Behavior and Fate of Oil in the Arctic Arctic  conditions  influence  the  behavior  and  fate  of  untreated  surface  oil  due  to  the  low  temperatures  and  the  presence  of  different  types  of  ice.    Petroleum  is  generally  immiscible  in  seawater  and  more  so  under  colder  temperatures.    Surface  oils  with  lower  specific  gravity  accumulate  on  the  sea  surface  and  spread  horizontally  with   the  more  volatile  or   soluble  components  quickly   released   into   the  air  or   into  the  water,  respectively  (NRC  1989;  EPPR  2011).    The  surface  oil  also  encounters  disturbance  by  wind  and  wave   action   increasing   the   exposed   surface   area   of   the   oil   to   the   vertical   transport   processes   of  volatilization  and  solubilization.    The  wind  and  waves  also  adds  water  to  oil  creating  oil/water  emulsions  that   become  more   stable  with   time.     The  presence  of   broken   ice  with  wind   and  waves   enhances   the  disruption  of   the  surface  oil.  These  physical  processes  produce  small  globules  of  oil   that  may  undergo  further   physical,   chemical   and   biological   weathering,   creating   aggregations   of   the   heavier   residual  compounds   that   remain,   eventually   producing   tar   balls.     In   general,   slicks   formed   in   cold   water   are  thicker  with  less  exposed  surface  areas  with  reduced  spatial  coverage  than  the  same  oil  released  under  temperate  conditions.  Laboratory  trials  have  provided  Information  on  key  parameters  that  influence  oil  spreading  under  solid  ice  such  as  under-­‐ice  currents  and  ice  roughness  (Potter  et  al.  2012).  In  situations  that   the  pour  point  of  oil   is  above  ambient   temperature,   the  physical  characteristics  of   the  oil  change  dramatically  with  the  wax  components  of   the  oil  precipitating  and  forming  a  gel-­‐like  semi  solid   that   is  

Page 7: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

resistant  to  flow  and  spreading  and  which  also  restricts  diffusion  of  volatiles  through  the  slick,  effectively  reducing  evaporation.      

Untreated  surface  oils  form  slicks  that  are  transported  laterally  by  winds  and  currents  and  largely  remain  on  the  water  surface  and  in  the  upper  water  column.    The  oil  continues  to  spread  on  the  surface  of  the  ocean  forming  ribbons  of  slicks  that  rapidly  spread  to  approximately  1  mm  in  thickness  and  are  patchily  distributed.    Wind   and   waves   break   up   and   drive   some   of   this   surface   oil   into   the   water   column   in  relatively  large  globules  (>100  µm).    The  oil  slick  contains  all  of  the  chemical  components  of  the  spilled  oil  less  those  components  that  volatilize  into  the  atmosphere  or  solubilize  into  the  water  column  under  the   slick.     The   maximum   concentration   of   oil   is   therefore   contained   in   the   immediate   slick   area,  potentially  exposing  organisms  that  use  the  water  near  the  air-­‐water  interface  to  the  highest  petroleum  hydrocarbon  concentrations  that  immediately  follow  a  spill  event.    

The   behavior   and   fate   of   released   petroleum   is   an   important   consideration   in   understanding   the  potential  effects  of   released  petroleum  and   in  evaluating   the  potential  OSR  options   in   the  arctic.    The  spreading   and  weathering   of   petroleum   in   the   arctic   is   complex,   influenced   by   factors   such   as  water  temperature,  local  currents  and  wind  conditions,  the  presence  and  absence  of  seasonal  and  multi-­‐year  ice,  effects  of  pressure   in  deep  water  environments  and  seasonal  changes   in   salinity  during   the  Arctic  spring.    The  presence  of  ice  has  been  shown  to  slow  the  rate  of  spreading  and  weathering  of  surface  oil,  as   well   as   affecting   predictions   of   spill   locations   and   trajectories.    Migration   of   petroleum   into   brine  channels  or  fissures  in  the  ice  can  not  only  alter  fate,  but  also  the  species  that  are  potentially  exposed  and   the   exposure   point   concentration.     At   depth,   petroleum   is   affected   by   increased   pressures   and  decreased   temperatures,   resulting   in  phase  shifts  and  changes   in   solubility  as  well  as   the  dynamics  of  deep  water  currents  and  bathymetry.    Key  considerations  included  in  the  review  were  as  follows:  

• Cold  water   temperatures   and   the   presence   of   ice   can   dramatically   affect   the  weathering   and  natural  attenuation  of  oil  in  the  Arctic,  but  the  ice  can  also  trap  oil  so  that  OSR  options  and  time  available  to  implement  the  necessary  response  can  be  extended.    

