epoxidation & opening.pdf

Upload: rajkumar-chinnu

Post on 02-Mar-2016

82 views

Category:

Documents


1 download

DESCRIPTION

different reagents used for epoxidation and opening of epoxide ring

TRANSCRIPT

  • 1

    Epoxidations of Alkenes: The Reagents

    vElectrophilic reagent - electron rich double bonds react faster.

    vNucleophilic reagent conjugate carbonyl derivatives

    A. m-Chloroperoxybenzoic acid (MCPBA)

    R1

    R2

    R3

    R4

    R1

    R2

    R3

    R4O

    [O]

    O

    O

    Cl

    O

    H

    Electrophilic reagent

    O O

    Cl

    O H

    O O

    Cl

    O HO H

    In the case of an allylic alcohol, an additional hydrogen bond is present (directing effect):

    Mechanism:

    Nucleophilic substrate

  • 2

    Epoxidations of Alkenes: The Reagents

    B. Dioxirane

    Adam Acc. Chem. Res. 1989, 22, 205-211.

    Murray Chem. Rev. 1989, 89, 1187-1201.

    Adam Eur. J. Org. Chem. 1998, 349-354.

    Adam J. Org. Chem. 1996, 61, 3506-3510.

    vCan be isolated as a solution in the corresponding ketone or produced in-situ

    vCould be directed by hydrogen bonding with allylic alcohols, but more sensitive to steric hindrance than other reagents.

    Potentially explosive!

    Always be careful when exposing acetone to strong oxidant

    H3C CX3

    OO

    Dimethyldioxirane (DMDO) or trifluoromethylmethyldioxirane (TFDO)

    H3C CX3

    O Oxone

    R1

    R2

    R3

    R4 R1

    R2

    R3

    R4O

    H3C CX3

    OX = H or F

  • 3

    Epoxidations of Alkenes: The Reagents

    C. Metal-Catalyzed Epoxidations: Peroxide-Based Catalysts

    t-BuOOH

    VO(acac)2orTi(i-PrO)4

    +

    O

    O

    M

    R

    O

    O

    M

    R

    M-ORO

    O

    O

    M

    R

    MOO

    R

    R = H, alkyl, etc.

    +

    +

    Capable of being directed by hydroxy groups.

  • 4

    Epoxidations of Alkenes: The Reagents

    C. Metal-Catalyzed Epoxidations: Oxo- Based Catalysts

    Efficient for the epoxidation of unfunctionalized olefins

    Model on Cytochrome P-450.

    NN

    N N

    R

    R

    RR M O

    M

    N N

    O

    R R

    M = Fe, Mn, Ru, Cr

    Y

    M

    Y

    M[O]

    O

    O

    [O] = NaOCl, Oxone, H2O2, ROOH, RC(O)OOH....

  • 5

    Epoxidations of Alkenes: The Reagents

    D. Nucleophilic Epoxidations

    Chemoselectivity is inverse to the one of electrophilic reagents.

    O

    HOO

    ROO

    or O

    OHO

    OO

    Me

    O

    AcO

    Me H

    Me

    H H

    H2O2

    NaOH

    Me

    O

    AcO

    Me H

    Me

    H H

    O

  • HO

    m-CPBA

    HO

    O

    O

    H

    H

    O

    DCM

    75%

    m-CPBA

    DCM

    O

    H

    H

    O

    O

    71%

    6

    Epoxidations of Alkenes: Chemoselectivity

    m-CPBA favoured reactions with the most electron donating double bond.

  • 7

    Epoxidations of Alkenes: Chemoselectivity

    No H-bond directing effect with DMDO.

    OH

    OAc

    OH

    VO(acac)2t-BuOOH

    1.00 1.00

    0.55 (92:8) >200 (98:2)

    0.046 (37:63) ---

    0.42 (60:40) 10.0 (98:2)

    m-CPBA

    O

    HO

    H

    m-CPBA

    DCM

    O

    HO

    H

    73%

    O

    OH

    VO(acac)2TBHP, 80 C

    OHO

    DMDOAcetone, MeOH

    OHO

  • 8

    Epoxidations of Alkenes: Diastereoselectivity

    OH OH

    O

    OAc

    MCPBA MCPBA

    OAc

    O

    10 : 1

    but...

    4 : 1

    R

    R

    R

    OH

    R

    R

    R

    O

    HO

    OH

    O

    Ar

    R

    R

    R

    OHO

    HO HO

    O

    n n

    n VO(acac)2

    0 99.2

    % syn

    84

    1 99.7 95

    2 99.6 61

    3 97 0.2

    4 91 0.2

    MCPBA

  • 9

    Epoxidations of Alkenes: Diastereoselectivity

    OH

    Me

    OH

    Me

    O

    >20 : 1

    Me

    HO

    OH

    Me

    HO

    OHO

    1 isomer

    Me

    OH

    Me

    OHO

    1 isomer

    MCPBA

    HN

    HO

    HO

    Me

    O

    HN

    HO

    HO

    Me

    O

    O

    1 isomer

    MCPBA

    MCPBAMCPBA

    Carboxamides are better H-bonding directing groups

    PGO

    PGO

    PGO

    PGO

    O

    PGO

    PGO

    O

    Bz

    Me

    TBS

    MCPBA

    O'Brien Tetrahedron Lett. 1999, 40, 391-392.

    +

    A mixture of oxone/trifluoroacetone is sometimes better

    PG Oxone/CF3COCH3

    56:44 98:2

    TES 39:61 98:2

    75:25 94:6

    80:20 81:19trans cis

    trans:cis

  • 10

    Epoxidations of Alkenes: Diastereoselectivity with Acycli Olefins

    OH OH

    O

    OH

    O

    +

    anti syn

    Me

    OHMe

    Me5 1 : 5 1 : 19

    Me

    OH

    Me

    OH

    Me

    MCPBAEntry Substrate Vo(acac)2

    1 4 : 1 1 : 1.5

    2 19 : 1 1 : 1

    Me

    OH

    Me

    Me

    OHMe

    3 4 : 1 1 : 1.5

    4 1 : 2.4 1 : 19Rtrans(H) R

    Rgem

    H OH

    A(1,2) strainRtrans(H) R

    Rgem

    H OHO

    Rtrans(H) R

    H

    Rcis OH

    A(1,3) strainRtrans(H) R

    H

    Rcis OHO

    VO(acac)2, t-BuOOH

    OHH

    R1

    R2

    R3

    R4

    ~50

    MCPBA

    OH

    R1H

    R2

    R3

    R4

    ~120

  • 11

    Epoxidations of Alkenes: Diastereoselectivity with Acyclic Olefins

    Cl

    MeO NH

    OMeMe OMe

    OMe

    OTBS

    Me

    Me

    OHMe Cl

    MeO NH

    OMeMe OMe

    OMe

    OTBS

    Me

    Me

    OHMeO

    Ti(Oi-Pr)4, TBHP

    Diastereoselection: >20:1

    Synthesis of maysine

  • 12

    Epoxidation of Homoallylic Alcohols TBHP, VO(acac)2

    Me

    OH

    Me

    OHO

    2 : 1

    Me

    OH

    Me

    OHO

    4.6 : 1Me Me

    Me

    OH

    Me

    Me

    Me

    Me

    OH

    Me

    Me

    MeO

    8 : 1

    Me

    OH

    Me

    Me

    OH

    MeO

    8 : 1

    Me Me

    VL2OOt-BuOH

    Me

    H

    H

    Me

    H

    Me

    Me

    H

  • 13

    Catalytic Asymmetric Sharpless Epoxidation

    R1 OH

    R2

    R3

    R1 OH

    R2

    R3O

    Ti(OiPr)4 (0.05 eq)(+)-DET or DIPT (0.06 eq)

    1.0 eq

    t-BuOOH (2 eq)4A mol sieves-20 C, CH2Cl2 ee usually 80-94%

    yield: 63 - 99%Z-substituent: lower ee's

    Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.

    Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.

    Johnson, R. A.; Sharpless, K. B. Catalytic Asymmetric Synthesis. Ojima Ed. p. 103.

    Katsuki, T.; Martin, V. S. Organic Reactions 1996, 48, 1-299

    Ti

    OO

    TiO

    O

    RO

    O

    OR

    O

    RO

    RO2C

    CO2RCO2R

    O

    t-Bu

    O

    R1

    R3

    R2

    Proposed transition state model:

    OH

    R1R2

    R3

    (-)-(S,S)-D-tartrate

    OH

    R1R2

    R3

    (+)-(R,R)-L-tartrate

    Mnemonic model:

    OH

    R1R2

    R3R

    H

    H

    R

    (-)-(S,S)-D-tartrate

    (+)-(R,R)-L-tartrate

    (-)-(S,S)-D-tartrate

    (+)-(R,R)-L-tartrate

    MATCHED PAIR

    MISMATCHED PAIR

    MISMATCHED PAIR

    MATCHED PAIR

  • 14

    Catalytic Asymmetric Sharpless Epoxidation: Substrate Scope

    Pr OHO

    C7H15 OHO

    C8H17 OHO

    Ar OHO

    R

    OHO

    OHO

    R

    OHO

    Me

    Ph OH

    O

    OH

    O

    94% ee 96% ee 94% ee >98% ee

    R = C7H15 86% ee

    R = C8H17 >80% ee

    R = PhCH2OCH2 85% ee

    R = C3H7 95% ee

    R = C14H29 96% ee

    >98% ee 93% ee95% ee

    OHO

    OHO

    Me

    OHO

    Ph

    Me

    Ph

    OHO

    90% ee

    91% ee

    94% ee

    95% ee

  • 15

    Catalytic Asymmetric Sharpless Epoxidation: Kinetic Resolution

    Me

    OH

    Me

    OH

    Me

    OH

    O

    Me

    OH

    O

    Me

    OH

    O

    Me

    OH

    O

    (+)-DIPT

    +

    (+)-DIPT

    +

    98 2

    62 38

    fast

    slow

    Me

    OH

    Bu

    OH

    Me

    OH

    n-C6H13

    OH

    >98% ee

    54% conversion>98% ee

    53% conversion

    >98% ee

    63% conversion>98% ee

    66% conversion

    >98% ee, 53% conversionO

    Men-C5H11

    OH

    Ti(Oi-Pr)4, (+)-DIPT

    TBHP (0.6 equiv), -21 C OMe

    n-C5H11

    OH O

    O

    HOMe

    n-C5H11H

    +

    OMe

    n-C5H11

    OH

    O

  • 16

    Synthesis of (+)-Trehazolin

    ClO

    O

    NHO

    HO

    HO

    NH

    OH

    O

    OHHO

    OHHO

    H

    O CCl3

    NH

    OH

    NH2HO

    HO

    HO

    OH

    H2NO

    OHHO

    OHHO

    H

    OH

    OOH

    O

    OHOH

    N

    O

    HO

    CCl3

    Ledford, B. E.; Carreira, E. M. J. Am. Chem. Soc. 1995, 117, 11811-11812.

    +

    1. NaH, CpLi, THF, 60%2. NaH, Cl3CCN, THF, 95% I(sym-collidine)2ClO4

    NaHCO3, aq. CH3CN

  • 17

    Synthesis of (+)-Trehazolin

    1. TIPSOTf2,6-lutidine2. Li2NiBr4, THF80%

    NH

    TIPSO

    CCl3

    Br

    O

    OO

    NH

    TIPSO

    CCl3

    Br

    O

    O

    1. BF3OEt22. Bu3SnH,Et3B, NaBH4

    TIPSO

    HO

    ON

    CH2Cl

    1. PPTS, CH3CN aq.2. Ac2O, DMAP, 77%

    TIPSO

    AcO

    OAcNH

    CH2ClO

    1. Chx2BH2. H2O2

    TIPSO

    AcO

    OAcNH

    CH2ClO

    3. Swern4. PhMgBrLiBr, THF5. Swern

    1. h

    2. OsO4, NMO

    TIPSO

    AcO

    OAcNH

    CH2ClO

    OHOH

    Ph

    O

    N

    O

    HO

    CCl3

  • 18

    Synthesis of (+)-Trehazolin

    SCN

    O

    OBnBnO

    OHBnO

    OOH

    O

    OHOH

    1. BnCl

    2. Bu4NNCS, BF3OEt2

    TIPSO

    AcO

    OAcNH

    CCl3O

    OHOH

    1. 4N HCl

    SCNO

    OBnBnO

    OHBnO

    2.

    OH

    HO

    HO

    HO

    OHHN

    S

    NH

    O

    OBn

    OBn

    OH

    OBn

    1. HgO, Et2O/Me2CO2. PdOH/C, H2 (1 atm), MeOH, 40%

    DMAP, MeOH

    OH

    HO

    HO

    HO

    OHHN

    O

    NH

    O

    OH

    OH

    OH

    OH

  • 19

    Epoxy Alcohols: Synthetic Applications

    OH

    O

    NUC

    O

    NUC

    HO OHOH

    OHNUCa,b

    c

    d

    OH

    NUCHO

    a

    bd

    c

  • 20

    Epoxy Alcohols: Synthetic Applications

    Reactions of Type a:

    OH

    O

    Mitsunobu

    ROH

    OR

    O

    MsCl or TsCl or Tf2O

    OMs (OTs, OTf)

    O

    RLi or R2CuLi R

    OO

    HO

    H

    O

    TBDPSO

    Me

    OH

    Me

    O

    O

    Ot-Bu

    OLi

    OHO

    TBDPSO

    Me

    Me

    O

    O

    CO2t-Bu

    Disparlure100% ee

    (55% yield after recrystallization of dinitrobenzoate)

    1. TsCl2. (n-C9H19)2CuLi, ether

    1. TsCl, pyr2. NaI3.

  • 21

    Epoxy Alcohols: Synthetic Applications

    Me OH

    Me MeO

    1. MsCl, Et3N2. NaBr3. (i-PrO)2Si(Me)CH2MgCl4. H2O2

    Me

    Me MeO

    OH

    R OTsO

    RMe

    OH

    DIBAL-H

    CH2Cl2, 0 C

    98%

  • 22

    Epoxy Alcohols: Synthetic Applications

    I

    MeO Zn, AcOH

    Me

    OH

    Chem. Comm. 1990, 843.

