estimacion del aof

Upload: pedro-antonio-lea-plaza-rico

Post on 02-Mar-2016

42 views

Category:

Documents


0 download

TRANSCRIPT

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 1

    Estimacin del AOF (Absolute Open Flow) del Reservorio

    The absolute open flow (AOF) potential of a well is the rate at

    which the well would produce against zero sandface back

    pressure. It is used as a measure of gas well performance because

    it quantifies the ability of a reservoir to deliver gas to the

    wellbore. Deliverability tests make possible the prediction of

    flow rates against any particular back pressure, including AOF

    when the back pressure is zero. This result is illustrated on the

    following inflow performance relationship (IPR) plot.

    1. Types of Deliverability Tests. There are a number of tests which can be conducted in order to

    calculate the deliverability of a well as described below.

    1.1. Conventional Back Pressure Test The conventional back pressure test is conducted by flowing a

    well at different rates. Each rate is sustained until the radius of

    investigation has reached the outer edge of the drainage area and

    pressure stabilization has been reached. This type of test is not

    practical for low permeability reservoirs because the time to

    reach pressure stabilization for each rate is excessive.

    1.2. Isochronal Test A fundamental reason that the conventional test is theoretically

    sound is that the radius of investigation is constant for each flow

    period. In order to uphold this principle, the isochronal test takes

    advantage of the fact that the radius of investigation is a function

    of time and not flow rate. An isochronal test is conducted by

    flowing a well at several different flow rates for periods of

    equal duration, normally much less than the time required for

    stabilization. A shut-in, long enough for the pressure to reach

    essentially static conditions, is performed between each flow

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 2

    period. In addition, an extended flow rate, long enough to reach

    pressure stabilization, is required. In tight reservoirs the length

    of time required to reach pressure stabilization between flow

    periods could make the isochronal test impractical.

    1.3. Modified Isochronal Test The modified isochronal test is an isochronal test which requires

    that each shut-in between flow periods, rather than being long

    enough to attain essentially static conditions, should be of the

    same duration as each flow period. It also requires an extended

    flow period.

    1.4. Single Point Test A single point test consists only of an extended flow period. They

    require an estimate of the degree of turbulent flow in the

    formation. This estimate is often based on information provided by

    other wells in the same formation or calculated from reservoir

    and fluid properties.

    2. AOF Flow Conditions.

    2.1. Extended Flow. Normally an isochronal test includes one flow rate that is

    extended to stabilization and a stabilized pressure and flow rate

    point is determined. This point is the extended flow pressure and

    flow rate for the test. Single point tests do not include the multi-

    rate portion of a test and consist of only an extended rate and

    pressure.

    2.2. Stabilized Shut-in. Stabilized generally refers to a test in which the pressure no

    longer changes significantly with time. For AOF tests, the

    stabilized shut-in pressure is a pressure that reflects the average

    reservoir pressure at the time. It is either measured during the test

    or determined from the interpretation of the data.

    2.3. Stabilized Flow. In high permeability reservoirs or wells with small drainage areas,

    it may be possible to flow the well until stabilization during the

    extended flow period of a deliverability test. In these cases, the

    stabilized pressure and flow rate point is the extended flow point.

    Many tests, however, are not flowed to stabilization because of

    time constraints (especially in tight reservoirs). An extended flow

    and stabilized shut-in are still performed at the end of these

    deliverability tests so that the buildup data can be analyzed and

    from that the stabilized rate calculated. Stabilized flow can be

    determined by calculation or by creating a model of the reservoir,

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 3

    doing a forecast at a specified pressure, and finding the point

    when the rate has stabilized (usually at 3 months, 6 months, or 1

    year) .

    3. Types of Analyses.

    Two types of analysis are available, the simplified analysis or the

    laminar-inertial-turbulent (LIT) analysis.

    LIT analysis is more rigorous than simplified analysis and is usually

    only used in tests where turbulence is dominant and the

    extrapolation to the AOF is large. However, in most cases the

    simplified analysis is sufficient to determine the AOF and

    deliverability.

    3.1. Pressure Method. For both the simplified and LIT analysis, two pressure options are

    available, the pressure squared or the pseudo-pressure approach.

    3.2. Pressure Squared The pressure squared approach is the more traditional method,

    and is often used because it is easier to understand and

    calculate. However, it is only valid for medium to low pressure

    ranges but is just as accurate as the pseudo-pressure approach in

    this range.

    3.3. Pseudo-Pressure Using pseudo-pressure will be more accurate than the pressure

    squared approach, especially when dealing with a high pressure

    system, where gas viscosity (mg) and compressibility (cg) cannot be

    assumed to be constant. Thus, pseudo-pressure works for all

    pressure ranges, although it is more difficult to calculate and

    requires more computational time.

