equilibri di solubilità(in acqua) sali...

34
Equilibri di Solubilità (in Acqua) SALI SOLUBILI: dissociano completamente in soluzione acquosa (e.g. fluoruri, acetati, nitriti, nitrati ed i sali dei metalli alcalini) K ps = Prodotto di Solubilità = [A + ][B - ] AB (s) A + (eq) + B - (eq) SALI POCO SOLUBILI: non dissociano completamente in soluzione acquosa e instaurano equilibri eterogenei del tipo K ps = Prodotto di Solubilità = [A p+ ] m [B q- ] n |n q - | = |m p + | per elettroneutralità A m B n(s) m A p+ (eq) + n B q- (eq) SOLUBILITÀ: Si definisce solubilità, s, la quantità massima di sale A m B n che può sciogliersi in un’unità di volume di soluzione, in presenza di A m B n solido come corpo di fondo.

Upload: vantruc

Post on 15-Jun-2019

246 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Equilibri di Solubilità (in Acqua)

SALI SOLUBILI: dissociano completamente in soluzione acquosa

(e.g. fluoruri, acetati, nitriti, nitrati ed i sali dei metalli alcalini)

Kps = Prodotto di Solubilità = [A+][B-] AB(s) A+(eq) + B-

(eq)

SALI POCO SOLUBILI: non dissociano completamente in soluzione

acquosa e instaurano equilibri eterogenei del tipo

Kps = Prodotto di Solubilità = [Ap+]m[Bq-]n

|n q-| = |m p+| per elettroneutralità

AmBn(s) m Ap+(eq) + n Bq-

(eq)

SOLUBILITÀ: Si definisce solubilità, s, la quantità massima di sale AmBn

che può sciogliersi in un’unità di volume di soluzione, in presenza di

AmBn solido come corpo di fondo.

Page 2: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Es. 2: Scrivere le espressioni di prodotto di solubilità e di solubilità per la seguente

Ag3PO4(s)3 Ag+

(aq) + PO43-

(aq)

Kps = [Ag+]3[PO4

3-]

Kps = [Ag+][Cl-]

AgCl(s)Ag+

(aq) + Cl-(aq)

Es. 1: Scrivere le espressioni dei prodotti di solubilità per le seguenti dissoluzioni:

Kps = [Ag+][Cl-] = [Ag+]2 = 10-10 (mol L-1)2

s(AgCl) = [Ag+] = [Cl-] in presenza di corpo di fondo

[Ag+] = (KS)1/2 = 10-5 mol L-1

s(AgCl) = (KS)1/2 = 10-5 mol L-1

AgCl(s)Ag+

(aq) + Cl-(aq)

Es. 2: Scrivere le espressioni di prodotto di solubilità e di solubilità per la seguente

dissoluzione:

Page 3: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Kps = [Ag+]2 [CrO4

2-] = [Ag+]2 ([Ag+]/2) = 10-11.9 M3

Es. 3: Scrivere le espressioni di prodotto di solubilità e di solubilità per la seguente

dissoluzione:

Ag2CrO4(s) 2 Ag+(aq) + CrO4

2-(aq)

Kps = [Ag+]2 [CrO4

2-] = [Ag+]2 ([Ag+]/2) = 10-11.9 M3

s(Ag2CrO4) = [CrO42-] = [Ag+]/2 in presenza di corpo di fondo

[Ag+] = (2 KS )1/3 = 1,36×10-4 M

s(Ag2CrO4) = [Ag+]/2 = 6,8×10-5 mol L-1

Page 4: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

n m n+m s

1 1 2 1,00×10-10

In generale, all’equilibrio di dissoluzione

Kps = [Aq+]m [Bp-]n

s(AnBm) = 1/n [(n/m)m KS]

1/(n+m)

AmBn(s) m Ap+(eq) + n Bq-

(eq)

Sono associate

Da cui:

1 2 3 1,37×10-7

2 2 4 5,00×10-6

1 3 4 4,39×10-6

2 3 5 3,92×10-5

Le pKps sono tipicamente comprese tra 3 e 100

Complessità formula Solubilità

Page 5: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Effetto dello Ione Comune sulla Solubilità

AgCl(s)Ag+

(aq) + Cl-(aq)

a) In acqua pura ho il solo equilibrio di dissociazione:

Kps = [Ag+][Cl-] = 10-10 M2

s(AgCl) = [Ag+] = [Cl-] = (Kps)1/2 = 10-5 mol L-1

Es. 1: Calcolare la solubilità del cloruro di argento a) in acqua pura e b) in una

soluzione acquosa di acido cloridrico 0,1 M, sapendo che Kps = 10-10 M2.

