equations.doc

Upload: kevin-blackburn

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 equations.doc

    1/5

    College of Engineering and Computer ScienceMechanical Engineering Department

    Mechanical Engineering 370Thermodynamics

    Spring 2003 Ticket: 57010 Instructor: Larry Caretto

    Summary of Important Equations in Thermodynamics

    Basic notation and definition of terms

    Fundamental dimensions o mass! lengt"! time! temperature! and amount o su#stance $mol% are

    denoted! respecti&ely as '! L! T( ! and in t"e a##re&iations #elo)( For e*ample! t"e

    dimensions o pressure are 'L+1T+2( T"ermodynamic properties are said to #e e*tensi&e i t"eydepend on t"e si,e o t"e system( -olume and mass are e*amples o intensi&e properties.intensi&e properties! suc" as temperature and pressure! do not depend on t"e si,e o t"e system(T"e ratio o t)o e*tensi&e properties is an intensi&e property( T"e ratio o an e*tensi&e property!suc" as &olume! to t"e mass o t"e system! is called t"e speciic property. e(g(! t"e ratio o&olume to mass is called t"e speciic &olume(

    ' molecular )eig"t $'/%

    m mass $'%

    M

    mn = num#er o moles $%

    nergy or general e*tensi&e property

    m

    Ee= Speciic molar energy $energy per unit mass% or general e*tensi&e property per

    unit mass

    eMn

    Ee

    == Speciic energy $energy per unit mole% or general e*tensi&e property per unit mole

    pressure $'L+1T+2%

    - &olume $L3%. )e also "a&e t"e speciic &olume or &olume per unit mass! & $L 3'+1%

    and t"e &olume per unit mole v $L3+1%

    T temperature $%

    density $'L+3%. 1/&(

    * uality

    su#scripts and & denote saturated liuid and stauarated &apor! respecti&ely

    4 t"ermodynamic internal energy $'L2T+2%. )e also "a&e t"e internal energy per unit

    mass! u $L2T+2%! and t"e internal energy per unit mole! u $'L2T+2+1%

    4 6 - t"ermodynamic ent"alpy $'L2T+2%. )e also "a&e t"e ent"alpy per unit mass! " u

    6 & $dimensions: L2T+2% and t"e internal energy per unit mole h $'L2T+2+1%

    S entropy $'L2T+2+1%. )e also "a&e t"e entropy per unit mass! s$L2T+2+1% and t"e

    internal energy per unit mole s $'L2T+2+1+1%

    )ork $'L2T+2%

    8 "eat transer $'L2T+2%

    ngineering 9uilding oom 1333 'ail Code "one: ;1;(

  • 8/11/2019 equations.doc

    2/5

    uW : t"e useul )ork rate or mec"anical po)er $'L2T+3%

    m : t"e mass lo) rate $'T+1%

    2

    2V

    : t"e kinetic energy per unit mass $L2T+2%

    g,: t"e potential energy per unit mass $L2T+2%

    tot: t"e total energy m$u 62

    2V

    6 g,% $'L2T+2%

    Q : t"e "eat transer rate $'L2T+3%

    : t"e rate o c"ange o energy or t"e control &olume( $'L2T+3%

    Mass and energy balance equations

    T"e euations #elo) use t"e standard t"ermodynamic sign con&ention or "eat and )ork( eatadded to a system is positi&e and "eat re?ected rom a system is negati&e( T"e oppositecon&ention "olds or )ork( ork done #y a system is positi&e. )ork done on $added to% a systemis negati&e( In terms o t"e in! out! 8in! and 8outterms used in t"e te*t )e can make t"eollo)ing statements(

    8 8in+ 8out out+ in

    T"ese euations may #e su#stituted or any o t"e "eat! 8! or )ork! terms #elo)(

    elation o mass lo) to &elocity! speciic &olume and area:v

    AVAVm

    ==

    @eneral irst la):

    +++

    ++=

    inlet

    i

    2

    i

    ii

    outlet

    i

    2

    i

    iiu

    cv gz2

    Vhmgz

    2

    VhmWQ

    dt

    dE

    'ass #alance euation: =outlet

    i

    inlet

    icv mm

    dt

    dm

    Steady+lo) assumptions: 0 and 0

    Steady+lo) irst la):

