estimation of response spectra and peak … · spectra as a function of earthquake magnitude, the...

72
ESTIMATION OF RESPONSE SPECTRA AND PEAK ACCELERATIONS FROM WESTERN NORTH AMERICAN EARTHQUAKES: AN INTERIM REPORT By David M. Boore, William B. Joyner, and Thomas E. Fumal U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 Open-File Report 93-509 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes and does not imply endorsement by the U.S. Government.

Upload: others

Post on 30-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

ESTIMATION OF RESPONSE SPECTRA AND PEAK ACCELERATIONS FROM

WESTERN NORTH AMERICAN EARTHQUAKES: AN INTERIM REPORT

By

David M. Boore, William B. Joyner, and Thomas E. Fumal

U.S. Geological Survey

345 Middlefield Road

Menlo Park, CA 94025

Open-File Report 93-509

This report is preliminary and has

not been reviewed for conformity with

U.S. Geological Survey editorial standards

or with the North American Stratigraphic Code.

Any use of trade, firm, or product names is

for descriptive purposes and does not imply

endorsement by the U.S. Government.

Page 2: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

ABSTRACT

We have derived equations for predicting the larger horizontal and the random hori­

zontal component of peak acceleration and of 2-, 5-, 10-, and 20- percent-damped pseudo-

velocity response spectra for 46 periods ranging from 0.1 to 2.0 sec. The equations were

obtained by fitting a functional form to empirical data using a two-stage regression method.

271 two-component recordings from 20 earthquakes were used to develop the equations for

peak acceleration, and 112 two-component recordings from 14 earthquakes were used for

the response spectral equations. The data included a subset of those used in earlier studies

by us (Joyner and Boore, 1981, 1982), augmented by data from three recent earthquakes

with magnitudes close to 7: 1989 Loma Prieta, 1992 Petrolia, and 1992 Landers. Be­

sides the addition of new data, this study differs from our previous work in several ways:

records at distances equal to and greater than the distance to the first record triggered by

the 5 wave were not included (this resulted in eliminating 56 records from our previous

data set for peak horizontal acceleration and 19 records from our previous data set for

response spectra; in addition, 7 records providing peak acceleration values were removed

for a variety of other reasons), we used weighted regression in the second stage of the two-

stage regression, equations were evaluated at many more periods than previously and for

four values of damping, and the smoothing of the regression coefficients over period was

done by computer rather than by eye. In addition, we changed the way in which geologic

conditions beneath the site are classified. Our previous studies used a binary rock/soil

classification. In anticipation of future building code classifications, we now divide site

geology into four classes, depending on the average shear-wave velocity in the upper 30m.

Site class A includes sites where the average shear-wave velocity is greater than 750 m/s;

site class B sites where the velocity is between 360 and 750 m/s; site class C sites where

the velocity is between 180 and 360 m/s; and site class D sites where the velocity is less

than 180 m/s (site class D class was poorly represented in the data set and has not been

included in the analysis).

Compared to the predictions from our previous equations, the new results have a lower

variance and show differences between site classes at all periods, not just at periods longer

than about 0.3 sec. At distances within a few tens of kilometers the motions for our new

class B and class C are similar to those for our old rock class and soil class respectively;

Page 3: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

the motions for our new class A are lower than any of our previous predictions. At large

distances the new equations predict larger motions, larger at 80 km by a factor of two or

more.

INTRODUCTION

In earlier studies (Joyner and Boore, 1981; Joyner and Boore, 1982; and Joyner and

Boore, 1988) we presented equations for peak horizontal acceleration, velocity, and response

spectra as a function of earthquake magnitude, the distance from the earthquake source,

and the type of geologic material underlying the site. These equations were based on

data obtained through 1980, and they used a binary classification ("rock" and "soil") for

the geologic materials. Many more data have been collected since 1980. In particular,

three earthquakes in California (1989 Loma Prieta, 1992 Petrolia, and 1992 Landers) have

provided data for a range of magnitude and distance, critical for engineering design, which

was poorly represented in our previous work. Furthermore, it is likely that future editions

of national building codes will use at least a four-fold classification of site geology, based

on average shear velocity to a depth of about 30 m. Our long-term goal is to develop

prediction equations incorporating all of the data recorded since our earlier work and to

reprocess all of the data for the sake of uniformity and to extend the period range covered

by the equations. We decided, however, that an interim report would be useful at this

time. Most of the post-1980 data that we are not including in this interim study are for

magnitudes and distances sampled relatively well in our previous studies, and we expect

that the results of our final study will not change greatly from those in this interim report.

In this report we give only brief discussions of those matters that were explained in

our previous reports; we concentrate instead on topics that are new in this study.

DATA

Ground Motion Data

The set of data to be used in the regression was chosen from the data used in our

previous studies combined with recordings of the 1989 Loma Prieta, the 1992 Petrolia, and

the 1992 Landers earthquakes. Most of the data were collected by the California Division

of Mines and Geology's Strong-Motion Instrumention Program and the U.S. Geological

Survey's National Strong-Motion Program.

Page 4: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

As in our previous studies, we used values for peak acceleration scaled directly from

accelerograms, rather than the processed, instrument-corrected values.. We did this to

avoid bias in the peak values (e.g., Fig. 5 in Boore and Joyner, 1982) from the sparsely

sampled older data. This bias is not such a problem with the more densely sampled recent

data. With a few exceptions we used response spectra as provided by relevant agencies; the

exceptions are the data collected by Southern California Edison Company and by S. Hough

of the U.S. Geological Survey, for which we computed response spectra ourselves. (We use

the notation psv for response spectra, and all uses of the term "response spectra" refer

to pseudo-velocity response spectra, computed by multiplying the relative displacement

spectra by the factor 2?r/T, where T is the undamped natural period of the oscillator

[the psv provided by the U.S. Geological Survey for the Loma Prieta earthquake used the

damped period, but in the worst case (20 percent damping) this amounts to a difference

in response spectra of only 2 percent].)

