epsilon‐poly‐l‐lysine produced by s. albulus · epsilon‐poly‐l‐lysine produced by s....

22
Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by Maureen E. Ryder 2010 Approved: _________________________________________ Michael A. Buckholt _________________________________________ Allison Hunter

Upload: others

Post on 20-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

Epsilon‐Poly‐L‐LysineProducedbyS.albulusAMajorQualifyingProjectReport

SubmittedtotheFacultyOfthe

WORCESTERPOLYTECHNICINSTITUTEInpartialfulfillmentoftherequirementsforthe

DegreeofBachelorofScienceby

MaureenE.Ryder

2010

Approved:

_________________________________________MichaelA.Buckholt

_________________________________________AllisonHunter

Page 2: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.2

ContentsAbstract.......................................................................................................................................................... 31 Whatisε‐Poly‐L‐Lysine?................................................................................................................. 4

1.1 Usesofε‐Poly‐L‐Lysine........................................................................................................... 41.2 StructureandPropertiesofε‐Poly‐L‐Lysine ................................................................. 6

2 BacteriaUsed ....................................................................................................................................... 72.1 Streptomycesalbulus ................................................................................................................ 72.2 Pediococcusacidilactici............................................................................................................ 8

3 Goals ........................................................................................................................................................ 84 MethodsandMaterials .................................................................................................................... 94.1 ReconstitutionandCreationofFreezerStock .............................................................. 94.2 ThinLayerChromatography ................................................................................................ 94.3 DeterminationofLysinelevelsinS.albuluscells ......................................................11

5 Results ..................................................................................................................................................145.1 ReconstitutionandCreationofFreezerStock ............................................................145.2 ThinLayerChromatography ..............................................................................................145.3 DeterminationofLysinelevelsinS.albuluscells ......................................................14

6 Discussion ...........................................................................................................................................177 WorksCited ........................................................................................................................................19

Page 3: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.3

Abstract

Sinceitsdiscoveryin1977,ε‐Poly‐L‐Lysine(ε‐PL)hasbeenusedinavariety

ofapplications.Theprimaryusageofε‐PLcurrentlyisasananti‐microbialfood

additive,thoughitcanbefoundasadrugdeliverycarrier,hydrogel,endotoxin

remover,biosensor,ordisinfectant,amongotherpossibilities.Thegoalofthis

projectwasprimarilytoinvestigatewhetheraparticularstrainofStreptomyces

albulusthatallegedlyproducesε‐Poly‐L‐Lysinecouldbeusedasafuturepositive

controlforε‐Poly‐L‐Lysineproduction.

Page 4: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.4

1 Whatisε­Poly­L­Lysine?

1.1 Usesofε­Poly­L­Lysine

Table1.PotentialApplicationsofEpsilonPolylysineanditsDerivatives.(Shih2006)

Sinceitsdiscoveryin1977,ε‐Poly‐L‐Lysinehasbeenusedforavarietyof

applications.Theprimaryusageofε‐PLcurrentlyisasananti‐microbialfood

additive,thoughitcanbefoundasadrugdeliverycarrier,hydrogel,endotoxin

remover,biosensor,ordisinfectant,amongotherpossibilities.Manyofthe

applicationsareparticularforε‐PLanditsderivativesasopposedtoα‐PLduetoa

chemicalmodificationonthealphaaminogroup,whichcanhinderitsadsorption

(Yoshida2003).

Theproposedmechanismfortheantimicrobialactivityofε‐PLinvolvesthe

molecules’adsorptionontoacellsurface,leadingtoastrippingoftheouter

membraneandconsequentabnormaldistributionofcytoplasm,bringingaboutcell

Page 5: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.5

death.(Geornaras2005,Yoshida2003).Thismechanismcanalsoexplainthe

differencesthathavebeenobservedinantimicrobialeffectivenessonvarious

organisms;differencesincellsurfaceswouldleadtodifferencesinadsorptionlevels

(Yoshida2003).ε‐Poly‐L‐Lysinecaninhibitgrowthinavarietyoforganismsat

concentrationsoflessthan100µg/mL,thoughtheamountneededforfood

preservationislessthan300ppm(Yoshida2003).Theanti‐microbialactivityofε‐PL

hasleadtoitsuseasafoodpreservativeinJapansincethe1980s,infoodssuchas

boiledriceandslicedfish(Hiraki2003)andin2004ε‐PLwasdeemedGenerally

RecognizedAsSafe(GRAS)bytheUSFoodandDrugAdministrationforuseasa

foodpreservativeinamountslessthan50mg/kg(Tarantino2004).