b) In HCl 0,1 M ho: e HCl(aq) → H+(aq) + Cl-(aq)

AgCl(s)Ag+

(aq) + Cl-(aq)

AgCl(s) (aq) (aq)b) In HCl 0,1 M ho: e HCl(aq) → H (aq) + Cl (aq)

Aggiungo un prodotto dell’equilibrio, Cl-: per il principio di Le Chatelier, l’equilibrio si

sposterà verso i reagenti, ovvero AgCl si scioglierà meno. Verifichiamolo:

Kps = [Ag+][Cl-] = [Ag+] ([Cl-]AgCl + [Cl

-]HCl) M2

Poiché [Cl-]AgCl < 10-5 M e [Cl-]HCl = 0,1 M trascuro in prima approx. [Cl-]AgCl

Kps ~ [Cl-]HCl[Ag

+] = 0,1[Ag+] M2

[Ag+] = s(AgCl)(HCl 0,1 M) = Kps/0,1 = 10-9 M

Page 6: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

a) In acqua pura ho il solo equilibrio di dissociazione:

Kps = [Ag+][NO2

-] = 10-3,8 M2

s(AgNO2) = [Ag+] = [NO2

-] = (Kps)1/2 = 0,0126 mol L-1

E.g. 2: Calcolare la solubilità del nitrito di argento a) in acqua pura e b) in una

soluzione acquosa di acido nitroso 0,01 M, sapendo che Kps = 10-3,8 M2.

AgNO2(s)Ag+

(aq) + NO2-(aq)

b) In soluzione acquosa di NO2- 0,01 M è come se aggiungessi un po’ di un prodotto

(NO2-) all’equilibrio di dissoluzione: per il principio di Le Chatelier, l’equilibrio si

sposterà verso i reagenti, ovvero AgNO2 si scioglierà meno. Verifichiamolo:

Kps = 10-3,8 M2 = [Ag+] ([NO2

-]AgNO2 + [NO2-]NO2-)

Poiché [NO2-]AgNO2 < 0,0126 M ~ [NO2

-]NO2- = 0,01 M non posso trascurare [NO2-]AgNO2

Kps = x(x + 0,01) = 10-3,8 M2 con x = [Ag+] incognita di un’equazione di II grado

x1 < 0 (da scartare) e x2 = 0,0085 M

Page 7: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Es. 3: Calcolare quale concentrazione deve avere una soluzione di Na2SO4 perché in essa

la solubilità di CaSO4 si riduca di 10 volte, sapendo che Kps(CaSO4) = 2,4×10-5 M2.

CaSO4(s) Ca2+(aq) + SO4

2-(aq)

a) In acqua pura:

s(CaSO4) = [Ca2+] = [SO4

2-] = (Kps)1/2 = 4,9×10-3 M

b) In soluzione acquosa di SO42- si vuole che

s(CaSO4) = [Ca2+] = 4,9×10-4 M

[SO42-]TOT = [SO4

2-]CaSO4 + [SO42-]Na2SO4 = [Ca2+] + [SO4

2-]Na2SO4 = [Ca2+] + x

Kps = [Ca2+][SO4

2-] = 4,9×10-4 (4,9×10-4 + x) M2

x = 0,0485 M

Page 8: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Es. 4: Calcolare la solubilità dell’idrossido di cromo(III) a) in acqua e b) in una

soluzione tamponata a pH 10 sapendo che Kps[Cr(OH)3] = 1,0×10-30 M4.

Cr(OH)3(s) ⇄ Cr3+(aq) + 3 OH-(aq)

a) In acqua pura:

Kps[Cr(OH)3] = 1,0×10-30 = [Cr3+] × [OH-]3 = [Cr3+]4/3

s[Cr(OH)3] = [Cr3+] = (3 Kps)

1/4 = 1,0×10-7,5 M

b) In soluzione acquosa tamponata a pH 10:b) In soluzione acquosa tamponata a pH 10:

Kps = 1,0×10-30 = [Cr3+] × ([OH-]Cr(OH)3 + [OH-]Soluz)3

[OH-]Cr(OH)3 = 3 × [Cr3+] = 3,0×10-7,5 M

[OH-]Soluz = Kw/[H3O+] = 10-14/ 10-10 = 10-4 M

[OH-]Cr(OH)3 è, in prima approssimazione, trascurabile.

s[Cr(OH)3] = [Cr3+] = Kps / (10-4)3 = 10-30 / 10-12 = 10-18 M

Page 9: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Effetto del pH sulla Solubilità

La solubilità dei sali poco solubili è influenzata dal pH nel caso in cui questo, attraverso

una reazione di equilibrio competitiva rispetto alla reazione di dissoluzione del sale, fa

variare la concentrazione di almeno uno degli ioni che compongono il sale stesso.

