esrm410 forest soils & site productivity

75
Fall River 5-y NContents ESRM410 Forest Soils & Site Productivity oil Nutrients, Uptake, Productivity, BioGeoChemistr Rob Harrison

Upload: jadon

Post on 19-Jan-2016

77 views

Category:

Documents


14 download

DESCRIPTION

ESRM410 Forest Soils & Site Productivity Soil Nutrients, Uptake, Productivity, BioGeoChemistry Rob Harrison. http://soilslab.cfr.washington.edu/esrm410/Soil&Nutrients.ppt. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ESRM410                    Forest Soils & Site Productivity

Fall River5-y N Contents ESRM410 Forest Soils & Site Productivity

Soil Nutrients, Uptake, Productivity, BioGeoChemistry

Rob Harrison

Page 2: ESRM410                    Forest Soils & Site Productivity

http://soilslab.cfr.washington.edu/esrm410/Soil&Nutrients.pptT

ree

grow

th (

heig

ht, d

iam

eter

, mas

s, v

olum

e, C

, etc

.)

Time

Page 3: ESRM410                    Forest Soils & Site Productivity

http://soilslab.cfr.washington.edu/esrm410/Soil&Nutrients.pptT

ree

grow

th (

heig

ht, d

iam

eter

, mas

s, v

olum

e, C

, etc

.)

Time

Page 4: ESRM410                    Forest Soils & Site Productivity

Tre

e gr

owth

Time

awesome

good

poor

Page 5: ESRM410                    Forest Soils & Site Productivity

Tre

e gr

owth

Time

150

100

50

Site Index DNR site

1

3

5

Page 6: ESRM410                    Forest Soils & Site Productivity

For Western Washington, the 50 year site index is used

SITECLASS SITE INDEX RANGE I 137+ II 119-136 III 97-118 IV 76-96 V 1-75

For Eastern Washington, the 100 year site index is used

SITECLASS SITE INDEX RANGE I 120+ II 101-120 III 81-100 IV 61-80 V 1-60

Page 7: ESRM410                    Forest Soils & Site Productivity

Soil provides (or doesn’t):

1) physical support2) air, CO2 to green, O2 to roots3) water4) temperature moderation5) protection from toxins (buffering)6) nutrient elements

Often not included:Home for plant-beneficial organisms (mutualists)

Page 8: ESRM410                    Forest Soils & Site Productivity

A typical elemental content life of granitic soil development

Page 9: ESRM410                    Forest Soils & Site Productivity
Page 10: ESRM410                    Forest Soils & Site Productivity
Page 11: ESRM410                    Forest Soils & Site Productivity
Page 12: ESRM410                    Forest Soils & Site Productivity
Page 13: ESRM410                    Forest Soils & Site Productivity
Page 14: ESRM410                    Forest Soils & Site Productivity

C H O P K N S Mg Ca Fe B Mn Cu Zn Mo Cl Co Si F

"see Hopkins mighty good Café by my Cousin Moe Clyde's Company. Silly Face.

Atmos

pheri

c

Mac

ronu

trien

ts

Secon

dary

Micr

onutr

ients

Page 15: ESRM410                    Forest Soils & Site Productivity
Page 16: ESRM410                    Forest Soils & Site Productivity
Page 17: ESRM410                    Forest Soils & Site Productivity
Page 18: ESRM410                    Forest Soils & Site Productivity
Page 19: ESRM410                    Forest Soils & Site Productivity
Page 20: ESRM410                    Forest Soils & Site Productivity
Page 21: ESRM410                    Forest Soils & Site Productivity
Page 22: ESRM410                    Forest Soils & Site Productivity
Page 23: ESRM410                    Forest Soils & Site Productivity
Page 24: ESRM410                    Forest Soils & Site Productivity
Page 25: ESRM410                    Forest Soils & Site Productivity
Page 26: ESRM410                    Forest Soils & Site Productivity

Ideal for Field trip reports and what-ifs:  1) make a table to compare what you saw, compare and contrast different ecosystems, by place, age, treatment, etc.  2) speculate a bit, particulary in what might happen in the future in stands you saw, and try and support your speculation with data you found from somewhere else.  3) Is a change noted in a system due to a treatment inherently bad for productivity?