ε‐Poly‐L‐Lysineisnotonlyusefulasanantimicrobialagent;ithaspotentialto

beanefficient,environmentallyfriendlybioremediator.Itscationicpropertiesbring

upthepotentialabilityforheavymetalbinding.Additionally,itisabiodegradable

non‐toxicpolymer,whichmeansitwouldbesafefortheenvironment.Duetoits

cationicnature,itishypothesizedthatεPLmayhavetheabilitytoreducechromate

andotheranionicheavymetalwastesfromindustrialdischargethrough

biosorption.Biosorptionisapossiblycosteffectivewayofremovingheavymetals

fromindustrialwastewaters(RaoPopuri2007).Thishasnotbeensufficiently

explored,thoughifε‐Poly‐L‐Lysinewereabletoremoveheavymetalsfromwater

sourcesitwouldbeaninvaluableresource.

Page 6: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.6

1.2 StructureandPropertiesofε­Poly­L­Lysine

Figure1.Structureofε­Poly­L­Lysine(Hirohara2007)

ε‐Poly‐L‐Lysine(ε‐PL)isahomo‐polymericcompoundof25‐30lysine

monomerslinkedattheε‐aminogroups(Shima1981).Itisabiodegradable,non‐

toxic,andwatersolublesubstancesecretedinvaryingamountsbythefilamentous

bacteriaStreptomycetaceae(Shih2006,Shima1981).ε‐PLinwatercontainsa

positivelychargedhydrophilicaminogroupandahydrophobicmethylenegroup

thatleadsittohaveinterestingandusefulcationicproperties,discussedlaterinthis

section.ε‐PLisunlikeproteinsandα‐poly‐L‐Lysine(α‐PL)inthattheamidelinkage

inε‐PLisbetweentheε‐aminocarbonandthecarbonylgroup(seeFigure1)while

theamidelinkageinα‐PLisfoundbetweentheα‐aminocarbonandthecarboxyl

group(Shima1981).TheaminoacidLysinehasapositivelychargedε‐aminogroup,

whichcausesapolymeroflysineresiduestobehighlypositivelycharged.Ina

hydrophilicenvironment,thecarboxylandaminogroupsarrangethemselves

towardstheoutsideofaglobularstructure,whilethehydrophobicmethylene

groupsarearrangedtowardstheinsideoftheglobularstructure.

In1977,ShimaandSakaiwerethefirsttodiscoverε‐PLasaresultof

screeningforDragendorff’spositivesubstancesproducedbyStreptomycesalbulus

Page 7: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.7

ssp.Lysinopolymerusstrain346(Shima1997).Dragendorff’sreagentactivatesinthe

presenceofalkaloidsubstances,alertingtheresearchersthatamoleculeofinterest

waspresent.Becauseofthis,manyearlypapersrefertoε‐PLastheDP

(Dragendorff’sPositive)substance,beforethestructurewasdeterminedanditwas

properlynamed.Conventionalindustrialpolypeptideandpoly‐aminoacid

synthesisregimescannotproperlyformthenecessaryεbonds,leadingtothe

practiceofε‐Poly‐L‐Lysinebeingproducedthroughfermentationwithbacteriaand

subsequentlyextracted.PrihardiKaharhasestablishedaprotocolfortheefficient

fermentationofStreptomycesalbulusstrain410usingpHcontrol,andhas

subsequentlyrefinedherdatathroughinvestigationofproductionofε‐PLinand

AirliftBioreactor(Kahar2001,2002).

2 BacteriaUsed

2.1 Streptomycesalbulus

Theprimarysourceforε‐Poly‐L‐Lysine

acrossavailableliteratureprovestobe

Streptomycesalbulus(Hirohara2007).

Picturedatleft,S.albus,acloselyrelated

species,canbeseenshowingan

undulatemarginina10‐daycultureon

nutrientagar.ThegenusStreptomycesis

ofthephylumActinobacteria,which

Figure2.IrregularformofStreptomycesalbus,acloserelativeofStreptomycesalbulus(BryanMacDonald,ChristopherAdams,andKyleSmith,BrighamYoungUniversity,Provo,UT)

Page 8: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.8

impliesthatS.albulusisgrampositive.Streptomycesbacteriaaretypicallyfound

insoilordecayingvegetation,andhaveacharacteristicallycomplexsecondary

metabolism,whichmakesthemaninvaluableresourceforpharmaceutical

manipulationfordrugproduction(Shirling1972).