    O

    O

    OH

    O

    OPMB

    Cp2TiClO

    OOPMB

    OH

  • 23

    Epoxy Alcohols: Synthetic Applications

    BnOOH

    OH

    1. t-BuCOCl, Et3N2. TBDPSCl, imidazole

    3. DIBAL4. (-)-DET, TBHP

    BnOOH

    OTBDPSO

    1. Swern2. Ph3P=CHCO2Me

    BnO

    OTBDPSO

    COOMe

    1. DIBAL2. t-BuCOCl, pyr

    3. TBDMSCl, imidazole4. DIBAL

    BnO

    TBDPSO

    OH

    OTBDMS

    1. Sharpless

    2. Red-Al

    3. F-

    BnO

    OH

    OH

    OH OH

  • 24

    Epoxy Alcohols: Synthetic Applications

    R OMe

    OH O

    R OMe

    OO

    R OMe

    OH O

    SmI2

    R OH

    OHDIBAL-H

    Pd(0)HCO2H

    R OMe

    OO

    Pd(0), CO2OMe

    OR

    O

    O

    O

    Pd(0), PhNCOOMe

    OR

    O

    NPh

    O

    R OH

    MeO LiCuMe2

    R OH

    Me

    OHMe

    68% (+13% of diastereomer)

  • 25

    Epoxy Alcohols: Synthetic Applications

    R OH

    MeO LiCuMe2

    R OH

    Me

    OHMe

    68% (+13% of diastereomer)

    R R'O

    Oor

    NaBH4-(PhSe)2

    R R'

    OOH

    SmI2

    R OHO

    O

    1. i-BuOCOCl

    2. CH2N23. h, EtOH

    R CO2Et

    OH

    OH

    O

    Me

    BnO

    LiCuMe2

    OH

    OH

    MeMe

    BnO

    Kishi, Tetrahedron 1981, 3873.

  • 26

    Epoxy Alcohols: Synthetic Applications

    O

    O

    Me

    H

    O OH

    OH

    O

    O

    Me

    H

    O OH

    OH

    OH

    OH

    O O

    OH

    OH

    O O

    endo-brevicomin

    exo-brevicomin

    Synthesis 1988, 854.

    TsO

    OPG

    OPG

    OTsO

    TsO

    OPG

    OPG

  • 27

    Epoxy Alcohols: Payne and Pummerer Rearrangement

    R OH

    O

    R

    OPG

    OPG

    SPh

    R

    OH

    O

    R

    OPG

    OPG

    H

    O

    R

    OH

    OH

    Nuc

    Nuc

    1. PhS

    2. Me2C(OMe)2, H+

    1. MCPBA2. Ac2O

    3. DIBAL

    With K2CO3, MeOH: epimerization

    Nucleophiles:

    OH-, BH4-, TsNH-, CN-, N3

    -, R2NH

  • 28

    Chemoselective Ring-Opening

    R OPG

    O

    R OPG

    Nuc

    OH

    R OPG

    OH

    Nuc

    Nuc

    +

    R OH

    O

    R

    O

    O

    O

    R OH

    O

    R O

    O

    OR2HN

    R

    Nuc

    OH

    O

    O

    R OH

    NEt2

    OH

    NaH

    R

    HN

    O

    OH

    O

    R OH

    OH

    NEt2

    Nuc Nuc = H, N3, PhS, Me

    Nuc

    +

    Et2NH, reflux: 3.7 : 1

    Et2NH, Ti(OiPr)4, reflux: < 1 : 10

  • 29

    Chemoselective Ring-Opening

    R OH

    OH

    R OH

    OR OH

    OH

    Red-Al

    THF

    90%

    DIBAL-H

  • 30

    Chemoselective Ring-Opening

    X

    HO O

    X

    OHHO

    H

    X

    OHHO

    5,6-endo-tetare disfavored

    X

    O

    X

    OH

    HX

    OH

    Vinyl-directing group:

    OHO

    O

    BnOOH

    Ph

    O

    OO

    O

    BnO

    OH

    OH

    Ph

    Applications: Brevetoxin's synthesis

    Nicolaou J. Am. Chem. Soc. 1995, 117, 10227.

    O

    OHBnO

    BnO

    H Me

    CO2Et

    MeO

    PPTS, CH2Cl2

    97%

    O

    OBnO

    BnO

    H Me

    CO2Et

    Me

    H H

    OH

  • 31

    Oxidation of Sulfides, Selenides and Amines

    MeS

    C6H4MeMe

    SC6H4Me

    O

    93% ee (90%)

    PhN

    OH

    Ti(OiPr)4, DET

    Ti(OiPr)4, (+)-DIPT

    PhN

    OH

    PhN

    OH

    O

    +

    CHP

    CHP

  • 32

    Catalytic Epoxidation of Alkenes: Mn-Salen

    References:

    Jacobsen, E. N. In Comprehensive Organometallic Chemistry II, Vol. 12, Chapter 11.1.Jacobsen, E. N. In Catalytic Asymmetric Synthesis, Ojima Ed. 1993, Chap. 4.2Recent mechanistic paper: J. Am. Chem. Soc. 1998, 120, 948.

    N N

    O O

    Mn

    Cl

    H H

    t-Bu

    t-Bu t-Bu

    t-Bu

    Catalyst:

    H

    R2R1

    H

    NaOCl

    H

    R2R1

    HO H

    HR1

    R2O

    Reaction:

    +

    Catalyst (0.5-10 mol%)

    +

  • 33

    Epoxidation of Unfunctionalized Olefins: The Jacobsen Catalyst - Ligand Design

    Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L.!J. Am. Chem. Soc. 1991, 113, 7063-7064.

    84% ee

  • 34

    Jacobsen Catalytic Epoxidation of Unfunctionalized Alkenes

    Proposed transition structures for the epoxidation of cis--mehtylstyrene.(A) epoxidation with catalyst 13 and (B-D) epoxidation with catalyst 14. [Structures created with the program Chem 3D based on the coordinates frm the X-ray crystal structure of 13 (PF6 salt).-

    A B (favored)

    C (disfavored) D (disfavored)

    Jacobsen, E. N.; Wei, Z.; Loebach, J. L.; Wilson, S. R. J. Am. Chem. Soc. 1990, 112, 2801-2803.

  • 35

    Jacobsen Catalytic Epoxidation of Unfunctionalized Alkenes: Substrate Scope

    Higher ee if:!-R is bulky!-Allylic oxygen

    NaOCl

    +

    NR O

    N N

    O O

    Mn

    Cl

    H H

    t-Bu

    t-Bu t-Bu

    t-Bu

    (4 mol%)

    R

    NaOCl(S,S)-catalyst

    NaOCl(R,R)-catalyst

    R

    O

    R

    O

    Ar RO

    X

    Ph

    Ph CO2i-Pr

    O

    OR2

    R1

    90-98% ee>95% ee

    93% ee

    n

    87-94% ee

    96% ee

    94% ee90-98% ee(trans epoxide)

    86% ee

    R

    R

    Ph88-95% ee

    Ar80-86% ee

    RAr

  • 36

    Jacobsen Catalytic Epoxidation of Unfunctionalized Alkenes: Substrate Scope

    N N

    O O

    Mn

    Cl

    H H

    t-Bu

    t-Bu t-Bu

    t-Bu

    (4 mol%)

    R1 R2+ NaOCl

    N

    Ph

    N

    OMe

    OH

    Cl

    25 mol%

    / PhCl

    R1R2

    O

    PhPh

    OAr

    CO2i-Pr

    Ot-Bu

    Et

    O

    27 : 1, trans:cis90% ee

    8 : 1, trans:cis86% ee

    2 : 1, trans:cis84% ee

    Chang, S. B.; Galvin, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 116, 6937-6938.

  • 37

    Jacobsen Catalytic Epoxidation of Unfunctionalized Alkenes: Synthetic Applications

    Jacobsen, E. N.; wLarrow, J. F.; Jacobsen, E. N. Org. Synth., 1998, 75, 1-11.!Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.; Mcdaniel, S. L.; Darke, P. L.; Zugay, J.; Quintero, J. C.; Blahy, O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J.; Graham, P. I.; Condra, J. H.; Gotlib, L.; Holloway, M. K.; Lin, J.; Chen, I. W.; Vastag, K.; Ostovic, D.; Anderson, P. S.; Emini, E. A.; Huff, J. R. Proc. Nat.l Acad. Sci. USA 1994, 91, 4096-4100.