As we did previously, to avoid bias due to soil-structure interaction, we did not use data

from structures three stories or higher, from dam abutments, or from the base of bridge

columns. In addition, we include no more than 1 station with the same site condition

within a circle of radius 1 km. In such cases, we generally chose the station with the

lowest database code number and excluded the others. The radius of 1 km is a somewhat

arbitrary choice.

When a strong-motion instrument is triggered by the S wave, the strongest motion

may be missed. In this study, unlike previous studies, we made a systematic effort to

exclude records from instruments triggered by the S wave.

A strong-motion data set will be biased by any circumstance that causes low values of

ground motion to be excluded because they are low, as happens when the ground motion

is too weak to trigger the strong-motion instrument, when the ground motion is so weak

that an instrument triggers on the S wave, or when records are not digitized because their

amplitude is low. To avoid a bias toward larger values, we impose a distance cutoff for

each earthquake, beyond which we ignore any data available for that earthquake. This

cutoff should logically be a function of geologic condition and trigger level of the recording

instrument. We have ignored geologic condition in the determination of cutoff distance in

this report, but we have partially considered the effect of trigger level by distinguishing

Page 5: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

between those stations employing a trigger sensitive to horizontal motion and those that

were triggered on the vertical component of motion. Potentially, every earthquake could

have two cutoff distances, depending on the type of trigger used in the recorder. In fact,

this was only necessary for the 1971 San Fernando earthquake, which occurred during the

time of transition between older instruments that trigger on horizontal motion and newer

instruments that employ vertical triggers. For peak acceleration, the cutoff distance is

equal to the lesser of the distance to the first record triggered by the S wave and the

closest distance to an operational nontriggered instrument. For response spectra we chose

to presume that amplitude is a factor in deciding which records are digitized, and we set

the cutoff distance to the lesser of the distance to the first digitized record triggered by the

S wave, the distance to the closest non-digitized recording, and the closest distance to an

operational nontriggered instrument. The cutoff distances are given in Table 1. In Table 1,

the greater-than sign indicates that the cutoff distance is at an unknown distance greater

than that indicated. For the Landers earthquake the digitizing of the analog records is in

the early stages, and few records from digital instruments have been released. It is likely

that the cutoff distance for response spectra for the 1992 Landers earthquake will increase

in the future.

In our previous studies we ignored the possible bias introduced by including records

triggered by the S wave. Using the cutoff distances shown in Table 1 resulted in the elimi­

nation of 56 records from the peak acceleration data and 19 records from the peak velocity

data set, a significant fraction of the data used in our previous studies. In addition, 7

records were deleted because information was available only for one horizontal component,

because the record was obtained on a dam abutment, or because available information

indicated that the site was underlain by muskeg or peat. Table 2 contains a listing of the

records used in the previous study that were eliminated from the current analysis.

Because of the relatively low sampling rate of the older data (unevenly sampled, but

usually interpolated to 50 samples/s), the response spectra are not well determined at

periods less than 0.1 s. At longer periods, low signal to noise and filter cutoffs employed

in the processing limit the generally useful band to periods less than about 2 to 4 s (we

hope to extend this range in the future by reprocessing the data). We have used response

spectra for periods between a maximum range of 0.1 and 2 s.

Page 6: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

The recording of the 1992 Petrolia earthquake at the Cape Mendocino station provided

only lower bounds for the peak acceleration, and therefore the recording was not used for

peak acceleration. According to numerical experiments mentioned by Shakal et al. (1992a),

the high-frequency character of the acceleration trace associated with the peak motion

makes the displacement and velocity records insensitive to the actual value of the peak

motion. For this reason, we have used response spectra determined from the recording for

periods greater than 0.1 sec in our analysis.

Predictor Variables

As before, we use moment magnitude as the measure of earthquake size and a dis­

tance equal to the closest horizontal distance from the station to the point on the earth's

surface that lies directly above the rupture. We estimated the moment magnitudes and

the areas of the rupture surface from a literature review of various published studies for

each earthquake.

Unlike the earlier studies, we use a site classification scheme based on the shear velocity

averaged over the upper 30m. This scheme, shown in Table 3, has been proposed by Roger

Borcherdt and Thomas Fumal and is now being considered for use in the 1994 edition

of the National Earthquake Hazard Reduction Program's recommended code provisions.

When available, we used measurements from boreholes at the strong-motion sites. In most

cases such measurements were not available, and then we estimated the site classifications

by analogy with borehole measurements in similar geologic materials; the type of geologic

materials underlying each site was obtained from site visits, consultation with geologists

familiar with the area, and various geologic maps (in particular, the 1:250,000 scale maps

published by the California Division of Mines and Geology; see also Fumal, 1991, who

used more detailed maps). Although we expect that some of the site classifications will

change as more data become available, we do not anticipate any significant changes in the

regression coefficients as a result of such changes. Of the four site classes listed in Table 3,

class D was poorly represented in the data set and has not been included in the analysis.

The earthquake-station pairs and the corresponding predictor variables are given in

Tables 4 and 5 for peak acceleration and response spectra, respectively. The information

in Tables 4 and 5 is sorted by date, site class, and distance, in that order. The site class is

given in the column labeled G. In addition, Table 4 contains the peak acceleration values

Page 7: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

(space does not allow a comparable listing of response spectral values). In both tables

a borehole number is given if the site classification is based on a nearby borehole. The

borehole information is contained in Table 6. The distribution in magnitude and distance

space is shown in Figure 1, where the data used previously (but not wiinowed out of the

current data set) and the data from the three recent earthquakes are plotted with different

symbols. It is clear that the recent data fill an important gap in the previous data set. It

should also be noted that very few data are available for distances beyond about 80 km.