Page 27: ESRM410                    Forest Soils & Site Productivity

Soil Science Society of America Journal, 1996

Page 28: ESRM410                    Forest Soils & Site Productivity
Page 29: ESRM410                    Forest Soils & Site Productivity
Page 30: ESRM410                    Forest Soils & Site Productivity
Page 31: ESRM410                    Forest Soils & Site Productivity
Page 32: ESRM410                    Forest Soils & Site Productivity

http://soilslab.cfr.washington.edu/ESRM410/WhatIf3/

What If? Scenario 3.

Imagine you are working with a "gene splicer" that can introduce different types of N-fixers into your favorite tree species, Douglas-fir. There are two levels of N fixation available, a high level "A" and half that "B". Also, it is possible to have the Douglas-fir "shut down" N fixation after enough N builds up that it is no longer limiting the growth of the Douglas-fir, or to continue to have it fix N indefinitely, yielding scenarios of A1, A2, B1 and B2 (Fig. 1).

Page 33: ESRM410                    Forest Soils & Site Productivity
Page 34: ESRM410                    Forest Soils & Site Productivity

Consider that all four scenarios cost the same amount of money to introduce into the DF. Diagram the impact on the following soil properties of each scenario: 1) pH, 2) total C, 3) total N, 4) available N, 5) NO3

- leaching, 6) available P, 1)7) CEC, 2)8) AEC and 9) mineral dissolution.

Page 35: ESRM410                    Forest Soils & Site Productivity

Produce 9 separate graphs quickly. Next, interpret the potential impacts of each of these on soil productivity and the quality of water (for drinking) leaching through the soil profile. Consider as many soil and other additional variables as you feel appropriate.

Page 36: ESRM410                    Forest Soils & Site Productivity

http://soilslab.cfr.washington.edu/ESRM410/WhatIf3/ Potentially helpful papers VanMiegroet&Cole-1984.pdfHarrison-etal-1994.pdfHarrison-etal-2005.pdfStrahm&Harrison-2006.pdfStrahm-etal-2005.pdf

Page 37: ESRM410                    Forest Soils & Site Productivity
Page 38: ESRM410                    Forest Soils & Site Productivity
Page 39: ESRM410                    Forest Soils & Site Productivity
Page 40: ESRM410                    Forest Soils & Site Productivity
Page 41: ESRM410                    Forest Soils & Site Productivity
Page 42: ESRM410                    Forest Soils & Site Productivity
Page 43: ESRM410                    Forest Soils & Site Productivity
Page 44: ESRM410                    Forest Soils & Site Productivity
Page 45: ESRM410                    Forest Soils & Site Productivity
Page 46: ESRM410                    Forest Soils & Site Productivity
Page 47: ESRM410                    Forest Soils & Site Productivity
Page 48: ESRM410                    Forest Soils & Site Productivity
Page 49: ESRM410                    Forest Soils & Site Productivity

PrimarySuccessionon Land

Page 50: ESRM410                    Forest Soils & Site Productivity

Soil pH vs. Forest Development

Page 51: ESRM410                    Forest Soils & Site Productivity

Red alder vs. Douglas-fir

Page 52: ESRM410                    Forest Soils & Site Productivity

Soil Acidification Under Red Alder

DEPTH (cm)

0-7

7-15

15-30

30-45

Soil pH4 5 6

Red Alder

Douglas-fir

RobHarrison:pH red a lder vs D oug-fi r

Page 53: ESRM410                    Forest Soils & Site Productivity

The Forest Nutrient Cycle, Pictoral

RETURNFoliage leachingLitterfallStem flow

AVAILABLENUTRIENTS

UNAVAILABLE NUTRIENTS

UPTAKELITTER LEACHING

SOIL LEACHING

LEACHING LOSS

ImmobilizationAdsorption

MineralizationWeathering

Forest Floor

Translocation

ATMOSPHERIC INPUTS

Page 54: ESRM410                    Forest Soils & Site Productivity

The Nutrient Cycle, Relative Amounts

TREE

TRANSLOCATION

LEACHING

FOREST FLOOR

ATMOSPHERIC INPUTS

SOLID PHASE IONIC PHASE

UNDERSTORY

Page 55: ESRM410                    Forest Soils & Site Productivity

The Nutrient Cycle, Chemical forms

plants,animals dead O.M.