    Bell, D.; Davies, M. R.; Finney, F. J. L.; Geen, G. R.; Kincey, P. M.; Mann, I. S. Tetrahedron Letters 1996, 37, 3895-3898. !!Buckle, D. R.; Eggleston, D. S.; Pinto, I. L.; Smith, D. G.; Tedder, J. M. Bioorg. Med. Chem. Lett. 1992, 2, 1161-1164.

    O

    OC2F5

    94% ee, 75% y.O

    OHC2F5

    N O

    BRL 55834

    O

    OH

    NH2

    CH3CNH2SO4 / SO3

    Hexanes

    ~85% ee>99% ee after

    recrystallisation

    OHHN

    O

    OHPh

    N

    N

    N

    NHt-BuO

    Indinavir

  • 38

    Jacobsen Catalytic Epoxidation of Unfunctionalized Alkenes: Synthetic Applications

    Ph

    NO

    OMe

    O

    89% ee, 58% y.

    Ph

    N

    OMe

    O

    CDP840

    NBoc

    OBn

    O

    93% ee70% y.

    HN

    N

    MeO2C

    O

    O NH

    OMe

    OMe

    OMe

    Duocarmycin SA

    Boger, D. L.; McKie, J. A.; Boyce, C. W. Synlett 1997, 515.

    Lynch, J. E.; Choi, W. B.; Churchill, H. R. O.; Volante, R. P.; Reamer, R. A.; Ball, R. G.!J. Org. Chem. 1997, 62, 9223-9228.

  • 39

    Catalytic Asymmetric Epoxide Ring-Opening Chemistry

    Desymmetrization

    Kinetic Resolution

    Nielsen, L. P. C.; Jacobsen, E. N. in Aziridines and Epoxides in Organic Synthesis, Yudin Ed, 2006, Chap. 7, p. 229.

    R

    R

    ONuH

    Chiral catalystR

    R

    OH

    Nu

    R

    O

    R

    O+

    NuH

    Chiral catalyst R

    O

    R

    OH

    + Nu

  • 40

    Desymmetrization of meso-Epoxides: Nitrogen-Centered Nucleophiles

    Seminal work: Nugent, W. A. J. Am. Chem. Soc. 1992, 114, 2768-2769.!Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5897-5898.!Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924-10925.!Thiol as nucleophile: Wu, M. H.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 5252-5254.

    X O

    N N

    O O

    Cr

    H H

    t-Bu

    t-Bu t-Bu

    t-BuCl

    2 mol%

    1. TMSN3 (1.05 equiv) / ether, rt 18-36h2. CSA / MeOH

    X

    OH

    N3

    N3

    OH

    N3

    OH

    80% y., 88% ee 85% y., 92% ee(-10 C)

    FmocN

    OH

    N380% y., 95% ee

    O

    OH

    N380% y., 98% ee

    OH

    N380% y., 94% ee

    O

    OH

    N380% y., 94% ee

  • 41

    Desymmetrization of meso-Epoxides: Oxygen-Centered Nucleophiles

    Wu, M. H.; Hansen, K. B.; Jacobsen, E. N.!Angew. Chem. Int. Ed. 1999, 38, 2012-2014.

    N N

    O O

    Co

    H H

    t-Bu

    t-Bu t-Bu

    t-BuOAc

    1-2 mol%

    O

    OH HOO

    96% y. 98% ee

    O

    HOO

    86% y. 95% eeOH

    OH

    HO

    O 45% y. 99% ee

    OH

    OH O

    HO

    OH

    O

    HO OHHO

    OH

    O81% 96% ee

    OMe

    Me

    TsOH60% (2 steps)

    O

    O

    O

  • 42

    Desymmetrization of meso-Epoxides: Oxygen-Centered Nucleophiles

    N N

    O O

    Co

    H H

    t-Bu

    t-Bu t-Bu

    t-BuOAc

    1-2 mol%

    Meng, Z. Y.; Danishefsky, S. J.!Angew. Chem., Int. Edit. 2005, 44, 1511-1513.!Yun, H. D.; Meng, Z. Y.; Danishefsky, S. J.!Heterocycles 2005, 66, 711-725.

    O

    O

    OO

    O

    HO

    Merrilactone A

    CO2Me

    CH2OH

    CH2OH

    DMDO / CH2Cl2

    CO2Me

    CH2OHCH2OH

    O(R,R)-(salen)CoOAc

    THF, -78 C, then -25 C

    CO2Me

    CH2OH

    HO

    O

    86% y., 86% ee

    O

    CO2H

    CO2Me

    H

    MeO2C

    MeO

    OTBS

    MeO2C

    O

    O

    OTBS

    O

    O

    OO

    Br

    Merrilactone A

  • 43

    Hydrolytic Kinetic Reaction of Terminal Epoxides

    N N

    O O

    Co

    H H

    t-Bu

    t-Bu t-Bu

    t-BuOAc

    1-2 mol%

    R

    O

    R

    O+

    Chiral catalyst(0.2-2.0 mol%)

    R

    O

    R

    OH

    + OHH2O

    Aliphatic Epoxides

    Repox

    % yieldepox% ee

    diol% yield

    diol% ee

    CH3(CH2)3CH3(CH2)11CH3(CH2)2CH=CH2CH2Ph

    c-C6H11t-C4H9

    46

    43

    42

    43

    46

    44

    41

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    45

    44

    40

    44

    40

    41

    40

    99

    99

    99

    99

    95

    99

    95

    Halogenated Epoxides

    Repox

    % yieldepox% ee

    diol% yield

    diol% ee

    CH2Cl

    CH2Br (dynamic)

    CH2F

    CF3

    43

    41

    42

    42

    >99

    43

    >99

    >99

    40

    90

    38

    42

    95

    96

    97

    >99

    Epoxides bearing ether and carbonyl functionality

    Repox

    % yieldepox% ee

    diol% yield

    diol% ee

    CH2OBn

    CH2OTBS

    CH2OPh

    CH2O(1-naphtyl)

    CH2CH2OBn

    oxiranyl

    CH2OCOn-Pr

    CH2CO2Et

    CH2NHBoc

    CO2CH3COCH3COCH2CH3

    48

    47

    47

    38

    42

    36

    46

    44

    36

    43

    40

    41

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    40

    42

    41

    42

    42

    36

    45

    41

    36

    37

    40

    33

    95

    98

    95

    97

    95

    96

    43

    95

    78

    97

    97

    96

  • 44

    Hydrolytic Kinetic Reaction of Terminal Epoxides

    N N

    O O

    Co

    H H

    t-Bu

    t-Bu t-Bu

    t-BuOAc

    1-2 mol%

    R

    O

    R

    O+

    Chiral catalyst(0.2-2.0 mol%)

    R

    O

    R

    OH

    + OHH2O

    Jacobsen, E. N.; Tokunaga, M.; Larrow, J. F.; Kakiuchi, F. Science 1997, 277, 936-938.!!Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431.!!Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307-1315.

    Aryl, vinyl and alkynyl epoxides

    Repox

    % yieldepox% ee

    diol% yield

    diol% ee

    Ph

    4-ClC6H43-ClC6H43-MeOC6H43-NO2C6H42-ClC6H4CH=CH2CCTBS

    44

    38

    40

    41

    38

    38

    36

    41

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    >99

    42

    37

    44

    41

    44

    42

    38

    41

    98

    94

    91

    95

    99

    94

    97

    99

  • 45

    Enantioselective Epoxidation with Dioxiranes

    R

    R

    R

    R

    O

    O

    R1

    R2

    R1

    R2O

    O

    HSO5-

    HSO4-

    [Oxone]1 equivCatalytic

    Shi, Y., Acc. Chem. Res. 2004, 37, 488-496.