METHOD

The coefficients in the equations for predicting ground motion were determined using

a weighted, two-stage regression procedure (Joyner and Boore, 1993). In the first stage,

the distance dependence was determined along with a set of amplitude factors, one for each

earthquake. In the second stage, the amplitude factors were regressed against magnitude

to determine the magnitude dependence. The second-stage regression used a weighting

matrix with zero off-diagonal terms (equation (34) in Joyner and Boore, 1993); the value

of at was determined by finding the value that satisfies (or the non-negative value that

most nearly satisfies) equation (33) in Joyner and Boore (1993).

We fit the following functional form to the data:

logy = bi + 62 (M - 6) + 63 (M - 6)2 + 64 r + 65 logr + b6 GB + b7 Gc + er + ee , (1)

where

r = (d2 +h2 )( 1 M. (2)

In this equation Y is the ground motion parameter (in cm/s for response spectra and g

for peak acceleration); the predictor variables are magnitude (M), distance (d, in km),

and site classification (G# = 1 for class B and zero otherwise; GC 1 for class C and

zero otherwise); er is an independent random variable that takes on a specific value for

each record; and ee is an independent variable that takes on a specific value for each

earthquake. The coefficients to be determined are 61 through 67, fo, and the variance of ee

and er (a2 and <r2 , respectively). The earthquake-to-earthquake component of variability is

represented by cr 2 , and all other components of variability are represented by <r2 . Note that

h is a fictitious depth that is determined by the regression. We present sets of equations

Page 8: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

for predicting both the larger of the two horizontal components and a randomly-oriented

horizontal component of ground motion. To derive equations for the randomly-oriented

component, we used the geometric mean of the two horizontal-component amplitudes for Y

in equation (1) rather than choosing one of the horizontal components randomly. This will

give the correct regression coefficients, but the variance of er determined by the regression

program will be reduced below that expected for the prediction of a random component

of ground motion. To account for this, we computed the variance (cr;?) of the horizontal

components from the following formula:

- nrecs -

(3)

where Yij is the zth component from the jth recording and the sum is taken over all records

for which both horizontal components were available. The few records that did not have

both horizontal components were not included in the sum, although the one available

component was used in the regression to determine the coefficients in equation (1)). The

variance d^ is then given by

4 = °l + °l, (4)

where a\ is the variance from the first stage of our two-stage regression. The overall

variance is given by combining the individual variances:

^+^e2 - (5)

RESULTS

Equation (1) was fit to the data period-by-period at the 46 periods between 0.1 and 2.0

s for which the response spectral values had been computed. These periods are distributed

in a generally logarithmic manner over the interval. The data and regression fit for the

second stage of the regression analysis are shown in Figure 2, for the random horizontal

component of peak acceleration and 5-percent damped response spectra; plots for the other

values of damping and for the larger of the horizontal components are similar and are not

included in this report.

Plots of the coefficients versus period showed them to have fluctuations that lead

to somewhat jagged spectra at a fixed distance and magnitude; the amplitude of the

8

Page 9: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

fluctuations is comparable to the uncertainty in the estimated coefficients. Because we

wish our equations to produce smooth response spectra, we have smoothed the coefficients

over period. After some experimentation with various smoothing schemes, we adopted

the least-squares fit of a cubic polynomial as the best representation of the smoothed

coefficients. The unsmoothed and smoothed coefficients for the 5-percent damped response

spectra for the random horizontal component are shown in Figure 3; figures for the other

dampings and for the larger horizontal component are collected at the end of the report

in a multipart figure labeled Al.

Comparisons of response spectra computed from the unsmoothed and the smoothed

regression coefficients are given in Figures 4, 5, and 6 for combinations of magnitudes, site

classes, and distances. These figures illustrate the jaggedness that motivated our smoothing

of the coefficients and also demonstrates the effectiveness of the smoothing procedure.

The smoothed coefficients for the random horizontal component and the larger hori­

zontal component are given in Table 7 and 8, respectively. Each table contains four parts,

corresponding to dampings of 2, 5, 10, and 20 percent. Note in the column headings for

the tables that the uncertainties cr\, crc , crr , &e, a^d 0iog y are represented by 51, SC, SR,

SE, and SLOGY', respectively. The coefficients for predicting peak acceleration are given

in Table 9.

Based on the magnitude and distance distribution shown in Figure 1, we stipulate

that our equations not be used to predict motions at distances greater than 100 km or

magnitudes less than 5.0 or greater than 7.7.

Several columns in Tables 7 and 8 have zero entries, for the following reasons. We

initially fixed 65 at -1, but this led to values of the coefficient 64 greater than 0. Positive

values of 64 lead to unreasonable behavior at large distances. For this reason we set 64 = 0.0

and solved for the geometrical-spreading surrogate, 65. The "SC" column represents the

variance due to the difference in amplitude of the two horizontal components of motion at a

site; it obviously has no meaning when peak motions from the larger horizontal component

is being considered, and therefore the "SC" entries in Table 8 are set to zero.

Plots of selected ground motions against distance computed from the coefficients in

Tables 7b and 9 are shown in Figure 7.

Page 10: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

RESIDUALS

An important step in a regression analysis is a study of the residual of the data about

the regression fits. We have already shown one such comparison (Figure 2), in which no

systematic departures from the assumed model can be seen. We have plotted residuals of

the logarithms of ground motion against distance for different site and magnitude classes,

and we again we see no systematic differences between the data and the predictions (Figure

8).

DISCUSSION AND CONCLUSIONS

How do the new equations compare to our previous equations? Because of the differ­

ence in site classification, we cannot make a direct comparison. Predicted psv from old

and new equations are shown in Figure 9 as a function of period for two magnitudes, with

different curves for the various site classes for distances of 0 and 20 km. In general, at

these distances the new site class A has lower motions than we would have predicted for

rock sites; the motions from the new site class C are similar to those from the old soil class

and the motions for the new site class B are similar to those for the old rock class. We

found that many of our previously-designated rock sites fell into the B class, and therefore

at first glance it is not surprising that the old rock and new class B predictions are similar.