Soil Solution Solid-phaseCations

Solid-phaseAnions

CEC

exhudates

leaching

mineralization

AEC

cation exch. anion exch.

Page 56: ESRM410                    Forest Soils & Site Productivity

The Nitrogen Cycle

Page 57: ESRM410                    Forest Soils & Site Productivity

The Nitrogen Cycle, forms & trans.

immobilization

VolatilizationDenitrification

Leaching

nitrification

mineralizationimmobilization

oxidation

N2 NH3

(NH4+)(NO3

-)

NO3-

by microbesplant

uptake

by microbes

plant

uptake runoff

NH4+

atmospheric depositionfertilization

fixation

OrganicNitrogen

Nitrate Ammonium

Page 58: ESRM410                    Forest Soils & Site Productivity

N Cycle of 38-y old DF (Wash State) vs. 22-y-old Eucalyptus grandis plantation, S. Brazil

Soil360

kg/ha

tree uptake90 kg/ha/y

return toforest floor45 kg/ha/y

leached fromforest floor15 kg/ha/y

understory0 kg/ha

trees1024 kg/ha

forest floor22 kg/ha

leached from soil0.6 kg/ha/y

Soil2809 kg/ha

tree uptake39 kg/ha/y

return toforest floor16 kg/ha/y

leached fromforest floor5 kg/ha/y

understory6 kg/ha

trees320 kg/ha

forest floor175 kg/ha

leached from soil0.6 kg/ha/y

Page 59: ESRM410                    Forest Soils & Site Productivity

Litter decomposition, Red Alder vs. Douglas-fir

RobHarrison:C arbon dec omp alder v s Doug-fi r

red alder

Douglas-fir

time

% of original mass

100%

1 20

Page 60: ESRM410                    Forest Soils & Site Productivity

Effect of C:N ratio

C:N80:1

CO 240

40:5

some C is evolved as carbon dioxide during respiration

N taken from soil available pools

original C:N ratio of O.M.

8:1 C:N ratio of soil microbes

high C:N ratio

4

With high C:N ratio O.M., when soil microbes incorporate C and N into their structure, they must take N from the available soil pool in order to maintain the relatively constant microbial C:N rate of 5-10:1. Since they evolve carbon dioxide during respiration, if enough O.M. decomposition cycles are completed, they will eventually release available N.

C:N8:1

CO 24

4:

some C is evolved as carbon dioxide during respiration

12

12

N released into the soil in an available form

original C:N ratio of O.M.

low C:N ratio

8:1 C:N ratio of soil microbes

With low C:N ratio O.M., when soil microbes incorporate C and N into their structure, they have more N then they need to maintain the microbial C:N rate of 5-10:1. They evolve C as carbon dioxide during respiration, but do not evolve N in a gaseous form. Instead they release it as ammonium ion.

Page 61: ESRM410                    Forest Soils & Site Productivity

C:N ratio, multiple cycles

C:N80:1

CO 2

40

40:5

N taken from soil available pools

original C:N ratio of O.M.

high C:N ratio organic matter, multiple cycles

4 With high C:N ratio O.M., when soil microbes incorporate C and N into their structure, they must take N from the available soil pool in order to maintain the relatively constant microbial C:N rate of 5-10:1. Since they evolve carbon dioxide during respiration, if enough O.M. decomposition cycles are completed, they will eventually release available N.

20:212

N released into the soil in an available form

20 2 12

10:1

carbon dioxide released into soil atmosphere

141

N released into the soil in an available form

final C:N ratio of O.M.