L'effetto del pH sulla solubilità può essere determinato mediante lo studio di equilibri

multipli.

Consideriamo la dissoluzione SrC2O4(s) ⇄ Sr2+(aq) + C2O42-(aq)

In ambiente acido, lo ione ossalato, base coniugata dello ione idrogenoossalato, tende a

reagire con gli ioni H3O+. Si instaurano gli equilibri:

C2O42-(aq) + H3O

+(aq) ⇄ HC2O4

-(aq) + H2O(l)

HC2O4-(aq) + H3O

+(aq) ⇄ H2C2O4(aq) + H2O(l)

che sottraggono ioni ossalato all’equilibrio di dissoluzione.

Per il principio di Le Chatelier, se sottraggo un prodotto a una reazione all’equilibrio,

questa si sposta verso i prodotti. La solubilità di SrC2O4 aumenta al diminuire del pH

fino ad avere, per valori di pH molto bassi, la completa solubilizzazione del sale.

Page 10: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Per determinare in modo quantitativo come il pH influenza la solubilità di SrC2O4, è

necessario ricavare l'espressione della solubilità in funzione del pH mediante uno

studio di equilibri multipli.

In soluzione acida, lo ione CN-, base coniugata dell’acido debole HCN, reagisce con

lo ione H3O+ per dare l’acido HCN e la base coniugata di H3O

+ ovvero H2O:

Consideriamo la dissoluzione AgCN(s) ⇄ Ag+(aq) + CN-(aq) con Kps = [Ag+][CN-]

CN-(aq) + H3O

+(aq) ⇄ HCN(aq) + H2O(l) Kb = 1/Ka = [HCN]/[CN

-][H3O+]

Per il principio di Le Chatelier, la solubilità di AgCN aumenta al diminuire del pH

fino ad avere, per valori di pH molto bassi, la completa solubilizzazione del sale.

s = [Ag+] = [CN-] + [HCN]

[CN-] = Kps/[Ag+]

[HCN] = [H3O+][CN-]/Ka = ([H3O

+] Kps)/(Ka[Ag+])

Page 11: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

[Ag+] = Kps/[Ag+] + ([H3O

+] Kps)/(Ka[Ag+])

[Ag+]2 = Kps + (Kps [H3O+])/Ka = Kps (1 + [H3O

+]/Ka)

s = [Ag+] = {Kps ( 1 + [H3O+]/Ka)}

1/2

SrC2O4(s) ⇄ Sr2+(aq) + C2O42-(aq) Kps = [Sr2+][C2O4

2-]

In soluzione acquosa acida:

⇄C2O42-(aq) + H3O

+(aq) ⇄ HC2O4

-(aq) + H2O(l) Kb2 = 1/Ka2 = [HC2O4

-]/[C2O42-][H3O

+]

HC2O4-(aq) + H3O

+(aq) ⇄ H2C2O4(aq) + H2O(l) Kb1 = 1/Ka1 = [H2C2O4]/[HC2O4

-][H3O+]

s = [Sr2+] = [C2O42-] + [HC2O4

-] + [H2C2O4]

[C2O42-] = Kps /[Sr

2+]

[HC2O4-] = [C2O4

2-][H3O+]/Ka2 = (Kps [H3O

+])/(Ka2 [Sr2+])

Page 12: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

[H2C2O4] = [HC2O4-][H3O

+]/Ka1 = (Kps [H3O+]2)/(Ka1 Ka2 [Sr

2+])

[Sr2+] = Kps /[Sr2+] + (Kps [H3O

+])/(Ka2 [Sr2+]) + (Kps [H3O

+]2)/(Ka1 Ka2 [Sr2+])

[Sr2+]2 = K + (K [H O+])/K + (K [H O+]2)/(K K ) =[Sr2+]2 = Kps + (Kps [H3O+])/Ka2 + (Kps [H3O

+]2)/(Ka1 Ka2) =

= Kps [1 + [H3O+]/Ka2 + [H3O

+]2/(Ka1 Ka2)]

s = [Sr2+] = {Kps [1 + [H3O+]/Ka2 + [H3O

+]2/(K1 Ka2)]}1/2

Page 13: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Consideriamo la dissoluzione CaCO3 (s)⇄ Ca2+(aq) + CO32-(aq) con Kps = [Ca2+][CO3

2-]

In soluzione acquosa acida:

CO32- + H3O

+ ⇄ HCO3- + H2O Kb2 = 1/Ka2 = [HCO3

-]/[CO32-][H3O

+]

HCO3- + H3O

+ ⇄ H2CO3 + H2O Kb1 = 1/Ka1 = [H2CO3]/[HCO3-][H3O

+]

s = [Ca2+] = [CO32-] + [HCO3

-] + [H2CO3]