    Wong, O. A.; Shi, Y., Chem. Rev. 2008, 108, 3958-3987.

    O

    O R

    RO

    O R

    R

    Spiro Transition StateFavored

    Planar Transition StateUnfavored

    180

    O

    O

    L(S)

    S(L)

    180

    O

    O

    L(S)

    S(L)

    180

  • 46

    Shis Enantioselective Catalytic Epoxidation: Catalytic Cycle

    R1R3

    R2

    O

    O

    O

    OO

    O

    O

    R1R3

    R2

    O

    O

    O

    O

    OO

    O

    O

    O

    O

    OO

    OH

    OO SO3

    -

    HSO5-

    O

    O

    O

    OO

    O-

    OO SO3

    OH-

    SO42-

    O

    O

    O

    OO

    O

    O

    O

    O

    OO

    O

    O

    O

    +

    B.V.

    Competing pathwayEpoxidationCycle

    O

    OO

    O

    O

    OO

    R3

    R1R2

    Spiro (A)Favored

  • 47

    Shis Enantioselective Catalytic Epoxidation: Scope

    Wang, Z. X.; Miller, S. M.; Anderson, O. P.; Shi, Y. J. Org. Chem. 1999, 64, 6443-6458.

    O

    O O

    OCH2OAc

    O

    O

    O

    O

    OO

    O

    PhR

    C6H13C6H13

    --

    O

    O O

    OCMe2OH

    O

    85% (98%ee)

    94% (96%ee)

    49% (96%ee)

    89% (95%ee)

    --

    -- 91% (96%ee)

    -- 94% (80%ee)

    -- 95% (84%ee)

    51% (42%ee) --

    -- 35% (89%ee)

    --

    --

    --

    PhPh

    Ph

    Ph

    C8H17

    O

    O

    --

    --

    --

    90% (24%ee)

    92% (17%ee)

    43% (61%ee)

    Ph R

    O--

    --

    --

    54% (97% ee)

    R = Ph

    R = Me

    R = i-Pr

    80% (94%ee) 85% (96%ee)

    -- 75% (82%ee)

    -- 70% (89%ee)

    -- 95% (92%ee)

    -- 79% (69%ee)

    -- 85% (15%ee)

    -- 93% (21%ee)

    --

    --

    --

    --

    --

    --

    R = Ph

    R = Me

    R = CH2Cl

    R = OEt

  • 48

    Shis Enantioselective Catalytic Epoxidation: Scope

    Warren, J. D.; Shi, Y. J. Org. Chem. 1999, 64, 7675-7677.

    O

    O

    O

    OO

    O

    R2

    SiMe3

    R1

    Oxone

    H2O-Solvent

    R2

    SiMe3

    R1

    O

    84-94% ee

    TBAF

    R2

    R1

    O

  • 49

    Shis Enantioselective Catalytic Epoxidation: Scope

    Shi, Y.; and Coworkers, J. Org. Chem. 1998, 63, 2948.

    O

    O

    O

    OO

    OR1

    R2R1

    R2

    O

    R1

    R2

    OOxone

    H2O-Solvent+

    PhPh

    PhPh

    O

    CO2Et CO2EtO

    OTBS OTBSO

    OMe OMe

    O

    CO2Et CO2EtO

    PhSiMe3

    PhSiMe3

    O

    SiMe3

    Ph

    SiMe3

    Ph

    O

    CO2EtO

    PhPh

    O O

    OTBSO

    PhSiMe3

    O

    Entry Dienes Epoxides

    1 94 22:1 77 97

    2 69 7:1 41 96

    3 100 4.6:1 68 96

    100 65 894

    5 88 82 95

    6

    100 81 957

    92 14:1 77 94

    Conv(%)

    Ratio Yield(%)

    ee(%)

  • 50

    Shis Enantioselective Catalytic Epoxidation: Scope

    Wang, Z. X.; Cao, G. A.; Shi, Y. J. Org. Chem. 1999, 64, 7646-7650.

    O

    O

    O

    OO

    OR1R1

    OOxone

    H2O-Solvent

    R2R2

    Yield(%)

    ee(%)

    Entry Enynes

    R

    R = H

    R = CH3R = SiMe3

    R = CO2Et

    78

    88

    86

    71

    93

    90

    94

    93

    SiMe3

    84 95

    Ph

    SiMe3

    64 94

    1

    2

    3

    4

    6

    5

    Ph

    SiMe359 96

    Yield(%)

    ee(%)

    Entry Enynes

    SiMe371 897

    8

    R

    9

    10

    R = H

    R = SiMe3

    60 93

    83 97

  • 51

    Chiral Alkynyloxiranes as Useful Synthons

    R1

    OR3

    R2R1

    OH

    R2

    R4

    R3

    SN2'

    Ag+

    O R3

    R4R1

    R2

    Nu

    R1

    OH R3

    R2 Nu

    PdCl2SnCl2PR3, CO

    (R3=H)

    O

    O

    R1 R2Nu

    Mo(CO)6R3=H

    O

    R1 R2Nu

    Marshall, JOC 1993, 7180

    McDonald JACS 1996, 6648Norton JACS 1981, 7520

    R4Cu

  • 52

    Shis Epoxidation of Allylic Alcohols and Trisubstituted Olefins

    Shi, Y.; and Coworkers J. Org. Chem. 1998, 63, 3099.

    O

    O

    O

    OO

    OR1 OH

    R2

    R1 OH

    R2

    O

    Oxone

    H2O-Solvent

    Ph OH

    OH

    PhOH

    Ph OH

    Ph

    OH

    OH

    OH

    OH

    PhOH

    Ph OH

    PhOH

    Yield(%)

    ee(%)

    Entry Olefins

    1

    2

    3

    4

    5

    685

    43

    68

    87

    93

    8594

    92

    91

    94

    94

    92

    Yield(%)

    ee(%)

    Entry Olefins

    7

    8

    9

    10

    11

    75

    82

    90

    83

    87

    74

    90

    91

    91

    91

  • Yield(%)

    ee(%)

    Yield(%)

    ee(%)

    Ph

    OTBS

    Ph

    O

    OH

    OTBS O

    OH

    OR ORO

    OBz

    OBz

    Ph

    OAc

    OOBz

    OBzO

    Ph

    OAcO

    Entry Substrate Product

    1 80 90

    2 70 83

    Entry Substrate Product

    92 88

    66 91

    n = 5 79 80

    n = 7 87 91n = 8 82 95

    3 R = Ac 59 74

    4 R = Bz 82 93

    nn

    8

    9

    5

    67

    53

    Epoxidation of Enol Ethers and Esters

    Shi, Y.; and Cowokers Tetrahedron Lett., 1998, 39, 7819.

    R1

    OR

    R2

    R1

    OR

    R2

    O

    R1

    O

    R2

    OSiR'3R1

    O

    R2

    OH

    Oxone

    H2O-Solvent

    orR = SiR'3

    R = R'CO

    O

    O

    O

    OO

    O

  • 54

    Epoxidation of Enol Ethers and Esters

    Shi, Y.; and Coworkers J. Am. Chem. Soc. 1999, 121, 4080.