14

10

Page 62: ESRM410                    Forest Soils & Site Productivity

REGION OM N K Ca Mg P

BOREAL CONF. 350 230 94 150 455 324

BOREAL DECID. 25 26 10 14 14 15

SUBALPINE CONF. 18 37 9 12 10 21

TEMP. CONF. 17 18 2 6 13 1

TEMP. DECID. 4 6 1 3 3 6

MEDITERRANEAN 3 4 1 4 2 1

TROPICAL 0.7 0.6 0.2 0.3 0.6

Residence (halflife) time of organic matter and nutrients in parts of the world

Page 63: ESRM410                    Forest Soils & Site Productivity

P Cycle of 60-y-old Douglas FirCedar River Watershed

Soil3878 kg/ha

leached from soil0.02 kg/ha/y

Trees66 kg/ha

Forest floow25 kg/ha

return to forest floor16 kg/ha/y

understory

leached from forest floor1 kg/ha/y

1 kg/ha

Page 64: ESRM410                    Forest Soils & Site Productivity

Water Molecule

Page 65: ESRM410                    Forest Soils & Site Productivity

Soil-Solution Interactions

Soil-solutionpH

Precipitation-dryfall-wetfall

Cation exchange -Isomorph. sub -organic -Fe, Al hydrous

CO2-atmospheric,-soil respiration-solution-degassing

Weathering-dissolution-precipitation

Biotic activity-uptake-release

Soil-solutionflow patterns-interflow-percolation-runoff-retention time

Figures:soil solution chemistry

Figure 2. Soil properties controlling chemistry of soil solutions

Page 66: ESRM410                    Forest Soils & Site Productivity
Page 67: ESRM410                    Forest Soils & Site Productivity

Soil properties change solution chemistryBecking site

Precipitation

Throughfall

Forest Floor

Soil A

Soil B

solution conc. (µeq/l)

-600 -400 -200 0 200 400 600

H Al CaSO4NO3

Mg

K

0800 site

solution conc. (µeq/l)

-600 -400 -200 0 200 400 600

CaSO4

Soil B

Soil A

Throughfall

Precipitation

H

Page 68: ESRM410                    Forest Soils & Site Productivity

Soil properties change solution chemistryBeech gap site

solution conc. (µeq/l)-600 -400 -200 0 200 400 600

NO3 Al CaH

Precipitation

Throughfall

Forest Floor

Soil A

Soil B

200 100 0 100 200

µeq/L

Precipitation

Throughfall

Forest Floor

E horizon

Bs horizon

Al3+

Ca2+

H+

Mg2+

Na+

HCO3-

Cl -

NO3- SO 2-

4 K +

chargedeficit

Findley Lake solution stoichiometry

anions cations

Page 69: ESRM410                    Forest Soils & Site Productivity

N

Bole-only

Bole-only Total-tree

Total-tree

Total-tree plus

Total-tree plus

Page 70: ESRM410                    Forest Soils & Site Productivity

Bole-onlyPlot 13

Total-tree plusPlot 14

Page 71: ESRM410                    Forest Soils & Site Productivity
Page 72: ESRM410                    Forest Soils & Site Productivity
Page 73: ESRM410                    Forest Soils & Site Productivity
Page 74: ESRM410                    Forest Soils & Site Productivity

Fall River pre-harvestDouglas-fir tree biomass

biomass (kg)PLOT TREE DBH(cm) HT(m) dead branch live branch foliage bark bolewood total bole total tree

