ESO ALMA, EVLA, and the Origin of Galaxies (Dense Gas History of the Universe) Chris Carilli (NRAO) Bonn, Germany, September 2010 The power of radio astronomy:

Download ESO ALMA, EVLA, and the Origin of Galaxies (Dense Gas History of the Universe) Chris Carilli (NRAO) Bonn, Germany, September 2010 The power of radio astronomy:

Post on 13-Jan-2016




0 download

Embed Size (px)


<ul><li><p>ESOALMA, EVLA, and the Origin of Galaxies(Dense Gas History of the Universe)Chris Carilli (NRAO)Bonn, Germany, September 2010 The power of radio astronomy: dust, cool gas, and star formation</p><p> Current State-of-Art z ~ 6: Quasar host galaxies = early formation of massive galaxies and SMBH z ~ 1 to 3: Normal galaxy formation during the epoch of galaxy assembly = probing the Gas Rich Universe </p><p> Bright (near!) future: The Atacama Large Millimeter Array (and CCAT!) and Expanded Very Large Array recent example!</p><p>Thanks: Wang, Riechers, Walter, Fan, Bertoldi, Menten, Cox, Daddi, Schinnerer, Pannella, Aravena, Smolcic, Neri, Dannerbauer</p></li><li><p>Star formation history of the Universe (mostly optical view) epoch of galaxy assembly~50% of present day stellar mass produced between z~1 to 3Bouwens + First light + cosmic reionization </p></li><li><p>Star formation as function of stellar masstH-1active star formationred and deadZheng ea Downsizing: Massive galaxies form most of stars quickly, at high z(see also: stellar pop. synthesis at low z; evolved galaxies at z ~1 to 2)specific SFR = SFR/M* ~ e-folding time-1</p></li><li><p>Optical Limitation 1: DustBouwens + </p></li><li><p>Optical Limitation 2: Cold gas = fuel for star formation (The missing half of galaxy formation)Low z spiralsIntegrated Kennicutt-Schmidt star formation law: relate SFR and gas content of galaxiesPower-law index = 1.5SFRMgas</p></li><li><p>Millimeter through centimeter astronomy: unveiling the cold, obscured universe cm/mm reveal the dust-obscured, earliest, most active phases of star formation in galaxies cm/mm reveal the cool gas that fuels star formationHST/CO/SUBMMCOWilson et al.CO image of Antennae merging galaxiesGN20 z=4 submm galaxy</p></li><li><p>Radio FIR: obscuration-free estimate of massive star formation Radio: SFR = 1x10-21 L1.4 W/Hz FIR: SFR = 3x10-10 LFIR (Lo)</p></li><li><p>Spectral linesMolecular rotational linesAtomic fine structure linesz=0.2z=4cmsubmmMolecular gas CO = total gas mass tracer M(H2) = L(CO(1-0)) Velocities =&gt; dyn. mass Gas excitation =&gt; ISM physics (densities, temperatures) Astrochemistry/biology, eg. dense gas tracers (HCN) directly associated with star formation (Smail, van Dishoeck) Gas supply: smooth accretion or major gas rich mergers?</p></li><li><p>Fine Structure lines[CII] 158um (2P3/2 - 2P1/2) Principal ISM gas coolant: photo-electric heating by dust Traces star forming regions and the CNM [CII] most luminous line from meter to FIR, up to 1% Lgal Herschel: revolutionary look at FSL in nearby Universe AGN/star formation diagnostics (Hailey-Dunsheath)[CII] CO[OI] 63um [CII][OIII] 88um [CII][OIII]/[CII]Cormier et al.Fixsen et al. </p></li><li><p>Plateau de Bure InterferometerHigh res imaging at 90 to 230 GHz rms &lt; 0.1mJy, res &lt; 0.530 field at 250 GHz rms &lt; 0.3 mJyVery Large Array 30 field at 1.4 GHzrms&lt; 10uJy, 1 res</p><p>High res imaging at 20 to 50 GHzrms &lt; 0.1 mJy, res &lt; 0.2Powerful suite of existing cm/mm facilitesFirst glimpses into early galaxy formation</p></li><li><p> Theme I: Massive galaxy and SMBH formation at z~6 Quasar hosts at tuniv4: &gt; 1000 known z&gt;5: &gt; 100 z&gt;6: 20 Spectroscopic redshifts Extreme (massive) systems: Lbol ~1014 Lo=&gt; MBH~ 109 Mo =&gt; Mbulge ~ 1012 Mo Downsizing: study of very early massive galaxy formation intrinsically interesting1148+5251 z=6.42SDSSApache Point NM</p></li><li><p> LFIR ~ 0.3 to 1.3 x1013 Lo (~ 1000xMilky Way) Mdust ~ 1.5 to 5.5 x108 Mo Dust formation at tuniv2 quasars have S250 &gt; 2mJy Wang