[CO32-] = Kps /[Ca

2+]

[HCO3-] = [CO3

2-][H3O+]/Ka2 = (Kps [H3O

+])/(Ka2 [Ca2+])

[H2CO3] = [HCO3-][H3O

+]/Ka1 = (Kps [H3O+]2)/(Ka1 Ka2 [Ca

2+])

[Ca2+] = Kps /[Ca2+] + (Kps [H3O

+])/(Ka2 [Ca2+]) + (Kps [H3O

+]2)/(Ka1 Ka2 [Ca2+])

[Ca2+]2 = Kps + (Kps [H3O+])/Ka2 + (Kps [H3O

+]2)/(Ka1 Ka2) =

= Kps [1 + [H3O+]/Ka2 + [H3O

+]2/(Ka1 Ka2)]

s = [Ca2+] = {Kps [1 + [H3O+]/Ka2 + [H3O

+]2/(Ka1 Ka2)]}1/2

Page 14: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 11: Verificare se si ha formazione di precipitato mescolando 500 mL di nitrato di

Pb(II) 0,010 M con 500 mL di HCl 0,01 M, sapendo che Kps(PbCl2) = 1,17 × 10-5 M3.

Pb2+(aq) + 2 Cl-(aq) ⇄ PbCl2(s)

mmol(Pb2+) = 0,010 × 500 = 5,00 mmol

[Pb2+] = 5,00/1000 = 5,00 × 10-3 M

Precipitazione di Sali Poco Solubili

[Pb ] = 5,00/1000 = 5,00 × 10 M

mmol(Cl-) = 0,010 × 500 = 5,00 mmol

[Cl-] = 5,00/1000 = 5,00 × 10-3 M

Qps(PbCl2) = [Pb2+]×[Cl-]2 = 5,00×10-3 × 25,00×10-6 = 125,0×10-9 = 1,25×10-11 < Kps(PbCl2)

NON precipita PbCl2.

Page 15: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 22:: Verificare se si ha formazione di precipitato mescolando 100 mL di HCl a pH

0,30 con 100 mL di TlNO3 0,020 M, sapendo che Kps(TlCl) = 1,0 × 10-4 M2.

Tl+(aq) + Cl-(aq) ⇄ TlCl(s)

mmol(Tl+) = 0,020 × 100 = 2,0 mmol

[Tl+] = 2,0/200 = 1,0 × 10-2 M

[Cl-] = [H O+] = 10-pH = 10-0,3 = 0,50 M[Cl-]i = [H3O+]i = 10-pH = 10-0,3 = 0,50 M

mmol(Cl-) = 0,50 × 100 = 5,00 mmol

[Cl-]f = 5,00/200 = 2,5 × 10-2 M

Qps(TlCl) = [Tl+] × [Cl-] = 1,0 × 10-2 × 2,5 × 10-2 = 2,5 × 10-2 > Kps(TlCl)

Precipita TlCl.

Page 16: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Gli ioni sodio e nitrato sono “ioni spettatori”. F- è l’agente limitante della reazione di

precipitazione di SrF2(s). Pertanto:

EsEs.. 33: Calcolare le concentrazioni finali degli ioni presenti in una soluzione ottenuta

mescolando 1,50×10-2 moli di Sr(NO3)2 e 3,0×10-3 moli di NaF in una quantità

d’acqua tale che il volume finale sia pari a 0,200 L, nota Kps(SrF2) = 7,9×10-10 M3.

Ione Moli iniziali Variazione

per precip

Moli dopo

precip

Moli dopo dissoluz. Concentrazione, M

Sr2+(aq) + 2 F-(aq) ⇄ SrF2(s)

per precip precip

Sr2+ 0,0150 - 0,0015 0,0135 0,0135+x/2(*) 0,068

NO3- 0,0300 nessuna 0,0300 0,0300 0,150

Na+ 0,0030 nessuna 0,0030 0,0030 0,015

F- 0,0030 - 0,0030 - x [F-]

Kps = 7,9 × 10-10 = [Sr2+] [F-]2 = (0,0675) × [F-]2

[F-] = [(7,9 × 10-10)/(6,75 × 10-2)]1/2 = (1,17 × 10-8)1/2 = 1,08 × 10-4 M

(*) Trascuro, in prima approssimazione, x.

Page 17: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 44: Si supponga di mescolare 25,0 mL di BaCl2 0,012 M con 50,0 mL di Ag2SO4

0,010 M. Calcolare la concentrazione finale degli ioni in soluzione, sapendo che

Kps(AgCl) = 1,7×10-10 M2 e Kps(BaSO4) = 1,5×10-9 M2.