• Changes  in  behavior  and  fate  of  petroleum  in  deep  sea  environments  associated  with  seeps  and  well  blow-­‐outs  or   leakage  alter   the  bioavailability  of  oil   components  by  allowing  more  volatile  components   to   diffuse   into   the   water   where   they   may   form   clathrates   altering   the  biodegradation  potential  and  toxicity  of  those  structures.      

• Adhesion   of   oil   to   particulate   matter   and   how   this   may   affect   the   potential   for   uptake   into  tissues;    

• The   change   in   globule   size   and   bioavailability   of   physically   and   chemically/OMA   dispersed   oil  under  Arctic  conditions  and,  

• The  behavior  of  oil  in  the  absence  and  presence  of  ice  and  how  it  influences  the  selection  of  OSR  options.  

The  microbial  degradation  potential  of  oil  in  the  Arctic  has  been  demonstrated  and  is  as  effective  as  this  process   occurring   in   lower   latitudes   when   natural   communities   of   Arctic   microbes   respond   to   the  presence  of  oil.    Microbial   response   to  oil   in   the  Arctic   and  deep,   cold  and  dark  waters   are  emerging  areas  of  research.    While  microbial  degradation   in  temperate  waters  has   long  been  recognized,  recent  laboratory   and   field   studies   have   documented   microbial   degradation   of   petroleum   and   dispersed  petroleum  in  these  extreme  environments.    Current  research  is  using  analytical  chemistry,  respirometry,  genomics,   transcriptomics,   and   proteomics   assays   to   not   only   show   the   presence   of   oil-­‐degrading  species,   but   measure   the   response   and   results   of   microbial   activity   upon   being   exposed   to   oil.     Key  considerations  included  in  the  review  are  as  follows:  

Page 8: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

• The  presence  and  effectiveness  of  microbial  communities   to  degrade  oil   in   the  Arctic   (in  open  waters,  in  the  presence  of  ice,  along  shorelines  and  in  subtidal  sediments);  

• The  characterization  of  the  microbial  community  responses  and  gene  expression  associated  with  exposure   to   oil   and   aerobic   and   anaerobic   biodegradation   and   use   of   hydrocarbons   and  organosulfur  compounds  associated  with  the  unresolved  complex  mixture;  and,  

• The   effects   of   biodegradation   on   the   toxicity   and   availability   of   metabolites   created   during  biological   use   of   oil   compounds   and   the   changes   that   occur   in   toxicity   and   further  biodegradation  resulting  from  the  more  recalcitrant  residual  compounds  of  oil    

There  has  been  substantial  research  regarding  the  fate  and  effects  of  oil   in  the  Arctic  over  the  past  40  years;  studies  have  been  published  in  a  number  of  different  forums  including  peer-­‐reviewed  literature,  technical  reports,  government  studies  and  professional  symposia.    Additional  data  exists  in  a  number  of  different  languages,  since  research  has  been  conducted  throughout  the  North  American,  European,  and  Russian  Arctic.    Finally,  important  sources  of  data  include  emerging  datasets  from  current  research  and  older  datasets   that  may  not  be   as   readily   found   in   electronic   search  engines  but  nonetheless   contain  valuable  information  on  environmental  conditions  and  ecological  resources.    Consideration  must  also  be  given   to   the   quality   of   data   available   for   use.     However,   the   most   important   aspect   of   making  environmental  consequence  comparisons  for  OSR  options  is  the  appropriate  framing  of  questions  so  that  the   consequences   of   response   actions   can   be   compared   appropriately   among   all   environmental  compartments.

