envr 432/toxc 442/bioc442 biochemical & molecular toxicology induction of metabolism by...

52
ENVR 432/TOXC 442/BIOC442 ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Biochemical & Molecular Toxicology Toxicology Induction of Metabolism by Induction of Metabolism by Toxicants Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: [email protected]

Upload: ariel-harrington

Post on 21-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

ENVR 432/TOXC 442/BIOC442ENVR 432/TOXC 442/BIOC442Biochemical & Molecular ToxicologyBiochemical & Molecular Toxicology

Induction of Metabolism by ToxicantsInduction of Metabolism by Toxicants

Instructor:Stephen S. Ferguson, Ph.D.e-mail: [email protected]

Page 2: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Induction: Definitions and PrinciplesInduction: Definitions and Principles

• The process of increasing the amount or the activity of a protein.

• A homeostatic mechanism for regulating enzyme production in a barrier organ, such as the liver, intestine, kidney.

• In enzymology, an inducer usually combines with and deactivates/activates a regulatory protein which leads to increased gene expression.

Page 3: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

P450 Enzyme InductionP450 Enzyme Induction

• Induction can cause marked increases in P450 composition (>20-fold) and chemical clearance or bioactivation.

• As a result, induction can increase tolerance to some toxicants while enhancing the toxicity of others.

• Induction can decrease the therapeutic effect of drugs by increasing the rate and pattern of metabolism.

• Xenobiotics are known to induce enzymes that play a major or no role in their biotransformation (e.g., omeprazole vs. ethanol).

Page 4: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Invitrogen Proprietary & Confidential6

Inhibition-Induction

TimeCon

cent

rati

on

Ineffective level

Therapeutic Window(drug efficacy)

Toxic / side-effect level

Why Is It Important to Assess Enzyme Why Is It Important to Assess Enzyme Induction?Induction?

• Failure of therapy (e.g. OC’s, epilepsy, HIV)

• Drug tolerance with auto-induction

• Xenobiotic toxicity potentiated

• Complicated dosing regimen

• Chemical carcinogenesis potentiated

• Perturbation of endogenous substrate metabolism/homeostasis

• Hepatomegaly & proliferation of cellular ER & peroxisomes

Page 5: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Internal Exposure to Natural andInternal Exposure to Natural andMan-made ChemicalsMan-made Chemicals

• drugs• industrial chemicals • pesticides • pollutants • alkaloids• cigarette smoke

• cruciferous vegetables (indole-3-carbinol)

• secondary plant metabolites

• toxins produced by molds, plants, and animals

• pyrolysis products in cooked food

Page 6: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Types of P450 InducersTypes of P450 Inducers• Many “prototypical” inducers of specific families or

subfamilies of P450 enzymes– CYP1A inducers: 3-MC, BNF, omeprazole, TCDD– CYP3A inducers: rifampin, dexamethasone, troglitazone– CYP2B inducers: phenobarbital, PCBs, phenytoin– CYP4A inducers: fibrates– CYP2E1 inducers: ethanol, isoniazid

• Some overlap in “specificities” of inducers

• An inducer for one family of enzymes may also suppress another family (e.g., BNF)

Page 7: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Induction of Rat Liver P450 Enzymes by Induction of Rat Liver P450 Enzymes by Prototypical Inducers Prototypical Inducers In VivoIn Vivo

P450 Enzyme Inducer

In Vivo Induction in Male Rats

Control Activity Induced Activity

CYP1A BNF 152 27 3,320 183

CYP2B PB 24 4 1,460 180

CYP3A PCN 2,460 780 12,693 2,255

CYP4A CLO 489 52 10,693 620

CYP1A, EROD; CYP2B, PROD; CYP3A, testosterone 6-hydroxylation;CYP4A, lauric acid 12-hydroxylation.

Page 8: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Induction and Inhibition of P450 in Mice Treated Induction and Inhibition of P450 in Mice Treated with PB or SKF525A: [with PB or SKF525A: [1414C-methyl]aminopyrineC-methyl]aminopyrine

Page 9: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Ser

rum

tria

zola

m (

ng/m

l)

Rifampin Effects on Triazolam DispositionRifampin Effects on Triazolam Disposition

Villikka et al., Clin Pharmacol Ther 1997;61:8-14.

