epc2035 – enhancement mode power transistor

6
eGaN® FET DATASHEET EPC2035 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 1 Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 60 V Drain-to-Source Voltage (up to 10,000 5 ms pulses at 125°C) 72 I D Continuous (T A = 25°C, R θJA = 546°C/W) 1.7 A Pulsed (25°C, T PULSE = 300 µs) 24 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage –4 T J Operating Temperature –40 to 150 °C T STG Storage Temperature –40 to 150 Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 300 µA 60 V I DSS Drain-Source Leakage V DS = 48 V, V GS = 0 V 20 250 µA I GSS Gate-to-Source Forward Leakage V GS = 5 V 0.1 1 mA Gate-to-Source Reverse Leakage V GS = -4 V 20 250 µA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 0.8 mA 0.8 1.4 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 1 A 35 45 V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 2 V Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 6.5 °C/W R θJB Thermal Resistance, Junction-to-Board 65 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 100 EPC2035 – Enhancement Mode Power Transistor V DS , 60 V R DS(on) , 45 mI D , 1.7 A EPC2035 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 0.9 mm x 0.9 mm Applications • High Speed DC-DC conversion • Wireless Power Transfer • High Frequency Hard-Switching and Soft-Switching Circuits • Lidar/Pulsed Power Applications Benefits • Ultra High Efficiency • Ultra Low R DS(on) • Ultra Low Q G • Ultra Small Footprint EFFICIENT POWER CONVERSION HAL G D S All measurements were done with substrate shorted to source. Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Upload: others

Post on 24-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 1

Maximum Ratings

PARAMETER VALUE UNIT

VDS

Drain-to-Source Voltage (Continuous) 60V

Drain-to-Source Voltage (up to 10,000 5 ms pulses at 125°C) 72

ID

Continuous (TA = 25°C, RθJA = 546°C/W) 1.7A

Pulsed (25°C, TPULSE = 300 µs) 24

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage –4

TJ Operating Temperature –40 to 150°C

TSTG Storage Temperature –40 to 150

Static Characteristics (TJ= 25°C unless otherwise stated)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

BVDSS Drain-to-Source Voltage VGS = 0 V, ID = 300 µA 60 V

IDSS Drain-Source Leakage VDS = 48 V, VGS = 0 V 20 250 µA

IGSSGate-to-Source Forward Leakage VGS = 5 V 0.1 1 mA

Gate-to-Source Reverse Leakage VGS = -4 V 20 250 µA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 0.8 mA 0.8 1.4 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 1 A 35 45 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 2 V

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 6.5

°C/WRθJB Thermal Resistance, Junction-to-Board 65

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 100

EPC2035 – Enhancement Mode Power Transistor

VDS , 60 VRDS(on) , 45 mΩID , 1.7 A

EPC2035 eGaN® FETs are supplied only inpassivated die form with solder bumps Die Size: 0.9 mm x 0.9 mm

Applications• High Speed DC-DC conversion• Wireless Power Transfer• High Frequency Hard-Switching and Soft-Switching Circuits • Lidar/Pulsed Power Applications

Benefits• Ultra High Efficiency• Ultra Low RDS(on)

• Ultra Low QG

• Ultra Small Footprint

EFFICIENT POWER CONVERSION

HAL

G

D

S

All measurements were done with substrate shorted to source.

Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 2

0 0.5 1.0 1.5 2.0 2.5 3.0

I D –

Dra

in Cu

rrent

(A)

Figure 1: Typical Output Characteristics 25°C

VDS – Drain-to-Source Voltage (V)

VGS = 5 VVGS = 4 VVGS = 3 VVGS = 2 V

20

15

10

5

0

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 0.5 AID = 1 AID = 1.5 AID = 2 A

140

120

100

80

60

40

20

0

I D –

Dra

in Cu

rrent

(A)

VGS – Gate-to-Source Voltage (V) 1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2: Transfer Characteristics

25˚C125˚C

VDS = 3 V

20

15

10

5

0

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4: RDS(on) vs. VGS for Various Temperatures

25˚C125˚C

ID = 1 A

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V)

140

120

100

80

60

40

20

0

Dynamic Characteristics (TJ= 25˚C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

CISS Input Capacitance

VDS = 30 V, VGS = 0 V

95 115

pFCRSS Reverse Transfer Capacitance 2 3

COSS Output Capacitance 60 90

RG Gate Resistance 0.5 Ω

QG Total Gate Charge VDS = 30 V, VGS = 5 V, ID = 1A 880 1150

pC

QGS Gate-to-Source Charge

VDS = 30 V, ID = 1 A

250

QGD Gate-to-Drain Charge 160 270

QG(TH) Gate Charge at Threshold 170

QOSS Output Charge VDS = 30 V, VGS = 0 V 2600 3900

QRR Source-Drain Recovery Charge 0All measurements were done with substrate shorted to source.