    R1

    OBz

    R2

    O

    R1

    O

    R2

    OBz

    R1

    O

    R2

    OBz

    R

    S

    Yield(%)

    Entry Epoxide Acid Epoxide ee (%)

    OOBz

    p-TsOH 93929291

    89837385

    1silica gel

    2p-TsOH 97

    9797

    68

    8779

    AcO

    CH3

    PhO

    OBzO

    3

    4

    p-TsOH 94

    94

    72

    71

    p-TsOH 99999999

    79458781

    silica gel

    (S)

    (R)

    (R)

    (R)

    Product ee (%)

    90 (R)91 (S)88 (S)87 (S)

    97 (R)

    94 (R)

    90 (R)

    99 (R)38 (R)57 (R)93 (R)

    YbCl3AlMe3

    OBzO

    silica gel 97 (S)96 (S)69 (S)

    YbCl3AlMe3 97

    AlMe3

    YbCl3AlMe3

    90

  • 55

    Epoxidation of Enol Ethers and Esters

    Shi, Y.; and Coworkers J. Am. Chem. Soc. 1999, 121, 4080.

    R1

    R2

    OOR

    O

    R1

    R2

    OLAOR

    O[TsOH] R1

    R2

    O

    OLA

    R

    O

    R1

    R2

    O

    O

    R

    O

    AL

    R1

    R2

    O

    OCOR

    R1

    R2

    O

    OCOR

    +LA+

    +

    pathway a

    pathway b

    -LA+

    -LA+

    retention

    inversion

    +

    or when R1 = Ar

  • 56

    Epoxidation of Enol Ethers and Esters

    Feng, X. M.; Shu, L. H.; Shi, Y. J. Am. Chem. Soc. 1999, 121, 11002-11003.

    O

    OOBz

    Racemic

    OH

    OH10 mol%

    5 mol%

    O

    OOBz

    O

    OBz

    O

    99% ee 99%ee

    51% conversion

    +

    10% TsOHCH2Cl2, 0 C

    5 - 20 min

    O

    OBz

    O

    97%ee

    77%

    O

    OOBz

    [(R)-BINOL]2-Ti(OiPr)4

    Not efficient for styrene oxidesand acyclic epoxides

    Ti(OiPr)4

  • 57

    Synthesis of Polyepoxides

    Vilotijevic, I.; Jamison, T.F. Science 2007, 317, 1189-1192

  • 58

    Synthesis of Polyepoxides

    Vilotijevic, I.; Jamison, T.F. Science 2007, 317, 1189-1192

  • 59

    Synthesis of Polyepoxides

    Vilotijevic, I.; Jamison, T.F. Science 2007, 317, 1189-1192

  • 60

    Synthesis of Polyepoxides

    Vilotijevic, I.; Jamison, T.F. Science 2007, 317, 1189-1192

  • 61

    Dihydroxylation of Olefins: Introduction

    H

    R2H

    R1 OsO4HO OH

    HR1 R2

    HCo-oxidantsyn addition of two OH groups

    Co-oxidant: NMO or K3Fe(CN)6/K2CO3

    L*

    R

    R

    O

    Os OR

    R

    O

    O L

    O

    Os

    O

    OH

    OH

    HO

    HO

    2 K2CO34 H2O

    HO

    RR

    OH

    O

    Os

    O

    OH

    OH

    O

    O

    2 K2CO32 H2O

    OsO4

    General mechanism:

    OsO4L

    Ligand (L)

    ORGANIC LAYER

    AQUEOUS LAYER2- 2-

    3 K3Fe(CN)62 K2CO3

    2 K4Fe(CN)62 KHCO3

  • 62

    Dihydroxylation of Olefins: Introduction

    R

    R

    Os

    O

    O

    O

    O

    Stepwise [2+2]

    Mechanism

    Os

    O

    OO

    O

    L

    R

    R

    Os

    O

    L

    O

    O O

    R

    R

    R

    LigandR

    Conc

    erted

    [3+2

    ]

    Mech

    anism

    O

    O

    Os

    L

    O

    O

  • 63

    Diastereoselective Dihydroxylation of Olefins

    Generally, the reaction is under steric control

    OH

    OH

    OH

    OH

    OsO4

    NMO

    OsO4

    NMO

    OH

    OH

    OH

    OH

    HO

    HO

    HO

    HO

    only product

    >50 : 1

    Me

    OsO4

    NMO

    Me

    OH

    OH

    >20 : 1

    Exceptions:

    Me

    MeMe

    OH

    SNMe

    PhO

    OsO4

    NMO Me

    MeMe

    OH

    SNMe

    PhO

    OHOH

    Me

    OH

    OH

    OH

    OH

    OH

    OH

    Me

    OH

    Me

    +

    cat. OsO4, NMO : 91%, dr = 1 : 4

    OsO4, TMEDA: 88%, dr = >25 : 1

  • 64

    Diastereoselective Dihydroxylation of Olefins

    Me

    OO

    OsO4

    OO

    Me OsO4

    Me

    OO

    OH

    OH

    Me

    OO

    OH

    OH

    Kishi Tetrahedron Lett. 1983, 24, 3943, 3947.

    3.7 : 1

    7.6 : 1

    Me

    OBn OsO4

    OBn Me OsO4

    Me

    OBn

    OH

    OH

    Me

    OBn

    OH

    OH

    7 : 1

    9 : 1

    BnO

    BnO

    BnO

    BnO

    CO2Et

    OH

    OsO4

    OH CO2Et

    OsO4

    CO2Et

    OH

    OH

    OH

    Me

    Me

    MeNMO

    NMO

    Me

    Me

    Me

    CO2Et

    OH

    OH

    OH

    Me

    Me

    OOEt

    Me OHHO

    OOEt

    Me OHHO

    only isomer

    only isomer

  • 65

    Diastereoselective Dihydroxylation of Olefins

    Evans, D. A. J. Org. Chem. 1990, 55, 1698-1700.

    OBn

    Me

    O

    Me

    OSi

    t-Bu t-Bu

    OBn

    Me

    O

    Me

    OSi

    t-Bu t-Bu

    HO

    HO

    diastereoselection60:1

    OBn

    Me

    O

    Me

    OC

    H C6H4OMe

    HO

    HO

    OBn

    Me

    O

    Me

    OSi

    t-Bu t-Bu

    OBn

    Me

    OH

    Me

    OH

    OBn

    Me

    OAc

    Me

    OAc

    Me

    Me

    OBn

    Me

    60 : 1 35 : 1

    Me

    Me

    OBn

    16 : 1

    17 : 1 5.1 : 1

    61 : 1

    Level of diastereoselection varies with slight modifications:

  • 66

    Diastereoselective Dihydroxylation of Olefins

    OX

    H

    C CR2 R2

    HH

    C CR2 R2

    HC CR2 R2

    H

    R1 OX

    R1

    R1

    H

    XO

    Vedejs Model Houk Model Kishi Model

    Based on ground-state conformational effects and an implied stereoelectronic p-facial bias imposed by the allylic oxygen.

    "inside alkoxy effect"Based on the steric hindranceof the osmium reagent

    References:

    Houk, K. N. Science 1986, 231, 1108.J. Am. Chem. Soc. 1986, 108, 2754.

    Vedejs, E. J. Am. Chem. Soc. 1986, 108, 1094.J. Am. Chem. Soc. 1989, 111, 6861.

    Kishi, Y. Tetrahedron Lett. 1983, 24, 3943.Tetrahedron 1984, 40, 2247.