ThestrainofStreptomycesalbulususedinthisprojectisaknownproducerof

ε‐Poly‐L‐Lysine.Itisslowergrowingthanalotofcommonlaboratorybacteria,

oftenneeding3‐5daysincubationforsufficientgrowth.

2.2 Pediococcusacidilactici

Pediococcusbacteriaaregram‐positivebacteriathatgenerallyappearin

pairsortriads.ThisspeciesisconsideredaLacticAcidBacteria,soitcan

toleratelowerpHranges,isnon‐respirating,andcreateslacticacidasthe

metabolicendproductofcarbohydratefermentation.Theparticularstrain

usedinthisprojectisL‐Lysinesensitive;itcannotsynthesizelysinede­novo,

andmusttakeitupfromthesurroundingenvironment.

3 Goals

Thegoalsofthisprojectare:

1.) Toobtainbacteriaabletoproduceε‐Poly‐L‐Lysinefroman

alternateresearchestablishmentorresearchsupplysource.

Page 9: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.9

2.) Tofindanadequatemethodofdetectionofpresenceofε‐Poly‐L‐

lysine(positivecontrolneeded)andusethistodetermine

presenceofε‐Poly‐L‐lysineproducedbybacteria.

3.) Hypothesis:Iftheobtainedbacterialstrainproducesε‐Poly‐L‐

lysine,thenasignificantabundanceoflysinemonomerswillbe

showntobepresentinthestrainofbacteria.

4 MethodsandMaterials

Therewerevarioustechniquesusedinthisprojecttotryanddeterminethe

presenceofε‐Poly‐L‐lysineandproveitsabundanceinS.albulus.

4.1 ReconstitutionandCreationofFreezerStock

ThevialcontainingS.albuluswasheatedandcrackedand5.0mLofsterilized

LBbrothwasaddedtoreconstitutethedriedbacteria.Thismixturewas

transferredto5.0mLLBbrothandM3Gmediainconicaltubes,andallowedto

incubatefor5days.After5days,3vialsof1.0mLLBincubatedS.albuluswere

addedto40%glycerolinH2Otoacryogenicvialandplacedintothe‐80oC

freezer.

4.2 ThinLayerChromatography

ThinLayerChromatographywasusedtoseparatesolutionsofdifferenttypes

oflysine,todetermineifthesewouldtraveldifferentlyandtherebybeableto

Page 10: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.10

bedifferentiatedfromeachother.Thesolutionusedtoseparatethe

compoundswasa4:1:1:2ratioofn‐butanol:glacialaceticacid(17.4M):

pyridine:dH2O.Theε‐Poly‐L‐lysinethatwasordereddidnoteasilydissolvein

eitherH2Oorethylalcoholasoriginallyexpected.Uponfurtherinvestigation

andcontactingthesupplier,itwasdiscoveredthatthesidechainswere

protectedusingCarboxybenzyl,whichbegsthequestionofitsusefulnessifthe

sidechainsareunabletointeractwithstationaryormobilephaseoftheTLC.

Theε‐Poly‐L‐lysinewasfinallyfoundtodissolveindichloromethane.

Thesilicagelplateswerespottedwiththefollowinglanes:

Table2.LaneDesignationforSilicaGelChromatography

Plate1

Lane Compound Volume

1 α‐Poly‐L‐lysine 2µL

2 α‐Poly‐L‐lysine 20µL

3 ε‐Poly‐L‐lysine 2µL

4 ε‐Poly‐L‐lysine 20µL

5 S.albulusinLBbroth 10µL

6 S.albulusinLBbroth 20µL

7 S.albulusinM3Gmedia 10µL

Plate2

Lane Compound Volume

1 S.albulusinLBbroth 20µL

2 LBbroth 20µL

3 S.albulusinM3Gmedia 20µL

4 M3Gmedia 20µL

Page 11: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.11

AfterplacingtheplateinaTLCtankandallowingthechromatographytorun

forabout4hours,theplatewasremovedfromthemobilesolutionand

allowedtodry.Upondrying,theplatewassprayedwithaninhydrinsolution

(0.5mLninhydrinstock+15mLethanol),whichwasusedtovisualizethe

presenceofaminoacids.