Ag+(aq) + Cl-(aq) ⇄ AgCl(s) Ba2+(aq) + SO42-(aq) ⇄ BaSO4(s)

mmol(Ba2+) = 0,012 × 25 = 0,3 mmol

mmol(Cl-) = 2 × 0,012 × 25 = 0,6 mmol

mmol(Ag+) = 2 × 0,010 × 50 = 1,0 mmol

Ione mmol

iniziali

Variazione

per precip

mmol

dopo precip

mmol

dopo dissoluz.

Concentrazione, M

Ba2+ 0,3 -0,3 0 x [Ba2+]

Cl- 0,6 -0,6 0 y [Cl-]

Ag+ 1,0 -0,6 0,4 0,4+y(*) 5,3×10-3

SO42- 0,5 -0,3 0,2 0,2+x(*) 2,7×10-3

mmol(Ag ) = 2 × 0,010 × 50 = 1,0 mmol

mmol(SO42-) = 0,010 × 50 = 0,5 mmol

(*) Trascuro, in prima approssimazione, x e y.

Page 18: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Kps(BaSO4) = 1,5×10-9 = [Ba2+] [SO42-] = [Ba2+] × 2,7×10-3

[Ba2+] = 1,5×10-9 × 2,7×103 = 4,1×10-6 M

Kps(AgCl) = 1,7×10-10 = [Ag+] [Cl-] = [Cl-] × 5,3×10-3

[Cl-] = 1,5×10-9 × 5,3×103 = 8,0×10-6 M

Page 19: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 55: Una soluzione è ottenuta mescolando 0,10 L di NaCl 0,12 M, 0,20 L di NaBr

0,14 M e 0,30 L di AgNO3 0,10 M. Calcolare le concentrazioni degli ioni in soluzione,

noti Kps(AgCl) = 1,7×10-10 M2; Kps(AgBr) = 5,0×10-13 M2.

mol(Ag+) = mol(NO3-) = 0,30 × 0,10 = 0,030 mol

mol(Na+) = mol(Cl-) = 0,10 × 0,12 = 0,012 mol

mol(Na+) = mol(Br-) = 0,20 × 0,14 = 0,028 mol

moli(Na+)TOT = 0,012 + 0,028 = 0,040 mol

Lo ione nitrato e lo ione sodio sono “ioni spettatori”.

Lo ione argento è coinvolto in due equilibri: poiché Kps(AgBr) < Kps(AgCl), AgBr

precipita per primo. Lo ione bromuro è l’agente limitante e si consuma

completamente a dare 0,028 moli di AgBr. Restano 0,030 – 0,028 = 0,002 moli di

Ag+.

Le 0,002 moli di Ag+ restanti reagiscono con Cl- per dare 0,002 moli di AgCl. restano

0,012 – 0,002 = 0,010 di Cl-.

Page 20: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Ione Moli

Iniziali

Variazione

dopo precip

Moli

dopo precip

Moli

dopo dissoluz

Concentrazione, M

Ag+ 0,030 - 0,030 0 x+y [Ag+]

NO3- 0,030 nessuna 0,030 0,030 0,050

Na+ 0,040 nessuna 0,040 0,040 0,067

Br- 0,028 - 0,028 0 x [Br-]

Cl- 0,012 0,002 0,010Cl- 0,012 0,002 0,010 0,010+y(*) 0,017

[Ag+] = Kps(AgCl)/[Cl-] = 1,7×10-10/ 1,7×10-2 = 1,0×10-8M

Conoscendo la concentrazione di Ag+ possiamo calcolare quella di Br-:

[Br-] = Kps(AgCl)/[Ag+] = 5,0×10-13/1,0×10-8 = 5,0×10-5 M

(*) Trascuro, in prima approssimazione, y.

Page 21: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Ioni Complessi

Si definiscono complessi quei composti in cui uno ione metallico (Mn+) è legato (o

coordinato) a un numero di molecole o di ioni mono- o poliatomici (detti leganti,

spesso simboleggiati con L) in numero superiore allo stato di ossidazione dello ione

metallico. In modo del tutto generico, la formula di un complesso è del tipo [MLm]x+.

Il legame tra lo ione metallico e il legante è di tipo covalente, ed è più correttamente

descrivibile come un legame dativo, ove il legante mette in compartecipazione un

doppietto elettronico. È un interazione acido-base di Lewis.