  • 67

    Dihydroxylation with Chiral Catalysts/Ligands

    O

    Os

    O

    OH

    OH

    HO

    HO

    R

    R

    O

    OsO

    R

    R

    O

    O L

    O

    Os

    O

    OH

    OH

    O

    O

    HO

    RR

    OH

    2 K2CO34 H2O

    2 K2CO32 H2O

    OsO4

    OsO4L

    Ligand (L)

    ORGANIC LAYER

    AQUEOUS LAYER2- 2-

    3 K3Fe(CN)62 K2CO3

    2 K4Fe(CN)62 KHCO3

  • 68

    Ligand-accelerated Dihydroxylation: Basic Principle

    O

    Os OO

    O L

    Monodentate Ligands:

    OsO4 L

    Bidentate Ligands:

    L

    16 e- 18 e-

    18 e-

    OsO4

    hydrolysis / reoxidation

    LL Os

    O

    O

    O

    OL

    L+ L*

    16 e- 18 e- 16 e-

    hydrolysis / reoxidation

    L

    OsO4

    OK

    OsO4

    X

    Three important points:

    - Level of enantioselection (Ligand design).

    - Catalytic turnovers (OsO4 is very expensive).

    - OsO4 Ligand must be regenerated.

  • 69

    Sharplesss Dihydroxylation: Chiral Ligands

    Reviews: Sharpless, K. B. et al. Chem. Rev. 1994, 94, 2483-2547.Sharpless, K. B. In Catalytic asymmetric synthesis, Ojima Ed. p. 227.

    Dihydroquinidine derivatives

    N

    O

    N

    OMe

    H

    Et

    O

    ClN

    O

    N

    OMe

    H

    Et

    DHQD-PHNDHQD-CLB

    N

    O

    N

    OMe

    H

    Et

    NN

    O

    N

    N

    MeO

    H

    Et

    (DHQD)2-PHALLigand used in AD-mix-

    N

    O

    N

    OMe

    H

    Et

    N

    O

    N

    O

    N

    OMe

    H

    Et

    O

    N

    N

    MeO

    H

    Et

    (DHQD)2-PYR

    N N

    Ph

    Ph

    DHQD-IND

  • 70

    Sharplesss Dihydroxylation: Chiral Ligands

    Dihydroquinidine derivatives

    N

    O

    N

    OMe

    H

    Et

    NN

    O

    N

    N

    MeO

    H

    Et

    (DHQD)2-PHALLigand used in AD-mix-

    N

    O

    N

    OMe

    H

    Et

    N

    O

    DHQD-IND

    N

    O

    N

    MeO

    HN

    O

    N

    O

    N

    OMe

    H

    NN

    O

    N

    N

    MeO

    H

    Et Et

    DHQ-IND

    Dihydroquinine derivatives

    (DHQ)2-PHALLigand used in AD-mix-

    Et

  • 71

    Sharplesss Dihydroxylation: Scope & Model

    BuMe

    Me PhBu

    Bu

    n-C5H11COOEt

    Ph

    Me

    n-C8H17

    (DHQD)2-PHAL98% ee

    (DHQ)2-PHAL95% ee

    (DHQD)2-PHAL99% ee

    (DHQ)2-PHAL97% ee

    (DHQD)2-PHAL97% ee

    (DHQ)2-PHAL93% ee

    (DHQD)2-PHAL99% ee

    (DHQ)2-PHAL96% ee

    Ph CO2i-PrMe Bu

    n-C5H11

    OMe

    (DHQD)2-PHAL94% ee

    (DHQ)2-PHAL93% ee

    (DHQD)2-PHAL84% ee

    (DHQ)2-PHAL80% ee

    (DHQD)2-PHAL95% ee

    (DHQ)2-PHAL96% ee

    DHQD-IND80% ee

    DHQ-IND72% ee

    DHQD-IND56% ee

    DHQ-IND44% ee

    RM

    H

    RS

    RL

    DHQ ligands () - attack

    DHQD ligands () - attack

  • 72

    Sharplesss Dihydroxylation: Scope

    n-C5H11COOEt

    PhCOOEt

    PhPh

    n-C5H11

    Me

    Ph

    Me

    Ph

    n-C8H17COOBn

    Ph MeBu

    n-C5H11

    OMe

    DHQD-IND72% ee

    (DHQD)2-PHAL99% ee

    (DHQD)2-PHAL97% ee

    (DHQD)2-PHAL>99.5% ee

    (DHQD)2-PHAL78% ee

    (DHQD)2-PHAL94% ee

    (DHQD)2-PHAL97% ee

    (DHQD)2-PHAL84% ee

    (DHQD)2-PYR89% ee

    (DHQD)2-PHAL77% ee

    (DHQD)2-PHAL95% ee

    Ph CO2i-PrMe

    t-Bu

    DHQD-IND80% ee

    DHQD-IND56% ee

    (DHQD)2-PHAL88% ee

    (DHQD)2-PYR96% ee

    (DHQD)2-PHAL64% ee

    (DHQD)2-PYR92% ee

  • 73

    Sharplesss Dihydroxylation: Scope

    PhPh

    PhPh

    OH

    OH

    OEt

    O(DHQD)2-PHAL

    OEt

    O

    (DHQD)2-PHAL

    OH

    OH

    84% (>99% ee)

    93% (95% ee)

    Ph

    DHQD-PHN

    OH

    OH

    PhOH

    OH

    OH

    OH

    (DHQD)2-PHAL

    +

    13 : 156% (94% ee)

    73% ee(DHQD)2-PHAL

    53% ee

  • 74

    Sharplesss Dihydroxylation: Catalyst

    Structure of the Bis OsO4 complex of (DHQD)2PHAL based on molecular mechanics calculations and NOE experiments.

  • 75

    Sharplesss Dihydroxylation: Catalyst

    N

    N

    OR

    OMe

    9

    Its presence has a smalleffect on the rates; however,it increases the binding

    The nature of R has a very large effect on the rates, but only a small influence on the binding

    Oxygenation is essential toallow binding to OsO4 - acarbon substituent is too bulky

    The configuration is important: onlyerythro allows high rates and binding

    Increases binding toOsO4 as well as rates

    The presence of a flat, aromaticring system increases binding andrates; the nitrogen has no influence

    attractivearea

    -face

    -face

    SW

    "HO OH"

    SE

    NENW

    DihydroquinineDerivatives

    DihydroquinineDerivatives

    "HO OH"

    Relationship between ligand structure and Keq and ceiling rate constants.The alkaloid core is ideally set up to ensure high rates, binding, and solubility.The rates are influenced considerably by the nature of the O9 substituent, while the binding to OsO4 is almost independent of that substituent.

    Mechanistic Discussion:

    Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 11038-11053.

    Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 319-329.

    Corey, E. J.; Guzmanperez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805-10816.

    Delmonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A.

    J. Am. Chem. Soc. 1997, 119, 9907-9908.

  • 76

    Sharplesss Dihydroxylation: Synthetic Applications

    O

    O

    OH

    OH

    R1R2

    OH

    OH

    R1 OR2

    OH

    OH

    O

    R1

    COOR2

    O

    O

    O

    O

    Reading: Kolb, H. C.; Vannieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.

    Differentiation of the hydroxyl groups of a Diol: tosylation

    Unselective tosylation leads to racemization!