    3.4. Simplified Analysis The simplified analysis is based on the following equation:

    Pressure squared:

    Pseudo-pressure:

    The analysis of a modified isochronal test using the simplified

    method is illustrated below. For the modified isochronal test,

    pws must be used instead of pR because the duration of each shut-

    in period is too short to reach static conditions.

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 4

    The data is plotted on a log-log plot of Dp2 versus qst where Dp2

    is defined as:

    The flow and shut-in periods of equal duration provide the

    information required to plot four points. A straight line, called

    the transient deliverability line, is drawn through these four

    points.

    The duration of the last flow rate is extended until the pressure

    response has stabilized. This information is used to plot another

    point called the stabilized point. A line parallel to the transient

    deliverability line is drawn through the stabilized point. This is

    called the stabilized deliverability line. If the extended flow

    period does not reach pressure stabilization, a stabilized point can

    be found by calculation from a buildup test.

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 5

    The parameter n can be determined from the slope of the line as

    follows:

    Thus, slope is equal to 1 / n, and n is called the inverse slope.

    The other parameter, C, can be determined using n and the

    coordinates (qst and pR) of any point on the stabilized

    deliverability line (e.g. the stabilized point) as follows:

    Note that C and n are considered to be constant for a limited

    range of flow rates. In theory, it is expected that this form of the

    deliverability relationship will be used only for the range of flow

    rates used during the test. However, in practice it is used

    indiscriminately for a wide range of rates and pressures.

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 6

    4. LIT Analysis. The LIT analysis is used with dealing with high rate wells where

    turbulence is a major factor. Only the pseudo-pressure approach

    can be used in this situation since pressures are in a higher range

    due to the turbulence effects. LIT analysis is defined by the

    following equation:

    Note that the pseudo-pressure squared terms (a qst and b qst2)

    are equivalent to skin due to damage (sd) and skin due to

    turbulence (sturb). The coefficients a and b are defined in the

    example below.

    The analysis of an isochronal test using the LIT method is

    illustrated below.

    5. Procedimiento para la estimacin del rea de la Estructura mediante el Sistema de Grillado o Mallado.

    1. Objetivos. 1.1. Objetivos Generales.

    Determinar el Potencial AOF del Reservorio. Determinar la productividad optima del reservorio. Determinar la distribucin del potencial del

    reservorio.

    Determinar la distribucin optima del reservorio. 1.2. Objetivos Especficos.

    Determinar el nivel de referencia o Datum. Realizar la correccin de presiones al nivel de

    referencia.

    Calcular las constantes C y n del mtodo de Fetckovick para cada pozo.

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 7

    Determinar el AOF de cada pozo. Obtener C y n promedio. Obtener el AOF del Reservorio.

    2. Informacin.

    Para la realizacin de la presente prctica dispondremos de la

    siguiente informacin:

    El plano estructural del reservorio con el que se cuenta es el siguiente:

    20/64 6.52 5780 6862 12.21 303 53.5 24.82 0 24/64 13.75 5420 6771 17.74 364 54.8 20.52 0 28/64 13.05 5200 6723 22.17 543 53.6 24.49 0 32/64 12 4850 6667 27.65 658 53.5 23.79 0 40/64 4.75 3880 6540 34.87 854 52 24.49 0

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 8

    YIELD

    24/64 15.1 5500 7035 14 376 54.1 26.92 2.7 28/64 3.2 5372 6921 17.9 475 53 26.52 2.2 32/64 11.9 5141 6732 24.6 644 53.1 26.11 2.2 40/64 12 4625 6356 34.2 868 52.6 25.28 1.3 48/64 11.9 4022 5925 42.7 1035 52.2 24.21 2.7 52/64 11.9 3601 5639 47.4 1150 52.1 24.01 3.5

    24/64 24 5627 7101 16.2 409 53.11 25.24 3.6 32/64 12 5438 7052 27.5 673 52.1 24.47 3.0 40/64 12 5155 6998 37.4 868 52 23.21 4.0 48/64 12 4751 6930 49.1 1101 51.1 22.40 3.0 52/64 14 4297 6851 60 1459 NM 24.32 NM 28/64 24 5587 7088 19.4 503 52.9 25.91 3.6

    24/64 24 5811 7025 14.48 409 52.1 28.24 2.4 32/64 15 5730 6921 26.17 660 50.8 25.22 2.5 40/64 15 5527 6722 41.18 1025 51 24.89 2.5 44/64 52 5428 6630 45.48 1176 49.7 25.86 2.8

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 9

    3. Herramientas y/o Ecuaciones a Utilizar.

    Para el clculo del AOF utilizaremos el mtodo propuesto por

    Feitkovich, el cual nos dice que para cada pozo:

    nPwfCqg 22Pr

    Donde:

    Qg = Caudal de gas, PCS

    Pr = Presion esttica de reservorio, PSI

    Pwf = Presin de fondo fluyente, PSI

    C = ndice de flujo

    n = ndice de turbulencia

    Y C y n son obtenidos tanto de forma grfica como analtica.