Vediamo qualche esempio:Vediamo qualche esempio:

Al(OH)3: Al(III), 3 OH- NON è un complesso: triidrossido di alluminio

[Al(OH)4]-: Al(III), 4 OH- È un complesso: tetraidrossoalluminato

FeCl3: Fe(III), 3 Cl- NON è un complesso: tricloruro di ferro

[FeCl6]3-: Fe(III), 6 Cl- È un complesso: esacloroferrato

[Ag(NH3)2]+: Ag(I), 2 NH3 È un complesso: diamminoargento(I)

[Cu(NH3)4]2+: Cu(II), 4 NH3 È un complesso: tetramminorame(II)

Page 22: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

La geometria descritta dai leganti attorno al centro metallico dipende dal numero di

leganti, ovvero:

2 leganti: geometria lineare

3 leganti: geometria trigonale planare

4 leganti: geometria tetraedrica o planare quadrata

5 leganti: geometria bipiramidale trigonale

6 leganti: geometria ottaedrica

Vediamo qualche esempio:

[FeCl6]3-: geometria ottaedrica

[Ag(NH3)2]+: geometria lineare

[Cu(NH3)4]2+: geometria planare quadrata (nei corsi futuri comprenderete il perché)

Page 23: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

La reazione di formazione dei complessi è una reazione all’equilibrio, del tipo:

A cui è associata la costante di formazione (o di stabilità)

Kf = [MLm]x+/[Mn+][L]m

Generalmente, le costanti di formazione sono alte.

Posso definire delle costanti di formazione parziali:

M + L ⇄ [ML] K1

Mn+ + m L [MLm]x+

⇄ 1

[ML] + L ⇄ [ML2] K2

…..

[MLn-1] + L ⇄ [MLm] Km

Kf = K1 × K2 × … × Km

All’equilibrio inverso [MLm]x+ ⇄ Mn+ + m L

Si associa la costante di dissociazione (o instabilità)

Kd = 1/Kf = [Mn+][L]m / [MLm]

x+

Page 24: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 11: Una soluzione è 0,1 M in ammoniaca. Calcolare la concentrazione

dell’ammoniaca all’equilibrio quando si aggiungono 10-2 moli di nitrato di argento

(AgNO3), sapendo che Kf di [Ag(NH3)2]+ = 1020 M-2.

In 1 L di soluzione, ho 10-2 moli di Ag+ e 0,1 moli di NH3. Ag+ è l’agente limitante:

Ag+ + 2 NH3 ⇄ [Ag(NH3)2]+

Ag+ NH3 [Ag(NH3)2]+

Stato iniziale 0,01 0,1 -

Variazione per complessazione -0,01 -0,02 +0,01Variazione per complessazione -0,01 -0,02 +0,01

Dopo complessazione 0 0,08 0,01

Variazione per decomplessazione +x +2x -x

Dopo decomplessazione x 0,08+2x(*) 0,01-x(*)

Kf = [Ag(NH3)2]+/([NH3]

2 × [Ag+])

1020 = 0,01/((0,08)2 × x)

x = [Ag+] = 0,01/((0,08)2 × 1020) = 1,56×10-20 M

Praticamente tutto lo ione Ag(I) viene complessato.

(*) Trascuro, in prima approssimazione, x.

Page 25: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 22: Una soluzione è 0,02 M in Cu(II). Calcolare la concentrazione di tale ione

quando, a 1 L di tale soluzione si aggiunge 1 L di ammoniaca 10-1 M, sapendo che Kf

di [Cu(NH3)4]2+ = 1016 M-4.

In 1 L di soluzione, ho 0,02 moli di Cu2+ e 0,1 moli di NH3. Cu2+ è l’agente limitante:

Cu2+ + 4 NH3 ⇄ [Cu(NH3)4]2+

Cu2+ NH3 [Cu(NH3)4]2+

Stato iniziale 0,02 0,1 -

Variazione per complessazione -0,02 -0,02 +0,02

Dopo complessazione 0 0,02 0,02

Variazione per decomplessazione +x +4x -x

Dopo decomplessazione x 0,02+4x(*) 0,02-x(*)

Kf = [Cu(NH3)4]2+/([NH3]

4 × x)

1016 = 0,02/((0,02)4 × x)

x = [Cu2+] = 0,02/((0,02)6 × 1016) = 10-10 M

(*) Trascuro, in prima approssimazione, x.

Page 26: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 33: Dato 1 L di una soluzione 0,01 M in Cu(II), calcolare quanta ammoniaca devo

aggiungere perché la concentrazione dello ione Cu(II) diminuisca sino a 10-6 M,

sapendo che Kf di [Cu(NH3)4]2+ = 1016 M-4.