Rifampin Placebo

Page 10: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Consequences of Cytochrome Consequences of Cytochrome P450 Enzyme InductionP450 Enzyme Induction

Consequences of Cytochrome Consequences of Cytochrome P450 Enzyme InductionP450 Enzyme Induction

• Increased toxic effect– Acetaminophen Alcohol, 3-MC– Bromobenzene, CCl4 Phenobarbital

• Increased bioactivation– Cyclophosphamide Macrolides, pesticides

• Increased tumor formation– Altered disposition of endogenous substrates

• Altered cellular and physiological function– proliferation of peroxisomes and SER– increased liver weight– endocrine disruption

• Porphyria, chloracne– PCDDs, azobenzenes, biphenyls (PCBs), naphthalene

Page 11: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Effects of Inducers on Rodent Liver Effects of Inducers on Rodent Liver Physiology and FunctionPhysiology and Function

Page 12: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Acetaminophen Metabolism and ToxicityAcetaminophen Metabolism and Toxicity

~60% ~35%

CYP2E*CYP1A CYP3A

NAPQIN-acetyl-p-benzoquinone imine

*induced by ethanol, isoniazid, phenobarbital

Protein adducts,Oxidative stress,Toxicity

HN

COCH 3

OH HN

COCH 3

OSO 3H

HN

COCH 3

OO CO 2H

OH

OHHO

N

O

COCH 3

Page 13: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Endocrine Disruption Endocrine Disruption UGT1A

Page 14: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Molecular Mechanisms of P450 Molecular Mechanisms of P450 Enzyme InductionEnzyme Induction

Page 15: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

General Mechanisms of P450 InductionGeneral Mechanisms of P450 Induction

• Receptor-mediated transcriptional activation

– Receptor • A macromolecule with which a

hormone, drug, or other chemical interacts to produce a characteristic effect.

– Two key features:• chemical recognition• signal transduction

– Ligand: A chemical that exhibits specific binding to a receptor.

• mRNA stabilization

• Protein stabilization

Coordinates: Kumar R, Thompson EB (1999). "The structure of the nuclear hormone receptors". Steroids 64 (5): 310–9

Page 16: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Enzyme InductionEnzyme InductionGeneral mechanism of hepatic enzyme inductionGeneral mechanism of hepatic enzyme induction

proteinprotein

activityactivity

mRNAmRNA

Gene transcriptionGene transcription

XX

Nuclear ReceptorNuclear Receptor

XXRR cytosolcytosol XXRR nucleusnucleus

Phase1Phase1Phase 2 Phase 2

transporterstransporters

cytoplasm

nucleus

Hepatocyte

Page 17: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

NR’s and P450 InductionNR’s and P450 Induction

CYP450 gene Promoter XREM PBREM

RNA poly IITranscription P450

mRNA

Translation

P450

Increased Drug Metabolism

Drug-OH

Drug

TFs

PXRCAR

RXR NR

SRC-1I

Page 18: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Complex Transcriptional MachineryComplex Transcriptional Machinery

precursor mRNA

mature mRNA

mRNA degradation

micro RNA

protein translation

protein folding

protein degradation

Page 19: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Co-regulation of Target Genes by NR’sCo-regulation of Target Genes by NR’s

• Complementary roles of NR’s in protection against xenobiotic exposure.

• Increased expression of the hepatic genes involved in drug metabolism and excretion (e.g., CYP’s, UGT’s, GST’s, transporter proteins).

• These target genes represent redundant but distinct layers of defense.

• There are overlapping similarities and distinct differences in species’ response to activators of NR’s.

Page 20: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Transcription factor

Dimerization partner

Examples of ligands

Genes Regulated

AHR ARNT Dioxins, non-ortho PCBs, some PAHs, bilirubin, etc.