On the other hand, our old soil class was made up of a combination of B and C sites,

and therefore Figure 9 suggests that the average ground motion from our new equations

and new site classes, for a specific collection of sites, would be lower than from our old

equations and site classes. Note also that the difference between the various site classes

persists to low periods, unlike our previous finding.

The new equations give higher values than the old equations at large distances. At 80

km the new equations give values for the average of site classes B and C that are a factor

of two or more greater than the values given by the old equations for soil (Figure 10).

To understand better the reasons for the higher values at large distances we performed a

series of analyses of the old data set. The results show that using weighted regression for

the second stage of the analysis, winnowing the data set on the basis of the distance cutoff

table, assigning new site classes to the older data, and including the new data from the

three recent earthquakes all contributed to increasing the values for large distances.

10

Page 11: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Although not shown in the figure, the variance of the ground motions has been reduced

in our new results. This is shown in Table 10 for 5 percent damped psv at periods of 0.3

and 1.0 s. A series of analyses of the old data set shows that the primary cause of the

reduction in variance is the winnowing of the data set. The use of weighted regression for

the second stage also contributed to the reduction in variance.

Although this is not the place for an extended discussion of the variations in the coef­

ficients and their possible physical interpretation, we point out that a number of trends are

similar to those found in our previous work: with increasing T, the magnitude dependence

increases, as do the site factors and the variance. The coefficient h generally decreases

with increasing period.

ACKNOWLEDGMENTS

We wish to thank Sue Hough and Dennis Ostrom for recordings of the Landers earth­

quake, and Norm Abrahamson, Allin Cornell, and Robin McGuire for discussions about

regression analysis of strong-motion data. We also thank Ken Lajoie, Patty McCrory, Bob

McLaughlin, Dan Ponti, and John Tinsley for discussions about geologic materials, and

April Converse, Bob Darragh, Ed Etheridge, and Peter Mork for help with the data set.

Julian Bommer helped us with the initial formulation of the database structure. Chuck

Mueller provided a useful review of the paper. This work was partially supported by the

U.S. Nuclear Regulatory Agency.

11

Page 12: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

REFERENCES

Aster, R.C. and P.M. Shearer (1991). High-frequency borehole seismograms recorded in

the San Jacinto fault zone, southern California. Part 1. Polarizations, Bull. Seism.

Soc. Am. 81, 1057-1080.

Aster, R.C. and P.M. Shearer (1991). High-frequency borehole seismograms recorded in

the San Jacinto fault zone, southern California. Part 2. Attenuation and site effects,

Bull Seism. Soc. Am. 81, 1081-1100.

Boore, D.M. and W.B. Joyner (1982). The empirical prediction of ground motion, Bull.

Seism. Soc. Am. 72, S43-S60.

Brune, J.N., F.L. Vernon III, R.S. Simons, J. Prince, and E. Mena (1982). Strong-motion

data recorded in Mexico during the main shock, in The Imperial Valley, California,

Earthquake of October 15, 1979, U. S. Geol. Surv. Prof. Paper 1254, 319-349.

California Division of Mines and Geology (1992). Second quick report on CSMIP strong-

motion records from the June 28, 1992 earthquakes near Landers and Big Bear, Cali­

fornia, OSMS Report 92-07. 10 p.

California Institute of Technology (1976). Strong motion earthquake accelerograms: Index

volume, Earthquake Engineering Research Lab. Report EERL 76-02. 72 p.

Etheredge, E., R. Maley, R. Porcella, A. Acosta, E. Anjal, L. Foote, D. Johnson, W.

Jungblut, T. Noce, M. Salsman, and J. Switzer (1992). Strong-motion accelerograph

records from the M=7.5 Landers, California earthquake of June 28, 1992, U. S. Geol.

Surv. Open-File Rept. 92-xxx (in press).

Fletcher, J.B., T. Fumal, H.-P. Liu, and L.C. Carroll (1990). Near-surface velocities and

attenuation at two boreholes near Anza, California, from logging data, Bull. Seism.

Soc. Am. 80, 807-831.

Fumal, T.E. (1991). A compilation of the geology and measured and estimated shear-wave

velocity profiles at strong-motion stations that recorded the Loma Prieta, California,

earthquake, U. S. Geol. Surv. Open-File Rept. 91-811.

Fumal, T.E., J.F. Gibbs, and E.F. Roth (1982a). In-situ measurements of seismic velocity

at 10 strong motion accelerograph stations in central California, U. S. Geol. Surv.

Open-File Rept. 82-407, 76 p.

12

Page 13: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Fumal, T.E., J.F. Gibbs, and E.F. Roth (1982b). In-situ measurements of seismic velocity

at 22 locations in the Los Angeles, California region, U. S. Geol Surv. Open-File

Kept. 82-888, 138 p.

Fumal, T.E., J.F. Gibbs, and E.F. Roth (1984). In-situ measurements of seismic velocity

at 16 locations in the Los Angeles, California region, U. S. Geol. Surv. Open-File

Kept. 84-681, 109 p.

Gibbs, J.F., T.E. Fumal, and R.D. Borcherdt (1975). In-situ measurements of seismic

velocities at twelve locations in the San Francisco Bay region, U. S. Geol. Surv.

Open-File Rept. 75-564, 87 p.

Gibbs, J.F., T.E. Fumal, and R.D. Borcherdt (1976). In-situ measurements of seismic

velocities in the San Francisco Bay region...Part II, U. S. Geol. Surv. Open-File Rept.

76-731, 145 p.

Gibbs, J.F., T.E. Fumal, and R.D. Borcherdt (1977). In-situ measurements of seismic

velocities in the San Francisco Bay region...Part III, U. S. Geol. Surv. Open-File

Rept. 77-850, 143 p.