Cu2+ + 4 NH3 ⇄ [Cu(NH3)4]2+

Cu2+ NH3 [Cu(NH3)4]2+

Moli iniziali 0,01 x -

Variazione per complessazione -0,01 -0,04 +0,01

Moli dopo complessazione 10-6 x-0,04 0,01

Concentrazione finale, M 10-6 x-0,04 0,01

Kf = [Cu(NH3)4]2+/([NH3]

4 × [Cu2+])

1016 = 0,01/((x-0,04)4 × 10-6)

(x-0,04)4 = 10-2/(1016 × 10-6) = 10-2 / 1010

(x-0,04)4 = 10-12

x -0,04 = 10-3

x = 0,041

(*) Trascuro, in prima approssimazione, x.

Page 27: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 44:: Una soluzione è 2,0×10-2 M in nitrato di zinco (ZnNO3) e 8,4×10-2 M in

ammoniaca. Calcolare la concentrazione dello ione Zn(II) all’equilibrio, sapendo che

Kf di [Zn(NH3)4]+ = 2,9×109 M-4.

In 1 L di soluzione, ho 2,0 × 10-2 moli di Zn2+ e 8,4 × 10-2 moli di NH3. Zn2+ è l’agente

limitante e si consuma tutto, a dare 2,0 × 10-2 moli di complesso:

Zn2+ + 4 NH3 ⇄ [Zn(NH3)4]2+

Zn2+ NH3 [Zn(NH3)4]2+

Moli iniziali 0,020 0,084 -

Kf = [Zn(NH3)4+]/[Zn2+][NH3]

4

2,9×109 = 0,020 / x × (0,004)4

x = 2,0×10-2 × 2,9×10-9 / 4×10-12 = 5,8×10-11/ 256×10-12 = 0,023 mol

Moli iniziali 0,020 0,084 -

Variazione per complessazione -0,020 -0,080 +0,020

Moli dopo complessazione - 0,004 0,020

Variazione per decomplessazione +x +4x -x

Moli dopo decomplessazione x 0,004+4x(*) 0,020-x(*)(*) Trascuro, in prima approssimazione, x.

Page 28: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 55:: Determinare la frazione di ferro(III) presente in una soluzione inizialmente

0,10 M di Fe3+ e 1,0 M di SCN-, sapendo che Kf([Fe(SCN)2]+) = 2,3×103 M-2.

Fe3+ SCN- [Fe(SCN)2]+

Moli iniziali 0,1 1,0 -

In 1 L di soluzione, ho 0,1 moli di Fe3+ e 1,0 moli di SCN-. Fe3+ è l’agente limitante e

si consuma tutto, a dare 0,1 moli di complesso:

Fe3+ + 2 SCN- ⇄ [Fe(SCN)2]+

Variazione per complessazione -0,1 -0,2 +0,1

Moli dopo complessazione - 0,8 0,1

Variazione per decomplessazione +x +2x -x

Moli dopo complessazione x 0,8+2x(*) 0,1-x(*)

Kf = 2,3×103 = [Fe(SCN)2+]/[Fe3+][SCN-]2 = (0,1)/ x × (0,8)2

x = 10-1 × 2,3×10-3 / 6,4×10-1

x = [Fe3+] = 3,6×10-4 M (*) Trascuro, in prima approssimazione, x.

Page 29: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EsEs.. 66:: Vengono mescolati 120 mL di una soluzione 0,150 M di cianuro di potassio

(KCN) con 270 mL di una soluzione 0,014 M di nitrato di nickel(II) (Ni(NO3)2).

Calcolare la concentrazione di nickel(II), sapendo che Kf = 1,0×1031 M-4.

Ni2+ + 4 CN- ⇄ [Ni(CN)4]2-

mmol(CN-) = 0,150 × 120 = 18,0 mmol

mmol(Ni2+) = 0,014 × 270 = 3,78 mmol

Ni2+ CN- [Ni(CN)4]2-

mmol iniziali 3,78 18,0 -mmol iniziali 3,78 18,0 -

Variazione per complessazione -3,78 -15,12 +3,78

mmol dopo complessazione 0 2,88 3,78

Variazione per decomplessazione +x +4x(*) -x(*)

Concentrazione, M y 0,007 0,010

Kf = 1,0×1031 = [Ni(SCN)42-]/[Ni2+][CN-]4 = (0,010)/ y × (0,007)4

y = 10-2 × 10-31 / 2401×10-12

y = [Ni2+] = 4,2×10-25 M (*) Trascuro, in prima approssimazione, x.

Page 30: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EE..gg.. 11: Calcolare la solubilità del fluoruro di magnesio (MgF2) a) in acqua pura e b)

in una soluzione 0,50 M di fluoruro di sodio (NaF), sapendo che Kps(MgF2) =

7,42×10-11 M3.