    +++

    ++=

    inlet

    i

    2

    i

    ii

    outlet

    i

    2

    i

    iiu gz2

    Vhmgz

    2

    VhmQW

    'ass #alance or steady lo)s: =outlet

    i

    inlet

    i mm

    Steady+lo) irst la) )it" negligi#le A B : +=inlet

    ii

    outlet

    iiu hmhmQW

    Second law of thermodynamics and entropy

    9asic deinition o entropy:T

    PdVdUdS

    +=

    ngineering 9uilding oom 1333 'ail Code "one: ;1;(

  • 8/11/2019 equations.doc

    3/5

    @eneral second la):T

    WL

    T

    Qsmsm

    dt

    dS cvcv

    inlet

    ii

    outlet

    iicv

    +=+

    Second la) ineuality:T

    Qsmsm

    dt

    dS cv

    inlet

    ii

    outlet

    iicv

    +

    dia#atic steady+lo)! second la) ineuality: 0smsminlet

    iioutlet

    ii

    Ideal-gas equations

    1( T"e gas constant

    R is t"e uni&ersal gas constant )it" dimensions o energy di&ided #y $moles times

    temperature%! andM

    RR= is t"e engineering gas constant )it" dimensions o energy di&ided

    #y $mass times temperature%( T"e energy dimensions are sometimes e*pressed as energy

    units $e(g(! D%( o)e&er! or +&+T calculations! t"e energy dimensions are e*pressed inpressure units times &olume units $e(g(! kaEm3( Some &alues o t"e uni&ersal gas constant ares"o)n #elo)(

    Rlbmol

    ftpsi!"#$%#0

    Rlbmol

    lbft"&%#&'&

    ()mol

    m)P"#'%*

    ()mol

    )+"#'%*R

    "f

    "

    =

    =

    =

    =

    2( +-+T calculations )it" mass or moles( T"e e*ample in t"e irst euation is air $ 0(2;7kD/kg+A%( 9ot" e*amples are or an ideal gas t"at occupies a &olume o 1 m3at a pressure o100 ka and a temperature o 25 C 2;(15 A(

    m 1(1

  • 8/11/2019 equations.doc

    4/5

    c( elations"ips or internal energy and ent"alpy

    du c&dT d" cpdT u2G u1 2

    #

    T

    T

    vdTc "2G "1

    2

    #

    T

    T

    PdTc

    For constant "eat capacity: u2G u1 c&$T2G T1% and "2G "1 c$T2G T1%

    From ideal gas ta#les: u2G u1 uo$T2% G u

    o$T1% and "2G "1 "o$T2% G "

    o$T1%

    =( ntropy c"anges

    a( constant "eat capacity

    s2+ s1 cpln + ln c&ln + ln

    #( &aria#le "eat capacity #y integration

    s2+ s1 + ln 6 ln

    c( &aria#le "eat capacity #y ideal gas ta#les

    s2+ s1 so$T2% + s

    o$T1% + ln

    5( nd states o an isentropic process or an ideal gas )it"

    a( constant "eat capacity $k cp/c&%

    T2 T1

    /k T2 T1 2 1

    k

    #( &aria#le "eat capacity using t"e air ta#les

    c( &aria#le "eat capacity using general ideal gas ta#les

    so$T2% so$T1% + ln

    d( &aria#le "eat capacity #y integration o cp$T% or c&$T% euation

    ln or ln

    Cycles and efficiencies

    In an engine cycle a certain amount o "eat! H8H! is added to t"e cyclic de&ice at a "ig"

    temperature and a certain amount o )ork HH is perormed byt"e de&ice( T"e dierence

    #et)een H8H and HH is H8LH! t"e "eat re?ected rom t"e de&ice at a lo) temperature(

    In a rerigeration cycle a certain amount o "eat! H8LH! is added to t"e cyclic de&ice at a lo)

    temperature and a certain amount o )ork HH is perormed ont"e de&ice( T"e sum o H8LH and H

    H is H8H! t"e "eat re?ected rom t"e de&ice at a "ig" temperature(

    For #ot" de&ices: H8H HH 6 H8LH

    ngineering 9uilding oom 1333 'ail Code "one: ;1;(

  • 8/11/2019 equations.doc

    5/5

    ngine cycle eiciency:1Q1

    1W1

    =

    erigeration cycle coeicient o perormance:W

    Q/P

    L=

    T"e isentropic eiciency! s! compares t"e actual )ork! H)aH! to t"e ideal )ork t"at )ould #e done

    in an isentropic $re&ersi#le adia#atic% process! H)sH( 9ot" t"e actual and t"e isentropic process

    "a&e t"e same initial states and t"e same inal pressure(

    For a )ork output de&ice:131

    131

    s

    s=

    For a )ork input de&ice:131

    131

    s

    s=

    ngineering 9uilding oom 1333 'ail Code "one: ;1;(