Gibbs, J.F., T.E. Fumal, and E.F. Roth (1980). In-situ measurements of seismic velocity

at 27 locations in the Los Angeles, California region, U. S. Geol. Surv. Open-File

Rept. 80-378, 167 p.

Gibbs, J.F., T.E. Fumal, D.M. Boore, and W.B. Joyner (1992). Seismic velocities and ge­

ologic logs from borehole measurements at seven strong-motion stations that recorded

the Loma Prieta earthquake, U. S. Geol. Surv. Open-File Rept. 92-287, 139 p.

Joyner, W.B. and D.M. Boore (1981). Peak acceleration and velocity from strong-motion

records including records from the 1979 Imperial Valley, California, earthquake, Bull.

Seism. Soc. Am. 71, 2011-2038.

Joyner, W.B. and D.M. Boore (1982). Prediction of earthquake response spectra, U. S.

Geol. Surv. Open-File Rept. 82-977, 16 p.

Joyner, W.B. and D.M. Boore (1988). Measurement, characterization, and prediction of

strong ground motion, in Proc. Conf. on Earthquake Eng. and Soil Dynamics II, GT

Div/ASCE, Park City, Utah, 27-30 June 1988; 43-102.

Joyner, W.B. and D.M. Boore (1993). Methods for regression analysis of strong-motion

13

Page 14: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

data, Bull. Seism. Soc. Am. 83, 469-487.

Lew, T.K. (1990). Earthquake preparedness: An analysis of the 1989 Loma Prieta earth­

quake and isoseismal maps for selected historic earthquakes in the San Francisco Bay

region, Naval Civil Engineering Lab Technical Memorandum 51-086, Port Hueneme,

California.

McJunkin, R.D. and J.T. Ragsdale (1980a). Compilation of strong-motion records and

preliminary data from the Imperial Valley earthquake of 15 October 1979, Calif. Div.

Mines and Geology Preliminary Report 26, 53 p.

McJunkin, R.D. and J.T. Ragsdale (1980b). Strong-motion records from the Livermore

earthquake of 24 and 26 January 1980, Calif. Div. Mints and Geology Preliminary

Report 28, 91 p.

Maley, R., A. Acosta, F. Ellis, E. Etheredge, L. Foote, D. Johnson, R. Porcella, M. Salsman,

and J. Switzer (1989). U.S. Geological Survey strong-motion records from the northern

California (Loma Prieta) earthquake of October 17, 1989, U. S. Geol. Surv. Open-File

Rept. 89-568, 85 p.

Porcella, R.L. (1984). Geotechnical investigations at strong-motion stations in the Imperial

Valley, California, U. S. Geol. Surv. Open-File Rept. 84-562, 174 p.

Porcella, R.L. and R.B. Matthiesen (1979). Preliminary summary of the U.S. Geological

Survey strong-motion records from the Ocotber 15 1979 Imperial Valley earthquake,

U. S. Geol. Surv. Open-File Rept. 79-1654, 41 p.

Porcella, R.L. and R.B. Matthiesen, R.D. McJunkin, and J.T. Ragsdale (1979). Compila­

tion of strong-motion records from the August 6, 1979 Coyote Lake earthquake, U. S.

Geol. Surv. Open-File Rept. If9-885 and Calif. Div. Mines and Geology Preliminary

Report 28, 71 p.

Porter, L.D. (1978). Compilation of strong-motion records recovered from the Santa Bar­

bara earthquake of 13 August 1978, Calif. Div. Mines and Geology Preliminary

Report 22, 43 p.

Shakal, A., M. Huang, M. Reichle, C. Ventura, T. Cao, R. Sherburne, M. Savage, R.

Darragh, and C. Peterson (1989). CSMIP strong-motion records from the Santa Cruz

Mountains (Loma Prieta) earthquake of 17 October 1989, Calif. Div. Mines and

14

Page 15: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Geology Report No. OS MS 89-06, 196 p.

Shakal, A., R. Darragh, M. Huang, T. Cao, R. Sherburne, R. Sydnor, P. Malhotra, C.

Cramer, J. Wampole, P. Fung, and C. Peterson (1992a). CSMIP strong-motion

records from the Petrolia, California earthquakes of April 25-26, 1992, Calif. Div.

Mines and Geology Report No. OSMS 92-05, 74 p.

Shakal, A., M. Huang, T. Cao, R. Sherburne, R. Sydnor, P. Fung, P. Malhotra, C. Cramer,

F. Su, R. Darragh, and J. Wampole (1992b). CSMIP strong-motion records from the

Landers, California earthquake of 28 June 1992, Calif. Div. Mines and Geology Report

No. OSMS 92-09, 330 p.

U.S. Dept. of Commerce (1972). United States Earthquakes, 1972 (J.L. Coffman and C.A.

von Hake, Eds.) 119 p.

U.S. Geol. Survey (1974). Seismic engineering program report, U. S. Geol. Surv. Circular

713. 19 p.

U.S. Geol. Survey (1975). Seismic engineering program report, U. S. Geol. Surv. Circular

717-A. 17 p.

U.S. Geol. Survey (1979). Seismic engineering program report, U. S. Geol. Surv. Circular

818-A. 20 p.

U.S. Geol. Survey (19SOa). Seismic engineering program report, U. S. Geol. Surv. Circular

854-B. 25 p.

U.S. Geol. Survey (1980b). Seismic engineering program report, U. S. Geol. Surv. Circular

854-C. 19 p.

U.S. Geol. Survey (1981). Seismic engineering program report, U. S. Geol. Surv. Circular

914. 19 p.

15

Page 16: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Tabl

e la.