MgF2(s) ⇄ Mg2+(aq) + 2 F-(aq)

a) In acqua pura:

Kps(MgF2) = 7,42×10-11 = [Mg2+] × [F-]2 = [Mg2+]3

s(MgF2) = [Mg2+] = (Kps)1/3 = 7,42×10-3,7 Mps

b) In soluzione acquosa 0,50 M di fluoruro di sodio:

Kps = 7,42×10-11 = [Mg2+] ([F-]MgF2 + [F-]NaF)2

[F-]MgF2 = 2 × [Mg2+] = 1,48×10-6,5 M

[F-]NaF = 0,5 M

[F-]MgF2 è, in prima approssimazione, trascurabile.

s(MgF2) = [Mg2+] = Kps / (5,0×10-1 )2 = 7,42×10-11 / 5,0×10-2 = 1,48×10-9 M

Page 31: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EE..gg.. 22: Calcolare la solubilità di Hg2Cl2 a) in acqua pura e b) in soluzione acquosa

di HCl a pH 3,0 sapendo che Kps(Hg2Cl2) = 1,45×10-18 M4.

Hg2Cl2(s) ⇄ Hg22+

(aq) + 2 Cl-(aq)

a) In acqua pura:

Kps(Hg2Cl2) = 1,45×10-18 = [Hg2

2+] × [Cl-]2 = [Hg22+]3

s(Hg2Cl2) = [Hg22+] = (Kps)

1/3 = 1,45×10-6 M2 2 2 ps

b) In soluzione acquosa di HCl a pH 3:

Kps = 1,45×10-18 = [Hg22+] × [([Cl-]Hg2Cl2 + [Cl-]HCl)

2

[Cl-]Hg2Cl2 = 2 × [Hg22+] = 2,90×10-6 M

[Cl-]HCl = [H3O+] = 10-pH = 10-3 M

[Cl-]Hg2Cl2 è, in prima approssimazione, trascurabile.

s(Hg2Cl2) = [Hg22+] = Kps/(10

-3)2 = 1,45×10-18/10-6 = 1,45×10-12 M

Page 32: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

EE..gg.. 33: Calcolare la concentrazione degli ioni argento(I) e cromato presenti in una

soluzione acquosa satura di cromato di argento, sapendo che Kps(Ag2CrO4) = 1,3×10-

12M2.

Ag2CrO4(s) ⇄ 2 Ag+(aq) + CrO42-(aq)

Kps(Ag2CrO4) = 1,3×10-12 = [CrO4

2-] × [Ag+]2 = x × (2x) 2

x = (1,3×10-12 /4)1/3 = 6,9×10-5

[CrO42-] = 6,9×10-5 M

[Ag+] = 2 × 6,9×10-5 M = 1,4×10-4 M

EE..gg.. 44: Calcolare la massa di ioni Mg2+ che restano in soluzione dopo aver

aggiunto, a 50 mL di una soluzione acquosa 0,2 M di solfato di magnesio, 60 mL di

una soluzione acquosa 0,2 M di ossalato di sodio, sapendo che Kps(MgC2O4) =

8,6×10-5M2.

Page 33: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Gli ioni sodio e solfato sono ioni spettatori.

[Mg2+]new = n(Mg2+)/Vsoluz = M(MgSO4)×V(MgSO4)/Vsoluz = 50×0,2/110 = 9,1×10-2 M

[C2O42-] new = n(C2O4

2-)/Vsoluz = M(Na2C2O4)×V(Na2C2O4)/Vsoluz = 60×0,2/110 =

1,1×10-1 M

Qps = [Mg2+]new × [C2O42-] new = 9,1×10

-2 × 1,1×10-1 = 10,01×10-1 > KpsQps = [Mg2+]new × [C2O42-] new = 9,1×10

-2 × 1,1×10-1 = 10,01×10-1 > Kps

Precipita ossalato di magnesio:

Mg2+(aq) + C2O42-(aq) → MgC2O4(s)

Dopo la precipitazione, si instaura l’equilibrio di dissoluzione:

MgC2O4(s) ⇄ Mg2+(aq) + C2O42-(aq)

Page 34: Equilibri di Solubilità(in Acqua) SALI SOLUBILIscienze-como.uninsubria.it/sgalli/Chimica_Generale_B/Stechiometria/Cap6_CGB_14.pdf · Equilibri di Solubilità(in Acqua) SALI SOLUBILI:

Mg2+ C2O42-

mmol iniziali 10 12

Variazione per precipitazione -10 -10

mmol dopo precipitazione - 2

Variazione per dissoluzione +x +x

mmol finali x 2 + x

Concentrazione finale, M x/110 (2 + x)/110Concentrazione finale, M x/110 (2 + x)/110

Kps = 1,3×10-12 = [Mg2+]fin × [C2O4

2-]fin = x(2 + x)/1102

x = 8,6×10-5

[Mg2+]fin = 8,6×10-5 /110 M