VECs and Ecotoxicity The  physiological,  morphological,  and  behavioral  adaptations  of  Arctic  species  may  alter  their  sensitivity  to   petroleum   and   treated   petroleum.     To   address   this   concern   there   have   been   a   number   of   recent  efforts  to  characterize  the  sensitivity  of  Arctic  species  to  treated  and  untreated  petroleum.    Evaluations  have  included  pelagic  and  benthic  species,  as  well  as  those  in  close  association  with  the  ice.    Endpoints  that   have   been   evaluated   include   survival,   growth,   reproduction,   and   behavioral   effects,   as   well   as  molecular,   cellular,   physiological   responses.     Custom   experimental   facilities   have   been   developed   for  working  with  chemically  and  mechanically  dispersed  oil  and  water  soluble  fractions  (WSF)  of  differently  weathered  oil.    Methodologies  have  been  developed  by  project  team  members  to  capture  and  maintain  Arctic  species  of  interest  for  controlled  laboratory  studies.    The  VEC  species  that  have  been  evaluated  to  this  point  have  been  found  to  have  sensitivities  similar  to  non-­‐Arctic  species  for  oil  exposure.    Both  field  and   laboratory   data   have   also   been   integrated   with   population   models   to   provide   estimates   of  population-­‐level   effects   from   oil   exposures   (e.g.   SYMBIOSES   and   fishery   population   analysis).     Key  considerations  included  in  the  review  are  as  follows:  

• Recent,   historic   and  ongoing   field   and   laboratory   studies  evaluating   toxicity  of  petroleum  and  treated  petroleum  provided  in  Species  Sensitivity  Distributions  to  compare  sensitivity  of  tested  species.  

• Different  exposure  scenarios  facilitate  different  types  of  evaluations  and  can  dramatically  affect  comparability  of  data.     Spiked  exposures   followed  by   reducing  concentrations  of  oil   represent  the  exposures  of  stationary  species  or  those  present  in  the  water  column  when  oil  is  undergoing  the  initial  spreading  and  dilution  following  the  spill  event  or  after  application  of  dispersants  or  OMA.    Exposures  to  constant  concentrations  of  oil  represent  zones  of  concentrated  oil  observed  with  neuston  associated  species  and  life  stages  and  marine  mammals  and  seabirds  that  move  in  and  out  of   the   air/water   interface.     These  more   constant  higher   exposure   concentrations   can  

Page 9: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

also   occur   when   oil   is   concentrated   at   edges   such   as   shorelines,   convergence   zones,   and  water/ice  edges.  

• Endpoints   found   in   the   literature   review   range   from   body   burden   assessment   to   biomarker  responses  as  well  as  mortality,  growth,  reproductive,  developmental  and  behavioral  responses.    The  diversity  of  potential  end  point  assessments  range  from  exposure  assessment  to  end  points  that  have  a  direct  influence  on  estimating  population  level  response  to  the  oil  components.    For  the  purpose  of  this  review,  those  responses  that  are  better  predictors  of  effects  at  the  individual  and  population  levels  are  the  central  focus.    Mortality,  growth  and  reproductive  endpoints  are  those  most  closely  associated  with  population  level  effects.    Reviews  on  exposure  markers  will  concentrate  on  demonstrating  the  relationship  of  the  exposure  marker  to  mortality,  growth  or  reproductive  endpoints.  

• All  toxicity  assessments  are  surrogate  measures  used  to  predict  the  potential  effects  of  oil  spills  on  living  resources.    As  such,  data  obtained  using  sub-­‐arctic  and  temperate  species  representing  different  groups  of  organisms  or  different  environmental  compartments  may  also  be  useful   in  augmenting  datasets  with  Arctic  species.    Recent  comparisons  of  the  relative  sensitivity  of  Arctic  and   non-­‐arctic   species   suggest   that   non-­‐arctic   species   have   similar   sensitivities   warranting   a  broader  evaluation  of  much  larger  data  sets.    

• Additional   testing   of   species   that   are   long-­‐lived,   unique   to   selected   habitat   types   and   low   in  reproductive  capacity  that  have  not  been  evaluated  in  other  regions  have  been  identified  during  the  reviews.  