sample 33 z&gt;5.7 quasarsMAMBO 30m 250GHz surveys</p></li><li><p>Dust heating? Radio to near-IR SEDTD = 47 K FIR excess = 47K dust SED consistent with star forming galaxy:SFR ~ 400 to 2000 Mo yr-1 Radio-FIR correlationlow z SEDTD ~ 1000KStar formation?AGN</p></li><li><p>Fuel for star formation? Molecular gas: 8 CO detections at z ~ 6 with PdBI, VLA M(H2) ~ 0.7 to 3 x1010 (/0.8) Mo v = 200 to 800 km/s Accurate host galaxy redshifts1mJy</p></li><li><p> CO excitation: Dense, warm gas, thermally excited to 6-5 LVG model =&gt; Tk &gt; 50K, nH2 = 2x104 cm-3 Galactic Molecular Clouds (50pc): nH2~ 102 to 103 cm-3 GMC star forming cores (1pc): nH2~ 104 cm-3Milky Waystarburst nucleus230GHz691GHz(Papadopoulos, Smail)</p></li><li><p>LFIR vs L(CO): Star Formation LawIndex=1.51e11 Mo1e3 Mo/yr</p><p> Further circumstantial evidence for star formation </p><p> Gas consumption time (Mgas/SFR) decreases with SFRFIR ~ 1010 Lo/yr =&gt; tc &gt; 108yrFIR ~ 1013 Lo/yr =&gt; tc &lt; 107yrSFRMgasMW</p></li><li><p> Size ~ 6 kpc, with two peaks ~ 2kpc separation Dynamical mass (r &lt; 3kpc) ~ 6 x1010 Mo M(H2)/Mdyn ~ 0.3Imaging =&gt; dynamics =&gt; weighing the first galaxiesz=6.42-150 km/s+150 km/s7kpc1 ~ 5.5kpcCO3-2 VLA+0.15 TB ~ 25KPdBI </p></li><li><p>Break-down of MBH Mbulge relation at very high zz&gt;4 QSO COz4 =&gt; Black holes form first? (Maiolino)Causal connection between galaxy and SMBH formation</p><p> At high z, CO only method to derive Mbulge</p></li><li><p>For z&gt;6 =&gt; redshifts to 250GHz =&gt; Bure! (Knudsen)Fine Structure Lines: [CII]158um search in z &gt; 6.2 quasars L[CII] = 4x109 Lo (L[NII] &lt; 0.1L[CII] )S250GHz = 5.5mJyS[CII] = 12mJy S[CII] = 3mJy S250GHz &lt; 1mJy=&gt; dont pre-select on dust</p></li><li><p>1148+5251 z=6.42:Maximal star forming disk [CII] size ~ 1.5 kpc =&gt; SFR/area ~ 1000 Mo yr-1 kpc-2 Maximal starburst (Thompson, Quataert, Murray 2005) Self-gravitating gas and dust disk Vertical disk support by radiation pressure on dust grains Eddington limited SFR/area ~ 1000 Mo yr-1 kpc-2 eg. Arp 220 on 100pc scale, Orion SF cloud cores &lt; 1pc PdBI 250GHz 0.25res</p></li><li><p> 11 in mm continuum =&gt; Mdust ~ 108 Mo: Dust formation in SNe? 10 at 1.4 GHz continuum: Radio to FIR SED =&gt; SFR ~ 1000 Mo/yr 8 in CO =&gt; Mgas ~ 1010 Mo = Fuel for star formation in galaxies High excitation ~ starburst nuclei, but on kpc-scales Follow star formation law (LFIR vs LCO): tc ~ 107 yr Departure from MBH Mbulge at z~6: BH form first? 3 in [CII] =&gt; maximal star forming disk: 1000 Mo yr-1 kpc-2J1425+3254 CO at z = 5.9Theme I summary: cm/mm observations of 33 quasars at z~6 only direct probe of the host galaxiesEVLA160uJy</p></li><li><p>Building a giant elliptical galaxy + SMBH at tuniv&lt; 1Gyr (extreme downsizing) Multi-scale simulation isolating most massive halo in 3 Gpc3 Stellar mass ~ 1e12 Mo forms in series (7) of major, gas rich mergers from z~14, with SFR 1e3 Mo/yr SMBH of ~ 2e9 Mo forms via Eddington-limited accretion + mergers Evolves into giant elliptical galaxy in massive cluster (3e15 Mo) by z=06.510 Rapid enrichment of metals, dust in ISM Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky Goal: push to normal galaxies at high redshiftLi, Hernquist et al. Li, Hernquist+</p></li><li><p>HSTTheme II: Normal star forming galaxies during epoch of galaxy assembly (sBzK at z ~ 2) color-color diagrams identify thousands of z~ 2 star forming galaxies near-IR selected =&gt; stellar mass limited sample: M* ~ 1010 to 1011Mo Common ~ few x10-4 Mpc-3 (5 arcmin-2) HST imaging =&gt; disk sizes ~ 1 ~ 8kpc, punctuated by massive star forming regions</p></li><li><p> = 96 Mo yr-1 [FIR ~ 3e11 Lo] VLA size ~ 1 ~ HSTUnbiased star formation rates in z~2 sBzKVLA 1.4GHz stacking: 30,000 in COSMOSCOSMOS 2 deg2 Deep Field (Scoville ea) Approaching SDSS volume at z &gt; 1 2e6 galaxies from z~ 0 to 7 (Decarli)</p></li><li><p> SFR ~ independent of blue magnitude SFR increases with B-z =&gt; dust extinction