    Primary vs secondary: unsually not a problem

    1. p-TsCl, pyr

    2. NaOMe

    85%

    48-91%

    1. TsCl, pyr2. K2CO3MeOH

  • 77

    Sharplesss Dihydroxylation: Synthetic Applications

    Differentiation of the hydroxyl groups of a Diol: Cyclic Sulfates

    R1R2

    OH

    OH

    1. SOCl2 R1 2. NaIO4, RuCl3

    R2

    O S

    O

    O

    R1

    R2

    O SO2

    O

    When R1 = R2: C2 symmetric compound

    OSO2

    O

    OOOO 1. LiN32. H2SO4, H2O

    N3 OH

    OOOO

    R1

    R2

    O S

    O

    OAc

    OO

    5-endo tet

    OR1

    OH

    R2

    Me

    O S

    O

    O

    CO2Me

    Me

    OH

    CO2Me

    Me

    SN2' (anti)

    NaOEtEtOH

    MeCuCNLi2BF3OEt2

    R1 R2

    OSO2

    O

    MeO2C CO2MeR1 R2

    MeO2C CO2Me

    Double displacement of cyclic sulfates:

    NaH, DME

  • 78

    Sharplesss Dihydroxylation: Synthetic Applications

    Double displacement from 1,2-diols: halohydrin and epoxides formation

    R1R2

    OH

    OHR1

    R2

    OH

    BrR1

    R2O

    R1R2

    Br

    OH

    R1R2

    O

    R1R2

    OH

    OH1. MeC(OMe)3, PPTS (cat.)2. CH3COBr or TMSX3. K2CO3, MeOH R1

    R2O

    Taxol side-chain: (JOC 94, 5014)

    Ph OMe

    O

    OH

    OH1. MeC(OMe)3, PPTS (cat.)2. CH3COBr or TMSX

    3.NaN34. H2, Pd

    Ph OMe

    O

    OH

    NHAc

  • 79

    Sharplesss Asymmetric Aminohydroxylation

    R

    R K2OsO2(OH)4 cat., XNCl-M+

    (DHQD)2-PHAL or (DHQ)2-PHAL

    R

    HO

    R

    NHX

    (DHQ)2-PHAL66% y. 81% ee

    Chloramine TTsNClNa (3.5 equiv.)

    Chloramine MMsNClNa (3 equiv.)

    PhCO2Me

    NHTs

    OH

    (DHQ)2-PHAL65% y. 95% ee

    PhCO2Me

    NHMs

    OH

    (DHQ)2-PHAL52% y. 74% ee

    MeCO2Et

    NHTs

    OH

    (DHQ)2-PHAL63% y. 80% ee

    MeCO2t-Bu

    NHMs

    OH

    (DHQ)2-PHAL52% y. 62% ee

    PhPh

    NHTs

    OH

    (DHQ)2-PHAL71% y. 75% ee

    PhPh

    NHMs

    OH

    Higher yields and enantioselectivities with sterically less demanding nitrogen nucleophiles

    Drawback: Removing the sulfonyl group.

    Products are solid, ee can be increased by recrystallisation

  • 80

    Sharplesss Asymmetric Aminohydroxylation

    R

    R K2OsO2(OH)4 cat., XNCl-M+

    (DHQD)2-PHAL or (DHQ)2-PHAL

    R

    HO

    R

    NHX

    (DHQ)2-PHAL65% y. 94% ee

    CbzNClNa(3 equiv)

    TeoCNClNa(3 equiv.)

    PhCO2Me

    NHCBz

    OH

    (DHQ)2-PHAL70% y. 99% ee

    PhCO2i-Pr

    NHTeoC

    OH(DHQ)2-PHAL52% y. 74% ee

    MeCO2t-Bu

    NHCBz

    OH

    (DHQ)2-PHAL89% y. 84% ee(DHQD)2-PHAL89% y. 87% ee

    BzCHNCO2Me

    OH

    BOCNClNa(3 equiv.)

    (DHQ)2-PHAL60% y. 97% ee

    3:1 regioselectivity

    OH

    NHBOC

    TMSO

    O

    NClNa

    MeO

    MeO

    (DHQ)2-PHAL65% y. 99% ee

    3:1 regioselectivity

    OH

    NHBOC

    MeO

    BnO

    (DHQD)2-PHAL68% y. 94% ee

    3:1 regioselectivity

    OH

    NHCBz

    MeO

    MeO

    (DHQ)2-PHAL70% y. 99% ee

    3.5:1 regioselectivity

    OH

    NHBOC

    MeO

    BnO

  • 81

    Sharplesss Asymmetric Aminohydroxylation

    R

    R K2OsO2(OH)4 cat., RCONBrLi (1 equiv)

    (DHQD)2-PHAL or (DHQ)2-PHAL

    R

    HO

    R

    NHAc

    (DHQ)2-PHAL81% y. 99% ee

    PhCO2i-Pr

    NHAc

    OH(DHQ)2-PHAL75% y. 95% ee

    PhCO2i-Pr

    NHC(O)CH2Cl

    OH

    (DHQ)2-PHAL50% y. 94% ee

    PhPh

    NHAc

    OH

    (DHQD)2-PHAL46 y. 90 ee

    AcHNCO2Me

    OH

    (DHQ)2-PHAL77% y. 97% ee

    1.3:1 regioselectivity

    PhOH

    NHC(O)CH2Cl

    (DHQ)2-PHAL40% y. 50% ee

    2.5:1 regioselectivity

    OH

    NHC(O)CH2Cl

    Ph

    AcNBrLi ClNHBr

    O

    NHBr

    O

    (DHQ)2-PHAL94% y. 95% ee

    PhCO2i-Pr

    NHC(O)n-Pr

    OH

  • 82

    Sharplesss Dihydroxylation: Synthetic Targets

    O

    Me O

    OH

    OH

    OH

    OHOH

    OH

    OH

    HOOH

    OH

    Me

    OH

    OH

    OH

    EtOOC

    OHOH

    OH

    OH

    EtOOCHO

    (+)-Aspicilin (JOC 1994, 59, 949)

    OHOH

    OH

    OH

    HOOH

  • 83

    Sharplesss Dihydroxylation: Synthetic Targets

    1. AD-mix- (2 equiv)

    2. (CH3O)2CMe2, H+

    O

    O

    O

    O

    1. AD-mix-2. TBDMSCl (1 equiv)3. MEMCl (1 equiv)4. TBAF5. DMS/NCS6. Horner-Emmons

    O

    O

    O

    O

    EtO2C

    OMEM

    1. AcOH, H2O (cleave 1 acetonide)2. (EtO)3CMe, TMSBr (bromoester)3. AIBN, Bu3SnH (reduction C-Br)4. LiOH (saponification)

    5. Yamaguchi6. HSCH2CH2SH, BF3

    O

    Me O

    OH

    OH

    OH

  • 84

    Sharplesss Dihydroxylation: Camptothecin Synthesis

    NMeO

    N

    N

    O

    O

    HO

    O

    HN O

    OHO

    O

    N Br

    Br

    NMeO

    OHC

    I

    HO Me

    HN O

    O

    Me

    NMeO

    Comins J. Am. Chem. Soc. 1992, 114, 10971. / Fang J. Org. Chem. 1994, 59, 6142.

    1. t-BuLi2. MeN(CHO)CH2CH2NMe2

    3. BuLi4. I2

    Et3SiH, TFA

    NMeO

    I

    O

    N O

    OMe

    Me

    N O

    OMe

    Me

    +

    1. I2, CaCO3

    1. KOt-Bu+bromide2. Pd(OAc)2

    Pd(OAc)2K2CO3 Bu4NCl, DMF

    (Ph3P)3RhCl

    Heck

    Alkylation

    Dihydroxylation

    Heck

    N O

    OMe

    Me

    OHOH

    SADHN O

    O

    Me

    OOH

    94% ee

    2. HCl