The   toxicity   of   a   mixture   is   characterized   based   on   the   analytical   approach   used   to   characterize   the  exposure.    Variable  conclusions  regarding  the  relative  toxicity  of  oil  and  water  often  can  be  tracked  to  the   test   waters   being   produced   by   different   processes.     The   water   accommodated   fraction   (WAF)   is  designed  to  only  introduce  the  more  soluble  components  into  the  water  column  while  retaining  the  less  soluble   components   on   the   surface   of   the  water.     The   breaking  wave  water   accommodated   fraction  (BWWAF)   introduces   additional   physical   disturbance,   introducing  more   oil   into   the  water   as   droplets  with   increased   surface   area   exposure   than   occurs   with   the   WAF   allowing   more   of   the   soluble  components   to   diffuse   into   the   water   from   the   oil   droplets.     The   chemically   enhanced   water  accommodated   fraction   (CEWAF)   reduces   the   surface   tension   of   the   oil   and   produces   much   smaller  droplets  with  much  larger  available  surface  area  for  diffusion  of  the  soluble  components  of  the  oil.      One  of   the   objectives   of   the   ecotoxicology   section   was   to   evaluate   alternative  methods   of   characterizing  exposure.  

Role of Ecosystem Consequence Analyses in NEBA Applications for the Arctic A  NEBA  evaluation  of  OSR  strategies  for  use  in  the  Arctic  must  consider  ecosystem-­‐level  consequences  of   the   selected   response.     First,   the   effectiveness   of   the   proposed   solution(s)   under   the   appropriate  conditions   to   determine   how   much   of   the   oil   can   be   treated   by   the   proposed   action.     Second,   the  consequences   to   various   compartment   VECs   resulting   from   exposure   to   the   untreated   oil   and   the  treated   oil.       Such   comparisons   must   be   made   for   resources   in   environmental   compartments   to  determine   the   relative   environmental   benefits   or   risks   of   different   response   options.     Third,   the  resilience  of  the  populations  of  organisms  that  are  being  exposed  as  a  result  of  no  action  or  a  response  treatment  needs  to  be  addressed  in  order  to  determine  the  long  term  consequences  of  the  decision.  

Due   to   both   logistical   and   environmental   constraints,   responses   to   oil   spills   rely   on   combinations   of  remote   sensing   and   monitoring.     The   OSR   options   include   1)   natural   attenuation,   2)   containment  

Page 10: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

followed   by   recovery,   3)   in-­‐situ   burning,   and   4)   dispersion   using   chemicals   or   oil  mineral   aggregates.    With   the  exception  of   lower   temperatures,  oil   spill   response   (OSR)  options  during   the   ice-­‐free   season  are  generally  similar  to  other  parts  of  the  world.    The  presence  of  ice  results  in  additional  challenges  as  well   as   opportunities   not   encountered   in   regions   without   ice.     The  manner   in   which   ice   affects   OSR  effectiveness  is  determined  in  part  by  the  ice  characteristics  which  can  differ  regionally  and  seasonally.    Recent   field   and   laboratory   studies   that   have   evaluated   the   behavior,   fate   and   effects   of   chemically  dispersed   oil,   in-­‐situ   burning,   OMA,   and   natural   attenuation.     Team   members   have   evaluated   spill  response   options   in   the   presence   and   absence   of   ice   and   in   both   surface   and   deeper   water  environments.      Both  COOGER  and  SINTEF  have  led  field  releases  of  oil  and  studied  field  applications  of  OSRs  on   arctic   shoreline/intertidal   environments   and   in   cold  water   and  harsh   environments   including  ice.      