2 552 53.2 37.5 61.0 169.7 34.9 132.5 1068.3 1200.8 1466.45 223 28.3 34.1 27.3 27.3 8.9 28.1 279.3 307.4 371.07 3 30.4 31.9 24.0 20.0 9.3 34.0 314.2 348.2 401.58 937 44.8 33.0 26.9 71.3 17.2 95.9 835.4 931.4 1046.89 808 61.1 39.6 45.2 99.0 25.3 162.2 1422.7 1584.9 1754.59 857 45.6 37.2 40.6 138.2 19.5 112.2 989.0 1101.1 1299.511 637 64.0 36.5 113.8 163.5 31.2 164.6 1349.5 1514.1 1822.512 528 35.0 33.2 12.7 49.5 14.2 47.7 511.7 559.4 635.815 202 39.8 31.0 18.5 45.3 12.6 49.4 515.6 565.0 641.315 247 49.0 36.2 39.8 86.5 26.1 127.3 799.2 926.5 1079.018 505 43.8 31.8 37.7 81.2 33.9 76.1 740.6 816.7 969.519 673 48.6 34.9 37.4 63.7 16.5 104.8 921.7 1026.4 1144.021 839 41.0 35.7 24.2 48.6 15.4 60.7 672.9 733.6 821.721 845 23.5 30.4 7.7 11.1 3.4 22.0 234.4 256.4 278.723 102 53.5 35.6 30.8 90.7 39.5 149.7 1111.4 1261.1 1422.123 127 51.2 33.2 50.9 147.6 26.8 108.4 881.9 990.4 1215.723 163 15.0 23.6 4.8 3.7 0.6 8.0 77.1 85.0 94.228 653 55.0 38.4 158.2 200.1 52.8 169.8 1394.0 1563.8 1974.829 705 70.9 39.8 121.2 340.8 41.0 220.9 1864.3 2085.2 2588.233 115 48.2 32.4 47.7 64.5 26.1 104.2 821.0 925.2 1063.433 136 39.0 36.9 31.4 52.8 20.0 61.9 623.0 684.9 789.136 438 50.0 31.9 64.5 153.6 17.3 114.6 912.1 1026.7 1262.043 677 45.4 32.7 20.3 158.3 17.9 97.9 805.2 903.1 1099.745 819 22.7 28.2 7.1 10.6 2.5 20.0 200.8 220.7 240.846 947 49.8 37.9 37.4 71.3 26.7 126.0 1019.1 1145.1 1280.648 105 30.4 32.5 16.4 23.2 11.4 30.8 382.9 413.7 464.748 143 53.8 38.2 54.0 100.2 17.1 188.5 1167.4 1355.8 1527.149 20 69.1 38.5 177.2 355.1 93.4 219.7 1932.2 2151.9 2777.549 39 80.1 39.4 126.6 263.0 49.6 264.7 2167.3 2432.0 2871.250 141 67.4 37.9 147.6 195.0 42.9 181.3 1557.3 1738.7 2124.226 414 55.5 38.3 112.3 163.5 1382.8 1546.3

Page 75: ESRM410                    Forest Soils & Site Productivity

Equations developed by Gholz et al. 1979 Equations developed for Fall River studyTree Part b1* b2* n range** r2 b1* b2* n range** r2

–––––––––––––––––––––––––––––––––––––––––– Douglas-fir ––––––––––––––––––––––––––––––––––––––––––

Foliage -2.8462 1.7009 123 1.8 - 162.0 0.86 -6.5110 2.4826 31 15.0 - 80.1 0.86Branchs Live -3.6941 2.1382 123 ND 0.92 -6.0845 2.7364 31 15.0 - 80.1 0.91

Branchs Dead -3.5290 1.7503 85 ND 0.84 -4.9085 2.2536 31 15.0 - 80.1 0.81Stem Wood -3.0396 2.5951 99 ND 0.99 -0.9388 1.9941 31 15.0 - 80.1 0.94Stem Bark -4.3103 2.4300 99 ND 0.99 -3.9923 2.2250 31 15.0 - 80.1 0.97

Total Aboveground ND ND ND ND ND -0.9950 2.0765 31 15.0 - 80.1 0.99

–––––––––––––––––––––––––––––––––––––––– western hemlock ––––––––––––––––––––––––––––––––––––––––Foliage -4.1300 2.1280 18 15.3 - 78.0 0.96 -3.3835 1.7563 11 20.0 - 61.7 0.83

Branchs Live -5.1490 2.7780 18 ND 0.98 -3.3125 1.9622 11 20.0 - 61.7 0.77Branchs Dead -2.4090 1.3120 18 ND 0.62 -5.4125 2.2290 11 20.0 - 61.7 0.94

Stem Wood -2.1720 2.2570 18 ND 0.99 -2.0149 2.2641 11 20.0 - 61.7 0.95Stem Bark -4.3730 2.2580 18 ND 0.99 -5.2355 2.5040 11 20.0 - 61.7 0.92

Total Aboveground ND ND ND ND ND -1.6612 2.2321 11 20.0 - 61.7 0.96

* equation is of the form ln (Tree Part) = b1 + b2 ln (DBH); DBH = diameter (cm) at 1.3 m average tree height** range of DBH for trees used to develop equationsND = not determined or reported