Cutoff distances

for

peak a

cceleration

EQ#

YEAR NAME

CUTOFFDIST (km)

8 19

40 Im

peri

al Va

lley

>

12.0

18

19

52 Ke

rn C

ount

y 14

8.0

32 19

57 Daly

City

>

8.0

50 19

66 P

arkf

ield

63

.6

58 19

68 B

orrego M

t.

105.

064

19

70 Lytle

Creek

13.0

65 19

71 San

Fern

ando

72 19

72 Bear Va

lley

76 1972 Sitka

79 19

72 M

anag

ua84

19

73 P

t. Mu

gu97 19

74 Hoi li

ster

>

109

1975 Or

ovil

le

137

1978

Santa Barbara

> 144

1979

St. El

ias

>14

6 19

79 C

oyot

e La

ke14

7 19

79 Imperial Va

lley

153

1980

Li

verm

ore

Vall

ey!

>154

1980

Livermore

Valley2

>15

5 19

80 Horse

Canyon

328

1989

Loma P

rieta

349

1992

Petrolia

352

1992

Landers

119.

9

20.2 for

H tr

igge

r, > 60.7 f

or V

tr

igge

r31.0

145.

0 >

5.0

50.0

> 17

.0

8.0

> 14

.0

> 25

.443.0

64.0

40.

48.

47.

80.

45.

Table

1b.

Cutoff distance d

istances used f

or re

spon

se s

pect

ra

EQ#

YEAR

NA

ME

CUTOFFDIST (km)

8 19

40 Im

peri

al Va

lley

18

1952 Ke

rn C

ounty

32 19

57 D

aly

City

50 19

66 P

arkf

ield

58

19

68 B

orrego M

t.64

19

70 Lytle

Creek

65 19

71 San

Fern

ando

76

1972 Sitka

79 19

72 M

anagua

144

1979

St.

Elias

146

1979

Coy

ote

Lake

147

1979

Im

peri

al Va

lley

328

1989

Loma Prieta

349

1992 Petrolia

352

1992 Landers

> 12

.014

8.0

> 8.

063.6

105.

013

.020

.2 for

H tr

igge

r; > 60.7 f

or V

tr

igge

r 14

5.0

> 5.

0 >

25.4

43.0

64.0

68.7

45.3

65.4

CUTO

FFDS

.OFR

7-

15-9

3 3:

49p

Page 1

of

1

Page 17: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Tabl

e 2a.

Records

from

previous

work eliminated from t

he c

urre

nt

regr

essi

on a

nalysis

of peak ac

cele

rati

on.

DATE

EART

HQUA

KEDI

ST ST

ATIO

NLAT.

LONG.

21-Jul-52

Kern C

ount

y 21-Jul-52

Kern C

ount

y

21-J

ul-5

2 Kern C

ount

y 21-Jul-52

Kern Co

unty

21-Jul-52

Kern C

ount

y 21-Jul-52

Kern C

ount

y

7.40 14

8.0

San

Luis

Obi

spo

35.285 12

0.66

07.40 3

59.0 H

awthorne,

NV

38.5

50 11

8.63

0

7.40 15

6.0

Colton:

SCE

Subs

tn.

34.0

60 11

7.32

07.40 2

24.0 Bi

shop

37

.360

11

8.39

67.40 2

93.0 H

ollister C

ity

Hall

36

.850

12

1.40

07.40 3

70.0 E

l Centro A

rray S

ta 9

32

.794

11

5.54

9

28-Jun-66

Park

fiel

d 28-Jun-66 Park

fiel

d 28

-Jun

-66

Park

fiel

d

6.10

63.6 S

an L

uis

Obis

po6.10 10

5.0

Taft

6.10 11

2.0

Buena

Vista

Pumping

28-Jun-66

Park

fiel

d 6.10 12

3.0

Hollister

City H

all

35.285 12

0.66

035

.150

11

9.46

035

.160

11

9.35

0

36.8

50 12

1.40

0

9-Apr-68 B

orrego M

ount 6.60 14

1.0

Devi

l Canyon

34.2

00 11

7.33

09-Apr-68 B

orrego M

ount 6.60 2

00.0 P

asad

ena

- Ol

d Se

ism

Lab

34.1

50 11

8.17

0

9-Apr-68 B

orre

go M

ount 6.60 10

5.0

Pern's D

am

33.843 11

7.18

89-Apr-68 B

orre

go M

ount 6.60 12

2.0

San On

ofre

33

.370

11

7.56

09-Apr-68 B

orrego M

ount 6.60 14

7.0

Ceda

r Springs

- Pu

mp H

ouse

34.3

10 11

7.30

09-Apr-68 B

orre

go M

ount 6.60 19

7.0

Pasa

dena

- At

hena

eum

34.1

40 11

8.12

09-Apr-68 B

orrego M

ount 6.60 2

03.0 P

earblossom:

Pumping

Plan

t 34

.510

11

7.92

0

9-Ap

r-68

Bor

rego

Mount 6.60 13

0.0

Colton:

SCE

Subs

tn.

34.0

60 11

7.32

09-Apr-68 B

orrego M

ount 6.60 18

7.0

Long

Be

ach

- Te

rmin

al Is

land

33.

770

118.

230

9-Ap

r-68

Bor

rego

Mount 6.60 2

11.0 Hollywood

Stor

age

Bldg

PE

Lo 3

4.09

0 11

8.34

0

2-Oct-69 S

anta Rosa,

C 5.60

2-Oct-69 S

anta Rosa,

C 5.70

62.0 S

an P

ablo

62.0 S

an P

ablo

37.9

80 12

2.34

037

.980

12

2.34

0

12-S

ep-7

0 Lytle

Creek

12-Sep-70

Lytle

Creek

12-Sep-70

Lytle

Creek

12-Sep-70

Lytle

Creek

5.30

19

.0 C

edar S

prings

- Miller C

anyo 3

4.28

0 11

7.33

0 5.