The   objective   of   consequence   analysis   applied   to   oil   spills   is   to   provide   spill   responders   a   choice   of  response  option(s)   in   terms  of   the   lowest  overall  negative   impact  on   the  environment.   It   is   likely   that  multiple  response  options  will  be  selected  and  utilized  for  various  stages  of  the  response  to  reduce  the  exposure  of  VEC  species.    This  process  recognizes  that  once  oil   is  spilled,  some   level  of  environmental  impacts  will  occur,  independent  of  the  spill  response  options  chosen.    The  goal  of  an  effective  response  is  to  apply  the  combination  of  response  techniques  that  will  be  effective  in  minimizing  overall  short  and  long   term   impacts.     For   the   Arctic   and   other   environments,   this   approach   helps   to   focus   technical  discussions  on  the  potential   for  short   term  and   long  term   impacts  on  key  ecosystem  components  and  those  resources  of  greatest  cultural  value  to   indigenous  peoples.    Assessments   include  comprehensive  discussions   of   acute   and   chronic   toxicity,   food   web   bioaccumulation   issues   and   reproductive   and  developmental   impacts   to   exposed   species.     However,   the   discussions   should   focus   on   overall  assessments  at  the  population  and  community  level  of  ecological  organization,  and  ultimately  promote  a   response   strategy   that   allows   for   the   fastest   recovery   of   important   ecosystem   components.     This  approach   has   been   used   by   governments   and   industry   around   the   world   to   establish   environmental  protection   priorities   and   spill   response   preparedness   that   will   provide   the   greatest   degree   of   overall  environmental   protection.       IPIECA,   International   Maritime   Organization   (IMO),   and   OGP   have   long-­‐supported  this  approach  fostering  development  of  a  rational  basis  for  setting  oil  spill  response  guidance  and  regulations  (www.world-­‐petroleum.org;  www.imo.org;  www.ogp.org).          

These  consequence  evaluations  have  recently  been  incorporated  into  consensus  building  exercises  that  include   all   stakeholders.     The   process   guides   technical   discussions   and   social   prioritization   among  response  planners,  environmental  agencies  and  local  citizens  as  they  compare  ecological  consequences  of  specific  response  options.  The  communication  process   is  complex  with  many  different  opinions  and  levels   of   understanding   of   the   effects   of   various   response   actions.     The   NEBA   process   has   been  particularly   useful   when   considering   use   or   non-­‐use   of   dispersants,   in-­‐situ   burning,   containment   and  recovery  of  oil,  as  all  of  these  present  challenges  with  regard  to  potential  environmental  impacts.    The  process   recognizes   there   will   be   damage   during   a   spill   but   focuses   on   ecological   consequences   of  different  responses  and  compares  “trade-­‐offs”  or  cross-­‐resource  comparisons.  Through  a  facilitated  and  structured   analytical   approach,   participants   find   “common   ground”   for   evaluating   impacts   and   to  develop  defensible   logic   to  support   their  conclusions.  Discussion  often  can  get  stalled  when  there   is  a  focus  on  localized  and  transient  impacts  of  spills  and  response  actions,  without  stepping  back  and  trying  to   incorporate   a   longer   term   view   of   population   and   community   recovery.     Technical   advisors   and  facilitators  help  guide  the  group  to  reaching  their  consensus  among  the  diverse  stakeholders  by  using  a  series  of  analytical  tools  specifically  developed  for  use  in  a  group  environment.    Knowledge  regarding  oil  spill   response   capabilities   and   strategies   gained   by   participants   in   the   consensus-­‐building   process  facilitates  real-­‐time  decision-­‐making  in  the  event  of  actual  spill  incidences.  

Page 11: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

Arctic Population Resiliency and Potential for Recovery Resiliency  of  VEC  communities  is  a  critical  component  to  evaluating  the  consequences  of  OSR  that  needs  to  be  further  addressed  in  non-­‐Arctic  as  well  as  Arctic  environments.    The  direct,  toxic  effects  of  oil  on  individuals   among   the   VECs   are   better   understood   than   the   resiliency   of   the   populations   and  communities  of  these  valuable  ecosystem  resources  within  various  environmental  compartments.    Each  environmental   compartment   is   at   a   different   level   of   risk   resulting   from   response   actions.     Their  resiliency  is  related  to  biological,  physical  and  chemical  attributes  of  the  compartment  and  the  species  living  in  that  compartment.    The  arctic  environment  is  variable  and  harsh,  featuring  water  temperatures  that  can  range  from  -­‐2  °C  to  greater  than  5  °C,  a  light  regime  ranging  from  total  darkness  to  total  light,  and  regions  that  are  covered  in  ice  year-­‐round  and  areas  that  cycle  from  being  ice-­‐covered  to  being  ice-­‐free.    These  widely  varying  conditions  require  behavioral,  physiological,  and  morphological  adaptations  that  may   affect   the   sensitivity   of   some   species   to   released  petroleum  as  well   as   the   dynamics   of   the  population  during  recovery.    The  Arctic  is  considered  to  have  relatively  short  food  webs,  with  the  higher  trophic   levels   dominated   by   mammals   and   birds.   Many   of   these   species   are   dependent   on   rich  populations  of  plankton  that  bloom  heavily  in  spring  in  close  association  with  ice  break-­‐up  or  upwelling  zones.  Key  considerations  included  in  the  review  were  based  on  the  following  observations:      