CYP1A, CYP1B GST, UGT, NQO

CAR

RXR

Phenobarbital (PB), TCPOBOP, chlorinated pesticides, ortho-PCBs, androstanol/ androstenol (inhibits)

CYP2B, CYP3A GST, ABC transporters

PXR (SXR)

RXR

PB, ortho-PCBs, organochlorine pesticides, dexamethasone, pregnenalone, corticosterone, bile acids (lithocholic acid)

CYP3A, CYP2B, CYP7A (repression) GST, ABC transporters

PPAR

RXR

Fibrate drugs, phthalate esters, linoleic acid, arachidonic acid,

CYP4A, CYP7A (repression), CYP8B, LXR, HMGCS2

LXR RXR Cholesterol; (24 S)- hydroxycholesterol CYP7A, ABC transporters, LXR

FXR RXR Bile acids, chenodeoxycholic acid Represses CYP7A, BSEP (ABCB11), CYP8B, CYP27A

ER ER Structurally diverse xenoestrogens CYP19

Receptors Involved in the Regulation of Receptors Involved in the Regulation of CYP Gene ExpressionCYP Gene Expression

Page 21: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Modified from Kast, H. R. et al. J. Biol. Chem. 277:2908-2915, 2002

Coordinate Regulation of P450’s, UGT’s and Coordinate Regulation of P450’s, UGT’s and Transporters by NR’sTransporters by NR’s

UGT’s

MRP3

Page 22: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

What is Relevant Induction?What is Relevant Induction?Potency and EfficacyPotency and Efficacy

Dose-Response ‘Window’

(Position → potency)

Magnitude of Response (Efficacy)

EC50

1. Efficacy (e.g. % of PC)

2. Potency (e.g. EC50)

Emax

Page 23: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

PAH Inducers in Rat vs. Human

Rat TCDD 1A1 mRNA

EC50 = 0.00767 +/- 0.00409

EC50 = 0.0107 +/- 0.043

CYP1A1 mRNA Hu497

EC50 10X Difference

EC50 = 0.00767 +/- 0.00409

Page 24: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Relationship between In Vitro Potency and Induction In Vivo

EC50 Cmax [Cmax]/EC50 Clinical Relevance

Nifedione 8 0.008 0.001 No known

Lovastatin 1-6 0.008 0.008-0.002 No known

Rosiglitazone 5-10 0.3-1.2 0.05-0.12 No known

Simvastatin 0.14 0.024 0.17 No known

Troglitazone 3-6 7 2.3 Yes

Phenytoin 25 80 3.2 Yes

Avasimibe 0.2 1-6 5-30 Yes

Rifampicin 0.8 14 17.5 Yes

Carbamazepine 0.9 25 28 Yes

Clotrimazole 1-5 Topical (Inhibition)

[Cmax]/EC50 < 0.1, induction not likely

1< [Cmax]/ EC50 < 0.1, induction possible

[Cmax]/ EC50 > 1, induction likely

Page 25: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Aryl Hydrocarbon Receptor Aryl Hydrocarbon Receptor (AhR)(AhR)

• Aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix (bHLH) protein belonging to the Per-Arnt-Sim (PAS) family of transcription factors

• It transcriptionally induces expression of hepatic CYP1A1, CYP1A2, and CYP1B1 , as well as several other genes, including some phase II metabolizing enzymes

• AHR ligands include PAHs and TCDD

Page 26: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

AhR Signaling PathwayAhR Signaling Pathway

Cytoplasm Nucleus

9090

X

AhR

L

L

9090

X

L

9090

X

L

L

9090

X

L

or Arnt

From: Anne Mullen, Advanced Pharmacology, McMaster University, Ontario, CA

Page 27: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

AhR Signaling PathwayAhR Signaling Pathway

XRE promoter gene (CYP1A1)

Translation

Increased expression CYP1A1 protein

Increased expression of other gene products

+

AhR/Arnt heterodimer

mRNA

IC

+

TNGCGTG

Page 28: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Amino Carboxy

AF-1 DBD LBD AF-2

Modulators interactwith some cofactors

Binding to responseelements of target genes

Ligand and coactivatorbinding pockets

Translocaseactivity

5’ 3’ 5’ 3’ 5’ 3’