4.3 DeterminationofLysinelevelsinS.albuluscells

Thetestorganism,Pediococcusacidilacticiwasreconstitutedandsubsequently

subculturedinto10mLDifcoMicroAssayCultureBroth(inoculumbroth)and

incubatedat37°Cfor24hours.Theresultantsuspensionwascentrifugedat

600gfor3minutestoseparatecellpelletfromtheliquidsupernatant.The

supernatantwasremovedandcellswerere‐suspendedin10mLof0.85%

(w/v)sterilesalinesolutiontowashthem,andthencentrifugedandwashed

twomoretimesin10mLof0.85%(w/v)sterilesalinesolutiontoremove

lingeringinoculumbroth.1.0mLofresuspendedcellsolutioninsalinewas

dilutedwith19.0mL0.85%(w/v)sterilesalinesolutiontocreatethediluted

inoculumsuspension.

ThestocksolutionofL‐lysinemonomerswaspreparedfreshtoprevent

degradation.0.001gL‐Lysinewasdissolvedinto20.0mLpurifiedH2Oto

createtheL‐Lysinestocksolution.0.5mLofStockSolutionwasdilutedwith

416mLpurifiedH2OtocreatetheStandardWorkingSolutionwithalysine

concentrationof6.0mg/mL.Ninetubeswereusedforthestandardcurve

Page 12: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.12

determination.Eachtubecontained5.0mLAssaybrothwiththefollowing

concentrationsofpurifiedwaterandStandardWorkingSolution:

Table3.StandardCurveSolutions

Tube Standard

WorkingSolution

(mL/10mLtube)

PurifiedH2O

(mL/10mL

tube)

FinalAmino

Acid

Concentration

(mg/mL)

Blank 0.0 5.0 0

2 0.5 4.5 3

3 1.0 4.0 6

4 1.5 3.5 9

5 2.0 3.0 12

6 2.5 2.5 15

7 3.0 2.0 18

8 4.0 1.0 24

9 5.0 0.0 30

Eachtubewasinoculatedwith100µLDilutedInoculumSuspensionand

allowedtoincubatefor20hoursat37C.Growthresponsewasmeasured

turbidometricallyviaspectrophotometryat660nm.

Theexperimentalorganism,S.albuluswassubculturedininoculumbrothat

37Cforfivedays.Similartothetestorganism,thesecellswerecentrifuged

andwashedin10mLof0.85%(w/v)sterilesalinesolutionthreetimes.The

cellularpelletwasremovedandweighedbysubtractingtheweightofasterile

conicaltubefromtheweightofthetubewiththepellet.0.02gofcellular

pelletwaslysedusingamechanical‐blendingtechniqueofplacingasterile

Page 13: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.13

toothpickintothetubeandvortexingfor2minutes.Thislysatesuspension

wasdilutedtoatotalvolumeof20mL.TheDilutedCellularLysatewasadded

inincreasingamountstoaseriesoftubeseachcontaining5.0mLofAssay

mediumaswellasthefollowingconcentrationsofpurifiedwater:

Table4.CellularLysateSolutions

Tube

DilutedCellular

Lysate(mL/10mL

tube)

PurifiedH2O

(mL/10mLtube)

Blank 0 5.0

2 0.5 4.5

3 1 4.0

4 1.5 3.5

5 2 3.0

6 2.5 2.5

7 3 2.0

8 4 1.0

9 5 0.0

Eachtubewasinoculatedwith100µLDilutedInoculumSuspensionand

allowedtoincubatefor20hoursat37C.Growthresponsewasmeasured

turbidometricallyviaspectrophotometryat660nm.

Page 14: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.14

5 Results

5.1 ReconstitutionandCreationofFreezerStock

TheS.albulusobtainedwassuccessfullygrowninLBbrothandM3Gminimal

media.Thefreezerstocksweresuccessfullyreconstitutedthusshowingthe

effectivelong‐termstorageofthe‐80oCfreezer.

5.2 ThinLayerChromatography

TheTLCplateswereinconclusive,asaminoacidsinthebacteriaandgrowth

mediacausedallofthespotsfromS.albulustoshowapositiveresultinthe

ninhydrinstain.