• The  projected  damages  to  VEC  populations  are  based  on  application  of  each  OSR  option.    Use  of  OSRs   changes   the   fate   of   oil;   whatever   OSR   (including   no   response)   is   selected  will   alter   the  communities   of   organisms   exposed   to   the   oil   at   concentrations   that   can   result   in   adverse  effects.    Damages  include  acute  and  chronic  toxicity  responses  to  oil.    Additionally,  the  potential  for   recovery   from   oil   contamination   is   also   influenced   by   physical/chemical   attributes   that  control   the   distribution   and   availability   of   the   oil   in   each   of   the   compartment   as   well   as   the  availability   of   the   oil   to   microbial   degradation.     Environmental   compartment   attributes   that  influence  oil  availability  and  ongoing  biodegradation  vary  and  need  to  be  well  quantified  when  establishing  the  long  term  consequences  of  OSR  options.  

• The   focus   of   the   section   on   recovery   potential   is   to   document   the   available   knowledge   and  identify  uncertainties   in  our  understanding  for  VECs   in  different  environmental  compartments.    Species   found   in   arctic   waters   have   a   number   of   unique   physiological   and   morphological  adaptations  to  allow  them  to  tolerate  the  cold  water  temperatures  and  the  extensive  periods  of  ice   cover   and   absence   of   sunlight   and   associated   food   resources.     The   data   reviews   in   the  ecotoxicology  section  shows  that  these  factors  may  influence  the  time  period  for  demonstration  of  effects  after  exposure.    However,  the  responses  of  Arctic  VECs  are  similar  to  non-­‐Arctic  test  species.  

• The  reproductive  potential  of  Arctic  VEC  species  is  the  key  factor  in  assessing  the  ability  of  their  populations  to  recover  from  stress/damage.    In  terms  of  recovery  times,  this  resilience  will  vary  from  very   short  periods  of  hours   in   the  case  of  microbial  populations   to  many  decades   in   the  case  of  marine  mammals   and   seabirds.     This   resilience  and   recovery  potential   for  VECs   in   the  Arctic  is  similar  to  what  has  been  characterized  in  other  regions  of  the  world.      

• Communities   and   food   webs   change   dramatically   during   periods   of   open   water   or   iced   over  water  resulting  in  seasonal  modifications  of  the  available  environmental  compartments.    During  the  winter   the   annual   ice   environmental   compartments   increase  while   during   the   spring   and  summer   the   melting   ice   adds   more   open   water   pelagic   compartments.     Seasonal   OSR  evaluations  need  to  consider  the  change  in  the  availability  of  these  compartments,  as  well  as  the  associated  seasonal  changes  in  effectiveness  of  the  response  options.    

Page 12: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

• There  are  specialized  and  unique  species  that  live  under  and  within  ice,  including  larval  forms  of  important  water-­‐column  species.    While  the  communities  under  the  multi-­‐year  ice  are  becoming  better  known  the  ecological  importance  of  the  annual  undersea  ice  is  less  understood.  

• There   are   also   deep-­‐water   Arctic   communities   that   feature   unique   species   and   communities,  including  deep  water  corals  and  sponges.    The  extent  of  these  communities  under  multi-­‐year  ice  is   not   well   characterized   but   the   presence   of   ridge   topography   determined   by   geophysical  means   indicate   there   is   a   potential   for   these   species   to   be   more   broadly   distributed   than   is  known  at  the  present  time.      

• There  are  also  regional  and  seasonal  differences  across  the  arctic  which  is  principally  associated  with  some  of   the  higher   trophic   level   species.    The   rationale   for   selection  of  VEC  species   is   to  emphasize  those  which  are  pan-­‐arctic  species  that  support  these  higher  trophic  levels.    Unique  species  are  also  examined  to  determine  associations  with  specific  environmental  compartments.  

• In   general,   there   is   less   knowledge   of   ecological   processes   occurring   during   the   Arctic  winter  season.      