increases with SFR (or M*) SFR increases with stellar massStacking in bins of 30001010 Mo3x1011 Mo</p></li><li><p>Dawn of Downsizing: SFR/M* vs. M* (Karim)5xtH-1 (z=1.8)z=0.31.4GHz SSFRz=1.5z=2.1UV SSFR SSFR constant with M*, unlike z pre-downsizing ~ constant efolding time z&gt;1.5 sBzK well above the red and dead galaxy line =&gt; even large growing exponentially UV dust correction = f(SFR, M*) [factor 5 at 2e10 Mo ~ LBG (Shapely+ 01)]</p></li><li><p>CO observations with Bure: Massive gas reservoirs without extreme starbursts (Daddi ea 2009) 6 of 6 sBzK detected in CO Gas mass ~ 1011 Mo ~ gas masses in high z HyLIRGbut SFR &lt; 10% HyLIRG Gas masses stellar masses =&gt; pushed back to epoch when galaxies are gas dominated!</p></li><li><p> Lower CO excitation: low J observations are key! FIR/LCO: Gas consumption timescales &gt;= few x108 yrsHyLIRGCloser to Milky Way-type gas conditions (Dannerbauer)11.5</p></li><li><p>Summary Theme II: Probing the Gas Rich Universe = Gas dominated, normal galaxy formation at z ~2 SSFR constant with M*: pre-downsizing Well above red + dead curve up to 1011 M* Gas masses ~ 1011 Mo stellar masses Gas consumption time &gt; few x108 yrs</p><p>Secular (spiral) galaxy formation during epoch of galaxy assemblyGreat promise for ALMA + EVLA!Genzel + 08</p></li><li><p>What is the EVLA? similar ten-fold improvement in most areas of cm astronomyfrequencies = 1 to 50 GHz8 GHz BW =&gt; 80x oldres = 40mas res at 43GHzrms = 6uJy in 1hr at 30GHzWhat is ALMA? Tenfold improvement (or more), in all areas of (sub)mm astronomy, including resolution, sensitivity, and frequency coverage. antennas: 54x12m, 12x7m antennasfrequencies: 80 GHz to 720 GHzres = 20mas res at 700 GHzrms = 13uJy in 1hr at 230GHzALMA+EVLA ~ Order magnitude improvement from 1GHz to 1 THz!(Testi)</p></li><li><p>(sub)mm: dust, high order molecular lines, fine structure lines -- ISM physics, dynamicscm telescopes: star formation, low order molecular transitions -- total gas mass, dense gas tracers100 Mo yr-1 at z=5Pushing to normal galaxiesEVLA 1.4 GHz continuum: thousands of sBzK galaxies </p></li><li><p>ALMA and first galaxies: [CII] 100Mo/yr10Mo/yrALMA redshift machine: [CII] in z&gt;7 dropouts</p></li><li><p>Wide bandwidth spectroscopy ALMA: Detect multiple lines, molecules per 8GHz band = real astrochemistry EVLA 30 to 38 GHz (CO2-1 at z=5.0 to 6.7) =&gt; large cosmic volume searches for molecular gas (1 beam = 104 cMpc3) w/o need for optical redshiftsJ1148+52 at z=6.4 in 24hrs with ALMA </p></li><li><p>ALMA StatusAntennas, receivers, correlator in production: best submm receivers and antennas ever!Site construction well under way: Observation Support Facility, Array Operations Site, 5 Antenna interferometry at high site! Early science call Q1 2011EVLA StatusAntenna retrofits 70% complete (100% at 18GHz).Early science in March 2010 using new correlator (2GHz) Full receiver complement completed 2012 + 8GHz5 antennas on high site</p></li><li><p>GN20 molecule-rich proto-cluster at z=4CO 2-1 in 3 submm galaxies, all in 256 MHz band4.051z=4.0554.0560.4mJy1000 km/s0.3mJy SFR ~ 103 Mo/year Mgas ~ 1011 Mo Early, clustered massive galaxy formation+250 km/s-250 km/s</p></li><li><p>Dense gas history of the Universe Tracing the fuel for galaxy formation over cosmic timeMillennium Simulations Obreschkow &amp; RawlingsSF LawPrimary goal for studies of galaxy formation in next decade!SFRMgas</p></li><li><p>EVLA/ALMA Deep fields: themissing half of galaxy formation Volume (EVLA, z=2 to 2.8) = 1.4e5 cMpc3 1000 galaxies z=0.2 to 6.7 in CO with M(H2) &gt; 1010 Mo 100 in [CII] z ~ 6.5 5000 in dust continuumMillennium Simulations Obreschkow &amp; Rawlings</p></li><li><p>ESOEND</p></li><li><p>CCAT: wide field finder surveys</p></li><li><p>*****************************If one placed CO 6-5 in the LSB, one would get the 211-202 line of H2O and the 7-6 line of 13CO, in addition to several H2CO lines, in the USB.***</p></li></ul>