5.3 DeterminationofLysinelevelsinS.albuluscells

Asexpected,theabsorbanceat660nmincreasedalongwiththeincreasing

amountoflysinemonomersinsolution.Atlowlevelsoflysinenoabsorbance

wasseen;thisimpliesthatiftherewasanyexperimentalorganismgrowthin

thesetubes,thelevelsweretoolowtobecalculatedbythe

spectrophotometer.Thesedatapointswereleftoutofthestandardcurve

trendlinecalculation,astheydonotaccuratelyreflectgrowth.Asseenin

Figure3,theStandardCurvedeterminedbytheknownlevelsoflysine

solutionresultedinthecalculatedtrendlineshowingthatAbsorbance=

0.0006(Lysine[µg/mL])–0.0053.Thisinformationwaslatercomparedto

unknownlevelsoflysinesolutionstodeterminetheaveragelysinelevelper

mL.

Page 15: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.15

Table5.StandardcurvedatawithknownconcentrationsofLysine.

Tube Standard Working Solution (mL/10mL tube)

Purified H2O (mL/10mL tube)

Final Amino Acid Concentration (µg/mL)

%T at 660nm Absorbance at 660nm

1 0.0 5.0 0 100 0 2 0.5 4.5 3 100 0 3 1.0 4.0 6 100 0 4 1.5 3.5 9 100 0 5 2.0 3.0 12 99.6 0.001740662 6 2.5 2.5 15 99.4 0.002613616 7 3.0 2.0 18 98 0.008773924 8 4.0 1.0 24 97.4 0.011441043 9 5.0 0.0 30 97.3 0.01188716

Figure3.LysineStandardCurve(blue)withcalculatedtrendline(black)

Table6.Absorbancedatafortestorganisminunknownlysinelevelsfromcellularlysate.

TubeDilutedCellularLysate(mL/10mLtube)

PurifiedH2O(mL/10mLtube)

%Tat660nm

Absorbanceat660nm

1 0 5.0 100 0

Page 16: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.16

2 0.5 4.5 100 03 1 4.0 99.8 0.0008694594 1.5 3.5 99.8 0.0008694595 2 3.0 99.3 0.0030507526 2.5 2.5 98.4 0.0070049027 3 2.0 98.5 0.006563778 4 1.0 98.5 0.006563779 5 0.0 97.7 0.010105436

Figure4.GrowthofTestOrganism

TheadditionofdilutedS.albuluscellularlysateinincreasingamountsallows

forthecalculationoftheconcentrationoflysineinthecellsviacomparisonto

theStandardCurveseeninFigure3.ThedatainFigure4wasusedto

determinethemeanconcentrationoflysinefoundinthedilutedcellular

Page 17: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.17

lysate,5.66µg/mL.Recallingthat0.002gofcellularlysatewasoriginally

dilutedto20mL,thisgivesthetotalcelllysate/lysineratiotobe17.668by

mass.

6 Discussion

Thehypothesisofthisprojectstatesthatiftheobtainedbacterialstrain

producedε‐Poly‐L‐lysine,thenasignificantabundanceoflysinemonomers

wouldbeshowntobepresentinthestrainofbacteria.S.albuluswasshownto

containhighlevelsoflysine;about1/18ofthecells’masswaslysine.This

wouldbeconsistentwithanorganismthatproducesapoly‐lysine;an

overabundanceoflysinewouldbenecessaryfortheproductionofalysine

polymer.Anon‐poly‐lysineproducingstrainofStreptomycesgriseuscontained

anaverageof2.13%lysinepercellbyweight(Stokes,1946),whilethe

experimentalstraininthisprojectshowedanaverage5.55%lysinepercellby

weight.Thisdifferenceisstatisticallysignificant(p=0.00159)bytheStudent’s

T‐test(p<0.05showssignificance.)However,thisexperimentwasonly

performedonce,sorepeatedresultswouldgivemoreweighttothese

conclusions.

TheresultsreceivedintheTLCexperimentwereabletodeterminethatthere

wereaminoacidsinthegrowthmediaandcells,butduetothenon‐specificity

oftheninhydrinstainthepresenceoflysinecouldnotbeseparatedfromthe

Page 18: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.18

presenceofanyotheraminoacid.Thesameoutcomewouldhavebeenobserved

ifonlythecellpelletshadbeenrunontheTLC,ascellscontainmanyamino

acidsandproteins.Ninhydrinisaqualitativeindicator,notquantitative,and

therebyitisinadequatetoshowanoverabundanceoflysineinS.albuluscells.