Monomers RXR Heterodimers Homodimers

LBD

DBD

NR-LBD RXR-LBD

DBD DBD DBD DBD

NR-LBD NR-LBD

RORTLXERRNGFI-B

PXRCARPPARLXRFXRRAR

GRERRXRCOUP-TFHNF4Rev-ErbGCNF

Nuclear Hormone ReceptorsNuclear Hormone Receptors

Page 29: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

5’ 3’

n

n

n

DRn

IRn

ERn

CYP2B Response elements

CYP2B6 TGTACT n=4 TGACCC CYP2b10 TGTACT n=4 TGACCTCYP2B1 TCTACT n=4 TGACCT CYP2B2 TGTACT n=5 TGACCT

NR1s

CYP2B6 TGGACT n=4 TGAACCCYP2b10 TCAACT n=4 TGACACCYP2B1 TCAACT n=4 TGACAC CYP2B2 TCAACT n=4 TGACAC

NR2s

NR3

CYP2B6 TGGACT n=4 TGACCC

CYP3A Response elements

CYP3A4 TGAACT n=3 TGACCC CYP3A2 TGACCT n=3 TGAGCT CYP3A23 TGACCT n=4 TGAGTT CYP3A2 TGAACT n=3 TGAACT

DRs

CYP3A4 TGAAAT n=6 GGTTCA CYP3A4 TGAACT n=6 AGGTCACYP3A23 TTAACT n=6 AGGTCA CYP3A5 TGAACT n=6 AGGTAACYP3A7 TTAACT n=6 AGGTCA CYP3A7 TGAAAT n=6 AGTTCA

ERs

Other Genes

UGT1A1 TGAGTT n=4 TAACCT MDR1 TGAGAT n=6 AGTTCA rMRP2 TGAACT n=8 AGTTCA CYP2C9 CAAACT n=4 TGACCT

Page 30: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Nuclear Receptor PXRNuclear Receptor PXRPB

CA

R

PXR

cytoplasm

nucleus

HS

P90

PXR

RIF

RXR

PX

R

RX

R

XREM CYP3A

?translocation?

-mouse-yes

-human-no

Activator/Agonist CYP TargetHuman RIF CYP3A4Rat PCN CYP3A1/2Mouse PCN Cyp3a11

Page 31: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Nuclear Receptor CAR: PB Induction-Constitutively ActiveNuclear Receptor CAR: PB Induction-Constitutively Active

CAR

cytoplasmnucleus

HS

P90

HS

P90

CAR

PP2A

PB

CCRP

RX

R

CA

R

RX

R

CCRP

OA

PBREM CYP2B

?

Activator/Agonist Inhibitor/Antagonist CYP TargetHuman CITCO, PB, DPH Clotrimazole?, Miclizine? CYP2B6Rat PB, TCPOBOP Androstenol CYP2B1Mouse PB, TCPOBOP Androstenol Cyp2b10

In cell lines spontaneously translocates to the nucleus

Page 32: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Similar Binding of PXR and CAR Similar Binding of PXR and CAR to Promoter Response Elementsto Promoter Response Elements

Goodwin et al., Mol. Pharmacol., 2001

Page 33: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Differential Binding of PXR and Differential Binding of PXR and CAR to Other Promoter RegionsCAR to Other Promoter Regions

NR3-2B6 ER6-3A4

PXR + + + + + + CAR + + + + + +RXR + + + + + + + + + + + +

PXR/RXRCAR/RXR

Page 34: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

GR/Dex Role in Basal & Induced P450 GR/Dex Role in Basal & Induced P450 Expression via CAR/PXR (master regulator)Expression via CAR/PXR (master regulator)

Page 35: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Role of CAR/PXR in lipid metabolism, Role of CAR/PXR in lipid metabolism, synthesis, and uptakesynthesis, and uptake

Moreau et al. 2007 Mol. Pharmaceutics

Page 36: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

PXR & CAR role in Glucose HomeostasisPXR & CAR role in Glucose Homeostasis

Page 37: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Molecular Basis for the Species Molecular Basis for the Species Differences in Enzyme InductionDifferences in Enzyme Induction

Page 38: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Rabbit

Human

Rat

0.1%

DM

SO

5M

PC

N

10M

Rifa

mpi

cin

10M

SR

1281

3

10M

DT

BA

CYP3A6

CYP3A4

CYP3A23

Species Differences in the Regulation Species Differences in the Regulation of CYP3A Enzymesof CYP3A Enzymes