Page 3: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 3

All measurements were done with substrate shortened to source.

Capa

citan

ce (p

F)

100

10

1

0.10 10 20 30 40 50 60

Figure 5b: Capacitance (Log Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

20

15

10

5

00.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 7: Reverse Drain-Source Characteristics

25˚C

VGS = 0 V125˚C

Figure 9: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge

1.40

1.30

1.20

1.00

1.10

0.90

0.80

0.70

0.600 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 0.8 mA

Capa

citan

ce (p

F)

0 10 20 30 40 50 60

Figure 5a: Capacitance (Linear Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

160

140

120

100

80

60

40

20

0

5

4

3

2

1

00 0.5 0.4 0.6 0.8 1.0

Figure 6: Gate Charge

V GS

– Ga

te-to

-Sou

rce V

olta

ge (V

)

QG – Gate Charge (nC)

ID = 1 AVDS = 30 V

Figure 8: Normalized On Resistance vs. Temperature

ID = 1 AVGS = 5 V

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

Page 4: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 4

Figure 11: Transient Thermal Response Curves

Junction-to-Board

tp, Rectangular Pulse Duration, seconds

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce

10-5 10-4 10-3 10-2 10-1 1 10+1

1

0.1

0.01

0.001

0.0001

0.5

0.050.02

Single Pulse

0.01

0.1

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

Junction-to-Case

tp, Rectangular Pulse Duration, seconds

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce

0.5

0.10.05

Single Pulse

0.020.01

0.2

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJG + TC

PDM

t1

t2

10-6 10-5 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

0.0001

I G –

Gate

Curre

nt (m

A)

VGS – Gate-to-Source Voltage (V)

Figure 10: Gate Leakage Current3.5

3.0

2.5

2.0

1.5

1.0

0.5

00 1 2 3 4 5 6

25˚C125˚C

Page 5: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 5

Die orientation dot

Gate Pad bump is under this corner

Part Number

Laser Markings

Part #Marking Line 1

Lot_Date CodeMarking line 2

EPC2035 AA YYY

AAYYY

DIE MARKINGS

AAYYY

TAPE AND REEL CONFIGURATION4mm pitch, 8mm wide tape on 7” reel

7” reel

a

d e f g

c

b

EPC2035 (note 1) Dimension (mm) target min max

a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (see note) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (see note) 2.00 1.95 2.05 g 1.5 1.5 1.6

Note 1: MSL 1 (moisture sensitivity level 1) classied according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bar isunder thiscorner

Die is placed into pocketsolder bar side down(face side down)

Loaded Tape Feed Direction

Figure 12: Safe Operating Area

0.1

1

10

100

0.1 1 10 100

I D –

Dra

in Cu

rrent

(A)

VDS - Drain-Source Voltage (V)

Limited by RDS(on)

Pulse Width 100 ms 10 ms 1 ms 100 µs

Pulse Width 100 ms 10 ms 1 ms 100 µs

Page 6: EPC2035 – Enhancement Mode Power Transistor

eGaN® FET DATASHEET EPC2035

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021 | | 6

RECOMMENDEDLAND PATTERN (measurements in µm)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

DIE OUTLINESolder Bump View

Side View

(625

)

Seating Plane

815 M

ax

165+

/- 17

B

A

ce

31

2 4

g

df

Pads 1 is Gate;Pad 3 is Drain;Pads 2, 4 are Source

RECOMMENDEDSTENCIL DRAWING (measurements in µm)

Pads 1 is Gate;

Pad 3 is Drain;

Pads 2, 4 are Source

The land pattern is solder mask definedSolder mask is 10 μm smaller per side than bump

Recommended stencil should be 4mil (100 µm) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

900

900

450 225

42

1 3

200 +20 / - 10 (*)

X4

242

450

225

* minimum 190

450 225

250

900

900

450

225

R60

DIM

Micrometers

MIN Nominal MAX

A 870 900 930B 870 900 930c 450 450 450d 450 450 450e 210 225 240f 210 225 240g 187 208 229

Information subject to change without notice.

Revised April, 2021