Thisexperimentwouldhavebeenmoresuccessfulifalysinespecificstaincould

befound.Anegativelychargedstainthatwouldbeabletobindtopositively

chargedmoleculescouldworklimitedly;poly‐lysinewouldnotbetheonly

positivelychargedmoleculesinacell,sothismethodwouldstillnotbespecific

enoughtodefinitivelydeterminepoly‐lysineproduction.

Eventhoughε‐Poly‐L‐LysineissecretedintotheenvironmentbyS.albulus,the

cellpelletwasusedinthisexperimentbecausetheobjectivewastoshowan

abundanceoflysinemonomers,nottheε‐Poly‐L‐Lysinemoleculeitself.Ifone

weretobelookingfororidentifyingε‐Poly‐L‐LysinefromS.albulus,thegrowth

mediashouldbeseparatedfromthebacterialpelletafterfermentationandthe

growthmediashouldbeused.Theexperimenttestinglysinelevelscannot

determinethetypeofpoly‐lysinethatmightbeproducedbythebacteria.IfS.

albulusproducedα‐poly‐L‐lysineasopposedtoε‐poly‐L‐lysine,thesesame

resultswouldstillbeexpected.Becausethisdistinctionhasnotbeen

determinedinthisproject,thisstraincannotdefinitivelybedeclaredapositive

ε‐Poly‐L‐Lysineproducer,thoughevidenceseemstopointthatway.Further

investigationwouldbenecessarytodeterminewhichtypeofpoly‐L‐lysineis

produced.

Page 19: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.19

Additionally,highlevelsofε‐Poly‐L‐Lysinewouldhaveaquenchingeffecton

experimentalbacterialgrowth.Inordertopreventthisfromhappening,one

wouldhavetohydrolyzetheproteins(and,intheprocess,anypoly‐lysine

molecules).Doingthiswouldstillbeabletoshowheightenedlevelsoflysine

comparedtonon‐producerswithouttheriskofquenchingskewingtheresults.

Sinceε‐Poly‐L‐Lysinehasbeenshowntobebiodegradableandnontoxic

towardshumansandtheenvironment,(Shih,Shen,&Van,2006)ε‐Poly‐L‐

Lysineanditsderivativeshavebeenstudiedforawiderangeofapplications

includingfoodpreservation,dietaryagent,creationofhydrogels,andmore.

Furtherstudyofε‐Poly‐L‐Lysineproducerscanhelpstreamlinetheproduction

processandbringdowncosts.Duetoitscationicnature,itishypothesizedthat

εPLmayhavetheabilitytoreducechromateandotheranionicheavymetal

wastesfromindustrialdischargethroughbiosorption.Biosorptionisa

potentiallycosteffectivewayofremovingheavymetalsfromindustrial

wastewaters(RaoPopuri,Jammala,Reddy,&Venkata,).Ifanadequate

producerofε‐Poly‐L‐Lysinewerefound,thisapplicationwouldprovidean

environmentallysoundbiosorptiontechnique.

7 WorksCited

Curylo, Elisabeth A., et al. Isolation and Antimicrobial Potential of Epsilon Poly-L-Lysine. Ed. Jill

Rulfs, Theodore C. Crusberg, and Michael Allan Buckholt. Vol. E-project-042408-104838.

Page 20: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.20

Worcester Polytechnic Institute:, 2008. <http://www.wpi.edu/Pubs/E-project/Available/E-

project-042408-104838/>.

Geornaras, Ifigenia, and John N. Sofos. "Activity of ε–Polylysine Against Escherichia Coli

O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes." Journal of Food

Science 70.9 (2005): M404-8. <http://dx.doi.org/10.1111/j.1365-

2621.2005.tb08325.x>.

Hamano, Y., et al. "Ɛ-Poly-l -Lysine Producer, Streptomyces Albulus, has Feedback-Inhibition

Resistant Aspartokinase." Applied Microbiology and Biotechnology 76.4 (2007): 873-82.

<http://dx.doi.org/10.1007/s00253-007-1052-3>.

Hamano, Yoshimitsu, et al. "Development of Gene Delivery Systems for the ɛ-Poly-L-Lysine

Producer, Streptomyces Albulus." Journal of Bioscience and Bioengineering, 99.6 (2005):

636-41. .