Species Differences in the Regulation Species Differences in the Regulation of CYP3A Enzymesof CYP3A Enzymes

Page 39: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Species Differences in CYP2B Species Differences in CYP2B Induction by PhenobarbitalInduction by Phenobarbital

Page 40: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Species Differences in CYP1A Species Differences in CYP1A Induction by XenobioticsInduction by Xenobiotics

CYP1A1/2 Activity in Rat Hepatocytes as a Function of Treatment with Drug 'X'

0

100

200

300

400

500

600

700

800

900

1000

Contro

l (0.1

% D

MSO)

3-M

C 1µM

Drug '

X' 0.6µ

M

Drug '

X' 2µM

Drug '

X' 6µM

Drug '

X' 20µ

M

Ph

enac

etin

O-D

ealk

ylat

ion

(p

mol

/min

/mg)

CYP1A Activity in Dog Hepatocytes as a Function of Treatment with Drug 'X'

0

100

200

300

400

500

600

Contro

l (0.1

% D

MSO)

3-M

C 2µM

Drug '

X' 0.6µ

M

Drug '

X' 2µM

Drug '

X' 6µM

Drug '

X' 20µ

M

Phe

nace

tin

O-D

ealk

ylat

ion

(pm

ol/m

in/m

g)

CYP1A2 Activity in Human Hepatocytes as a Function of Treatment with Drug 'X'

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Contro

l (0.1% D

MSO)

3-MC 2

µM

Drug 'X

' 0.2µM

Drug 'X

' 2µM

Drug 'X

' 6µM

Drug 'X

' 20µ

M

CY

P1A

2 A

ctiv

ity

(nm

ol/m

in/m

g)

Page 41: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Species Differences in CYP4A Species Differences in CYP4A Induction by Clofibric AcidInduction by Clofibric Acid

Rat Human

CTL 1 10 100 500 1000

CY

P4A

1 F

old

Ind

uct

ion

0

10

20

30

40

50

60

Clofibric Acid (µM)

Rat Hepatocytes Human Hepatocytes

Lauri

c aci

d 1

2-h

ydro

xyla

tion

Page 42: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Observations and QuestionsObservations and Questions• Significant species differences are observed

in response to inducers.

• All major subfamilies of inducible CYP’s (CYP1A, CYP2B, CYP3A, CYP4A) exhibit this behavior.

• What is the molecular basis of the species-specific responses?

• What is the significance of these differences to predicting human toxicity?

Page 43: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

PXR ExpressionPlasmid

RXR PXR

PXRE Reporter Gene

Drug

Reporter Plasmid

Transfection Assay for P450 Transfection Assay for P450 Enzyme InductionEnzyme Induction

CV-1HuH7 cell

PXRRXR

Page 44: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Differential Activation of Differential Activation of Human,Human, Rabbit,Rabbit, andand RatRat PXR by CYP3A Inducers PXR by CYP3A Inducers

PCN

rifampicin

lovastatin

clotrimazole

Normalized Reporter Activity

0 20 40 60 80 100 300 350 400

OH

OHO

NN

NMe

NH

OO

O

HO

AcO

MeO

OHHO

N N

Cl

O

O

H

O

HO O

H

HO

O

H

CN

Page 45: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

PXR Sequence HomologyPXR Sequence Homology1 41 107 141 434

Human PXR1

Rat PXR11 38 104 138 431

Xenopus ONR11 37 102 136 386

Human VDR 1 24 89 122 427

LigandDNA

96

69

63 37

76

42

Mouse PXR11 38 104 138 431

96 76

Rabbit PXR11 41 107 141 434

8294 Variation in ligand binding domain consistent with in vivo species differ-ences in response to inducers

Page 46: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Amino Acid Differences in the Amino Acid Differences in the Ligand Binding Domain of PXRLigand Binding Domain of PXR