Current  oil  spill  contingency  and  response  models  representing  transport,  fate,  and  limited  effect-­‐based  components   have   been   used   to   support   ecosystem   evaluations.     A   key   area   of   additional   research  recommended   by   the   work   groups   is   to   augment   Arctic   NEBA   assessments   with   an   environmental  compartment   approach   in   order   to   evaluate   the   short   and   long   term   consequences   of   oil   potentially  impacting   the   resources   in   those   compartments   (Figure   ES-­‐2).     Resiliency   of   the   inhabitants   using  different  environmental  compartments  will  govern  the  recovery  from  oiling  and  is  the  key  focus  for  the  recommended  new  work.  

Priority  Recommendations  to  Enhance  NEBA  Applications  in  the  Arctic  

The  review  of  Arctic   literature  found  many  high  quality  assessments  at  the  laboratory,  mesocosm,  and  field   scales   on   the   efficacy   of   the   treatment   options   (natural   recovery;   containment   and   product  recovery;  use  of  chemical  dispersants  or  OMA;  and  in-­‐situ  burning).    These  studies  provide  information  for   efficacy   estimates   and   for   application   to   transport   models   providing   good   estimates   of   the  movement   of   residuals   from   one   EC   to   another   within   the   Arctic.     There   are   also   high   quality  toxicological   effect   and   biodegradation   studies   conducted   under   Arctic   conditions   that   indicate   the  relative  acute   sensitivity  of  Arctic   species  are  equivalent   to   sub-­‐Arctic,   temperate  and   tropical   species  and  that  biodegradation  of  oil  by  indigenous  Arctic  microbes  is  efficient  and  more  rapid  than  anticipated  based  on  the  cold  inclement  conditions  in  the  Arctic.    The  priority  recommendations  of  each  workgroup  are  included  at  the  end  of  each  section.    A  list  of  the  high  priority  work  elements  within  each  section  is  appended   to   the   summary   of   recommendations.     Several   of   the   recommendations   apply   to   local  operations   and   should   be   incorporated   in   baseline   monitoring   programs,   Environmental   Impact  Assessments  and  operational  oil  spill  response  plans.    These  recommendations  have  not  been  prioritized  here,  but  should  be  considered  by  the  individual  operators.      

Four   overarching   areas   of   research   were   identified   and   were   considered   by   the   scientific   panel   of  experts  to  be  of  the  highest  priority  to  advancing  NEBA  applications  in  the  Arctic:      

1. Increase  availability  of  the  vast  amount  of  data  on  the  impacts  of  oil  spill  response  techniques  and   on   the   resilience   of   VECs   reviewed   in   the   current   study   by   developing   and   populating  matrices,  or  Arctic  Response  Consequence  Analysis  Tables  (ARCATs),  in  support  of  Arctic  NEBA  processes.  

2. Determine  influence  of  oil  on  unique  Arctic  communities  within  EC  interface  habitats  as  well  as  corresponding  response  consequences  (resiliency,  sensitivity,  and  exposure  potential)  

Page 13: Environmental Impacts of Arctic Oil Spills and Arctic ...neba.arcticresponsetechnology.org/assets/files/OGP Report - Executi… · Environmental Impacts of Arctic Oil Spills and Arctic

3. Further  investigate  in-­‐situ  biodegradation  of  oil  and  oil  residues  4. Further  explore  consequences  of  acute  and  chronic  toxicity  from  oil  exposure  through  use  of  

population  modeling  

Development of ARCAT Matrices All   response   actions,   including   natural   recovery,   result   in   adverse   effects   on   some   portion   of   the  environment  and  to  some  species.    The  consequences  of  those  actions  need  to  be  compared  holistically  among   all   ECs   and   VECs.     Direct   ecotoxicological   responses   to   the   oil   spill   residuals   is   an   important  aspect  of  these  considerations  but  the   long  term  recovery  potential  of  the  ECs  and  VECs   is  even  more  important.     The   relationships   between   EC   resilience   and   the   sensitivity   and   resilience   of   VECs  within  those   ECs   is   an   important   area   that   needs   to   be   addressed   in   OSR   consequence   analysis.     A   way   to  consistently   summarize   and  present   available   data   on   the   impacts   of   oil   spill   response   techniques   on  selected   VECs   within   ECs