Hiraki, J. "Use of ADME Studies to Confirm the Safety of Epsilon-Polylysine as a Preservative in

Food." Regulatory Toxicology and Pharmacology : RTP 37.2 (2003): 328. . EBSCO:.

Hirohara, Hideo, et al. "Substantially Monodispersed Poly(ɛ-l -Lysine)s Frequently Occurred in

Newly Isolated Strains of Streptomyces Sp." Applied Microbiology and Biotechnology 76.5

(2007): 1009-16. <http://dx.doi.org/10.1007/s00253-007-1082-x>.

Kahar, Prihardi, et al. "Enhancement of ɛ-Polylysine Production by Streptomyces Albulus Strain

410 using pH Control." Journal of Bioscience and Bioengineering, 91.2 (2001): 190-4. .

Kahar, Prihardi, et al. "Production of ɛ-Polylysine in an Airlift Bioreactor (ABR)." Journal of

Bioscience and Bioengineering, 93.3 (2002): 274-80. .

Kito, Mitsuaki, et al. "Purification and Characterization of an ɛ-Poly--Lysine-Degrading Enzyme

from the ɛ-Poly--Lysine-Tolerant Chryseobacterium Sp. OJ7." Journal of Bioscience and

Bioengineering, 96.1 (2003): 92-4. .

Page 21: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.21

Kunioka, M. "Biosynthesis and Chemical Reactions of Poly(Amino Acid)s from Microorganisms."

Applied Microbiology and Biotechnology 47.5 (1997): 469-75.

<http://dx.doi.org/10.1007/s002530050958>.

Malachowski, Lisa Lyn. Investigation of Immobilized Biopolymers for Metal Binding [Electronic

Resource].

http://www.lib.utexas.edu/etd/d/2004/malachowskil62902/malachowskil62902.pdf

University of Texas, 2006 9/15/2008.

Nishikawa, Masanobu, and Ken'ichi Ogawa. "Inhibition of Epsilon-Poly-L-Lysine Biosynthesis in

Streptomycetaceae Bacteria by Short-Chain Polyols." Applied and Environmental

Microbiology 72.4 (2006): 2306-12. .

Rao Popuri, S., et al. "Biosorption of Hexavalent Chromium using Tamarind (Tamarindus

Indica) Fruit Shell - A Comparative Study." Electronic Journal of Biotechnology Vol. 10,

No. 3.July 15, 2007 (2007): 9/14/2008. . 9/14/2008.

Shih, Ing-Lung, Ming-Haw Shen, and Yi-Tsong Van. "Microbial Synthesis of Poly(ε-Lysine) and

its various Applications." Bioresource Technology, 97.9 (2006): 1148-59. .

Shima, S., and H. Sakai. "Poly-L-Lysine Produced by Streptomyces. Part III. Chemical

Studies." Agricultural and Biological Chemistry 45.11 (1981): 2503. . EBSCO:.

---. "Polylysine Produced by Streptomyces. Argic." The Journal of Biological Chemistry 41

(1977): 1807. . EBSCO:.

Shirling, Elwood B., and David Gottlieb. "Cooperative Description of Type Strains of

Streptomyces: V. Additional Descriptions." International Journal of Systematic and

Evolutionary Biology 22.4 (1972): 265-394. .

Stokes, J. L., and Marion Gunness. "The Amino Acid Composition of Microorganisms." The

Journal of Bacteriology 52.2 (1946): 195-207. .

Page 22: Epsilon‐Poly‐L‐Lysine Produced by S. albulus · Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER

pg.22

Szókán, Gy, et al. "Structure Determination and Synthesis of Lysine Isopeptides Influencing on

Cell Proliferation." Biopolymers 42.3 (1997): 305-18.

<http://dx.doi.org/10.1002/(SICI)1097-0282(199709)42:3<305::AID-BIP4>3.0.CO;2-

Q>.

Tarantino, Laura. "FDA/CFSAN: Agency Response Letter: GRAS Notice No. GRN 000135."

Office of Food Additive Safety. January 16, 2004 2004. 12/11/2008

<http://www.cfsan.fda.gov/~rdb/opa-g135.html>.

Yoshida, T., and T. Nagasawa. "Imicro-Poly-l-Lysine: Microbial Production, Biodegradation and

Application Potential." Applied Microbiology and Biotechnology 62.1 (2003): 21. .

EBSCO:.