30

21.0 D

evil

Canyon

34.2

00 11

7.33

0

5.30

13

.0 W

rightwood

5.30

22.0 C

edar

Springs

- Pu

mp H

ouse

12-Sep-70

Lytle

Creek

5.30

29.0 C

olton: SCE

Subs

tn.

34.3

60 11

7.63

034

.310

11

7.30

0

34.0

60 11

7.32

0

9-Fe

b-71

San

Fernando

9-Feb-71 San

Fernando

9-Fe

b-71

San

Fernando

9-Fe

b-71

San

Fernando

9-Fe

b-71

9-

Feb-

71

9-Fe

b-71

9-

Feb-

71

9-Feb-71

9-Fe

b-71

9-

Feb-

71

San

Fern

ando

San

Fern

ando

San

Fernando

San

Fernando

San

Fern

ando

San

Fern

ando

San

Fernando

9-Fe

b-71

San

Fernando

9-Fe

b-71

Sa

n Fe

rnan

do9-

Feb-

71 San

Fernando

6.60

20.2 Lake H

ughe

s St

a 9

34.6

10 11

8.56

06.60

21.1 Gr

iffi

th P

ark

Obse

rvat

ory

34.1

18 11

8.29

96.60

21.9 P

asadena

- Ol

d Se

ism

Lab

34.1

50 11

8.17

06.60

87.0 C

edar S

prings

- Miller Canyo

34.2

80 11

7.33

0

6.60

23.4

Lake H

ughes

Sta

1 34.674 11

8.43

06.60

24.2

Castaic

34.5

60 11

8.66

06.60

28.6 P

almd

ale:

Fi

re S

tation

34.5

78 118.113

6.60

37.4 Pearblossom: Pumping

Plan

t 34

.510

11

7.92

06.60

64.0 Fort Tejon

34.8

70 11

8.90

06.60

66.0 Ed

mons

ton

Pump

ing

34.9

40 11

8.83

06.60

88.0 C

edar S

prings

- Pump H

ouse

34.3

10 11

7.30

0

6.60

24.6 Hollywood

Stor

age

Bldg

PE

Lo 3

4.09

0 11

8.34

06.60

46.7

Oso P

umping Pl

ant

34.8

08 11

8.72

06.60

56.9 P

alos V

erdes

Estates

33.8

01 11

8.38

7PA

JBOU

T.OF

R 7-16-93

11:43a

Page

1 of

2

Page 18: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

9-Feb-71

9-Fe

b-71

9-Fe

b-71

9-Feb-71

24-Feb-72

30-Jul-72

30-J

ul-7

2

21-Feb-73

1-Aug-75

1-Au

g-75

1-Aug-75

1-Au

g-75

28-Feb-79

6-Aug-79

6-Au

g-79

£

6-Au

g-79

03

15-Oct-79

24-Jan-80

27-Jan-80

25-Feb-80

25-F

eb-8

025-Feb-80

San

Fernando

San

Fernando

San

Fernando

San

Fernando

Bear V

alle

y

Sitka

Sitka

Poin

t Mu

gu

Orov

il le

Orovi

I le

Oroville

Orovi lie

St.

Elias

Coyo

te L

ake

Coyo

te La

keCo

yote

Lak

e

Impe

rial

Va

il

Livermore

Val

Livermore

Val

Horse

Canyon

Horse

Canyon

Horse

Canyon

6.60

6.60

6.60

6.60

5.30

7.70

7.70

5.60

6.00

6.00

6.00

6.00

7.60

5.80

5.80

5.80

6.50

5.80

5.50

5.30

5.30

5.30

61.4

62.

82.

91.

0 0 0

31.0

300.

145. 50. 8. 32.

31.

30.

40. 1. 23.

38.

64.

10.

11.

53.

47.

49.

0 0 0 0 0 0 0 0 6 4 9 0 8 1 1 7 2

Long

Beach

- Te

rmin

al Island 3

3Po

rt Hu

enem

eWh

eele

r Ridge

Col ton: SC

E Substn.

Hoi li

ster

Ci

ty H

all

Yaku

tat,

Al

aska

Juneau

Jensen Filter Pl

ant

Oroville

Paradise

Chico

Mary

svi lie

Mund

ay C

reek,

Alas

ka

Coyote Lake D

am

Corr

al ito

sCa

pito

l a

Yuma

Delta

Pump

ing

Plan

t

Delta

Pump

ing

Plan

t

Whitewater Cyn

Fun Va

lley

Caba

zon

34 35 34 36 59 58 34 39 39 39 39 60 37 37

.770

.145

.030

.060

.850

.510

.382

.312

.550

.727

.717

.149

.023

.118

.046

36.974

32 37 37 33 33 33

.730

.800

.800

.989

.925

.918

118.

119.

118.

117.

121.

139.

134.

118.

121.

121.

121.

121.

141.

121.

121.

121.

114.

121.

121.

116.

116.

116.

230

206

990

320

400

670

642

496

500

681

815

577

966

550

803

952

700

620

620

655

389

782

PAJB

OUT

.OFR

7-

16-9

3 11

:43a

Page

2 o

f 2

Page 19: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Tabl

e 2b

.

DATE

28-Jun-66

28-Jun-66

12-Sep-70

12-Sep-70

H

9-Feb-71

VD

9-Fe

b-71

9-Fe

b-71

9-Feb-71

9-Fe

b-71

9-Feb-71

9-Fe

b-71

9-Feb-71

9-Feb-71

9-Fe

b-71

9-Fe

b-71

9-Feb-71

9-Feb-71

9-Fe

b-71

9-Fe

b-71

Records

from

regression o

f

EART

HQUA

KE

Park

fiel

dPa

rkfi

eld

Lytl

e Creek

Lytle

Creek

San

San

San

San

San

San

San

San

San

San

San

San

San

San

San

Fern

ando

Fern

ando

Fernando

Fernando

Fernando

Fernando

Fernando

Fernando

Fernando

Fern

ando

Fernando

Fernando

Fernando

Fernando

Fern

ando

prev

ious

work e

limi

nate

d from t

he c

urre

nt

response s

pect

ra.