Zhang et al., Arch. Biochem. Biophys., 1999

Ser187 Leu213 Asp266 Glu337 Ile417

Gly181 Leu206 Tyr263 His333

hPXR

Phe184 Leu210 Asp263 Lys334 Ser414

Gly178 Arg203 Tyr260 Arg333

mPXR

Val184 Val210 Glu263 Glu333 Thr414

Asp178 Ser203 His260 Arg333

rPXR

Page 47: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

ATTTAAGGAAAgGGGTCAGACC------AACTAGGGTAaAGTTCAGTG

+1 (gene)

Rat CYP4A1

-2kb-10kb

-4466-4850384 bpDR1 (9/12) DR1 (9/12)

Rat CYP4A1 Response ElementsRat CYP4A1 Response Elements

Proximal PPRE Identified by Aldridge et. al. Biochem. J. 306, 473-479, 1995

Element 1 not functional Element 2 is a Functional PPRE

Page 48: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

+1

Human CYP411

-2kb-5kb

AAACAAGGGAATAGCCCAAAAG

-4493DR1 (8/12)

-4472

-7kb-10kb

AAAAGTGGGCAAAGGATATGCA

DR1 (8/12)

-7238 -7217

Analysis of the Human CYP4A11 GeneAnalysis of the Human CYP4A11 Gene

Upstream analysis of the CYP4A11 gene located on chromosome 1 revealed two possible PPRE’s

Kawashima et. al., Archives of Biochemistry and Biophysics (2000) 378(2), 333-339Sequenced -2251 bp upstream of gene, no PPRE identified.

Page 49: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Gel Shift AssayGel Shift Assay

PPAR + - .5 1 2 + - .5 1 2 + - .5 1 2 RXR - + .5 1 2 - + .5 1 2 - + .5 1 2

Rat Human -4.5 kb Human -7.5 kb

PPRE/PPAR/RXR

Page 50: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

SummarySummary• Induction of metabolism is caused by many

structurally unrelated xenobiotics.• Induction occurs mainly by transcriptional

regulation of metabolizing enzymes and transporter proteins.

• Nuclear receptors mediate the induction response by most xenobiotics.

• Amino acid differences in the ligand-binding domain of the receptors are mainly responsible for the species differences in the induction of CYP450 enzymes.

Page 51: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Additional ReadingAdditional Reading• Parkinson, A.: Biotransformation of xenobiotics. In: Casarett and Doull’s

Toxicology. The Basic Science of Poisons. Sixth edition (edited by C.D. Klaassen). McGraw Hill, New York, 2001.

• Wang, H. and Negishi, M. (2003) Transcriptional regulation of cytochrome p450 2B genes by nuclear receptors. Curr Drug Metab. 4(6):515-25.

• Bertilsson, G., Heidrich, J., Svensson, K., Asman, M., Jendeberg, L., Sydowbackman, M., Ohlsson, R., Postlind, H., Blomquist, P. and Berkenstam, A. (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. USA. 95:12208-12213.

• Blumberg, B., and Evans, R.M. (1998) Orphan nuclear receptors – new ligands and new possibilities. Genes Dev. 12:3149-3155.

• Geick A., Eichelbaum M., and Burk O. (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 276(18):14581-14587.

Page 52: ENVR 432/TOXC 442/BIOC442 Biochemical & Molecular Toxicology Induction of Metabolism by Toxicants Instructor: Stephen S. Ferguson, Ph.D. e-mail: stephen.ferguson@lifetech.com

Additional ReadingAdditional Reading• Goodwin B., Hodgson E., and Liddle C. (1999) The orphan human

pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329-1339.

• Honkakoski P. and Negishi M. (1998) Regulatory DNA elements of phenobarbital-responsive cytochrome P450 CYP2B genes. J Biochem Mol Toxicol 12:3-9.

• Jones, S. A., Moore, L. B., Shenk, J. L., Wisely, G.B., Hamilton, G. A., McKee, D. D., Tomkinson, N. C. O., LeCluyse, E. L., Wilson, T. M., Kliewer, S. A. and Moore, J. T. 2000. The pregnane X receptor, a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol. 14: 27-39.

• Wang, H., and LeCluyse E. L. 2003. Role of orphan nuclear receptors in the regulation of drug metabolising enzymes. Clin. Pharmacokinet. 42: 1331-1357.