    Para obtener el AOF de cada pozo tenemos que tomar en cuenta

    que Pwf = 0 psi, por lo tanto:

    n

    n

    CAOF

    Pwf

    PwfCqg

    2

    22

    Pr

    0

    Pr

    Don de la lectura del AOF podemos realizarla de forma grfica,

    mediante el ajuste de los puntos obtenidos en la prueba de

    produccin para cada pozo, de la siguiente manera:

    Log(q)

    Pr2

    AOF

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 10

    Y el clculo de C y n lo podemos hacer mediante el ajuste de los

    puntos realizados previamente de la siguiente manera:

    n

    n

    AOFC

    Pwf

    Pwf

    qgC

    PP

    qqn

    2

    22

    Pr

    0

    Pr

    1log2log

    1log2log

    Para calcular los ndices C y n para todo el reservorio

    Feitkovich propone el siguiente mtodo de C y n promedio para

    el reservorio con los datos de las 4 pruebas o ms realizadas a

    los pozos:

    datos

    qqtotal

    Cq

    Cq

    n

    n

    #

    _______________

    )10()10(

    )10()10(

    66

    1

    55

    1

    datos

    qqtotal

    Cq

    Cq

    n

    n

    #

    _______________

    )10()10(

    )10()10(

    66

    2

    55

    2

    _

    )10(

    )10(

    10log10log

    )10(log)10(log

    6

    6_

    56

    56_

    n

    t

    tt

    qC

    qqn

    3.1. Correccin de las Presiones de Prueba.

    Los datos registrados en cada una de las pruebas que tenemos

    fueron hechos a diferentes profundidades, para poder realizar

    nuestro mapa isobrico se debe llevar todos nuestros datos

    hacia un nivel de referencia o DATUM, Para esto realizamos la

    proyeccin de los pozos 1 2 4 que se encuentran sobre un

    mismo eje y podemos realizar la reconstruccin de nuestro

    anticlinal y haciendo pasar por el centro de gravedad del mismo

    un recta horizontal obtenemos nuestro Datum, luego

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 11

    realizamos la conversin de las presiones encontrando un P para cada pozo con la gravedad especfica del mismo.

    DATUM

    Probador

    DATUM

  • Estimacin del AOF (Absolute Open Flow) del

    Reservorio. Simulacin de

    Reservorios

    Docente: Ing. Daro Cruz 12

    4. SELECCIN DE INFORMACION

    La grafica de volumen equivalente de gas de condensado en tanque ser utilizada para determinar el equivalente de

    crudo a gas mediante su gravedad especifica.

    El mapa estructural nos servir para determinar las alturas de pozos y el nivel del contacto agua gas

    5. CONSTRUCCION DE LOS PLANOS ISOS

    Utilizaremos 2 modelos de simulacin Iso-AOF, Iso

    Productividad Optima.

    Iso- AOF.- En este modelo generaremos 1 mapa isopaco de todo el campo.

    Iso Productividad ptima.- De igual manera se generara 1 mapa isopaco de todo el campo.

    Para la resolucin del problema se construir una Grilla Ortogonal de dimensiones 2x 2 cm a una escala de 1cm =

    50000 mts.

    6. PLANILLA DE CLCULO

    El formato que se utilizar se deja a consideracin debido a las

    variaciones existentes en la presente prctica:

    7. Resultados.

    Como se puede apreciar los resultados que mas nos interesan

    en la siguiente practica son:

    La determinacin del AOF del Reservorio. Determinar la productividad optima del Reservorio.

    No obstante los clculos referidos al clculo del AOF y

    cualquier clculo auxiliar que se realice debern estar en esta

    seccin.

    8. Conclusiones.

    En esta seccin debern hacer todas las consideraciones

    necesarias sobre la practica, es decir resultados, clculos

    aproximaciones y cada detalle que vean conveniente.

    9. Anexos.

    Esta seccin deber contener todas las grficas de grillas

    utilizadas para todos los sistemas de grillas o mallas.