M 6.10

6.10

5.30

5.30

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

6.60

DIST

63 105 19 13 20 21 21 23 24 28 37 64 66 24 46 56 61 62 82

.6 .0 .0 .0 .2 .1 .9 .4 .2 .6 .4 .0 .0 .6 .7 .9 .4 .0 .0

STATION

San

Luis

Obi

spo

Taft

Cedar

Springs

- Miller Canyo

Weight wood

Lake

Hughes St

a 9

Grif

fith

Park O

bser

vato

ryPa

sade

na

- Ol

d Seism

Lab

Lake Hughes St

a 1

Castaic

Palmdale:

Fire

Station

Pearblossom: Pumping

Plan

tFo

rt Te

jon

Edmo

nsto

n Pumping

Hollywood

Storage

Bldg P

E Lo

Oso

Pump

ing

Plan

tPalos

Verd

es Estates

Long B

each

- Te

rmin

al Island

Port

Hu

enem

eWh

eele

r Ri

dge

LAT.

35.285

35.150

34.280

34.360

34.610

34.1

1834.150

34.674

34.560

34.5

7834.510

34.870

34.940

34.090

34.8

0833

.801

33.770

34.145

35.030

LONG

.

120.

119.

117.

117.

118.

118.

118.

118.

118.

118.

117.

118.

118.

118.

118.

118.

660

460

330

630

560

299

170

430

660

113

920

900

830

340

720

387

118.

230

119.206

118.

990

PVJB

OU

T.O

FR

7-1

6-9

3

11:3

6aPa

ge 1

o

f 1

Page 20: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Table

3. Definition o

f si

te c

lass

SITE

CLASS

RANG

E OF

SH

EAR

VELO

CITI

ES*

A gr

eate

r th

an 7

50 m

/sB

360

m/s

to 7

50 m

/sC

180

m/s

to 3

60 m

/sD

less t

han

180

m/s

Shea

r velocity i

s av

erag

ed o

ver

the

upper

30 m

.

SITE

CLSS

.OFR

7-

11-9

3 4:24

p Pa

ge 1

of 1

Page 21: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Table

4.

DATE

19-May-40

21-J

ul-5

2 21

-Jul

-52

21-J

ul-5

2

21-J

ul-5

2

22-M

ar-5

7

28-J

un-6

6 28

-Jun

-66

28-J

un-6

6 28

-Jun

-66

28-J

un-6

6

9-Apr-68

9-Fe

b-71

9-

Feb-

71

to

9-Fe

b-71

M

9-Feb-71

30-J

ul-7

2

23-D

ec-7

2

21-F

eb-7

3

28-N

ov-7

4

28-N

ov-7

4 28

-Nov

-74

28-N

ov-7

4

13-Aug-78

13-Aug-78

13-A

ug-7

8

28-F

eb-7

9

6-Au

g-79

6-Aug-79

6-Au

g-79

Records

used th

e de

velo

pmen

t of

th

e equations

for

peak a

ccel

erat

ion.

EART

HQUA

KE

M DIST ST

ATIO

N LAT.

LONG

.

Impe

rial

Va

il

Kern C

ount

y Kern C

ount

y Kern C

ount

y

Kern C

ount

y

Daly C

ity

Park

fiel

d Pa

rkfi

eld

Park

fiel

d Pa

rkfi

eld

Park

fiel

d

Borrego

Mount

San

Fern

ando

San

Fernando

San

Fernando

San

Fernando

Sitk

a

Managua

Poin

t Mu

gu

Hoi li

ster

Hollist'er

Hoi li

ster

Hoi li

ster

Sant

a Ba

rbar

a Sa

nta

Barb

ara

Sant

a Ba

rbar

a

St.

Elias

Coyote L

ake

Coyote Lake

Coyote L

ake

7.00

7.40

7.40

7.40

7.40

5.30

6.10

6.10

6.10

6.10

6.10

6.60

6.60

6.60

6.60

6.60

7.70

6.20

5.60

5.20

5.20

5.20

5.20

5.10

5.10

5.10

7.60

5.80

5.80

5.80

12.0

42.0

85.0

109.

0

107.

0

8.0

16.1

17

.3 6.6

9.3

13.0

45.0

17.0

25

.7

60.7

19.6

45.0 5.0

16.0

17.0 8.0

10.0

10.0 0.0

11.0

14

.0

25.4 9.1

1.2

17.9

El Ce

ntro

Array S

ta 9

Taft

Sa

nta

Barbara

Pasa

dena

- At

hena

eum

Hollywood

Stor

age

Bldg PE Lo

San

Fran.: Go

lden

Gate

Park

Cholame-Shandon: Temblor

Park

fiel

d: Ch

olam

e 12U

Park

fiel

d: Ch

olam

e 2

Park

fiel

d: Ch

olam

e 5U

Park

fiel

d: Ch

olam

e 8W

El Centro A

rray S

ta 9

Lake H

ughes

Sta

12

Pasa

dena

- At

hena

eum

Urig

htwo

od

Lake H

ughes

Sta

4

Sitka

Mana

gua:

ES

SO R

efin

ery

Port

Hueneme

Hoi li

ster

- Sago V

ault

San

Juan B

auti

sta

Gavi

lon

College

Geol

Bldg

Hoi li

ster

City H

all

Santa

Barbara

UCSB

: Ph

ysic

al Pl

ant

Goleta Substation

Icy

Bay

Gilroy A

rray

1

Gilroy A

rray 6

San

Juan B

auti

sta

32.7

94

35.1

50

34.420

34.140

34.0

90

37.770

35.710

35.6

39

35.733

35.6

97

35.6

71

32.794

34.570

34.140

34.3

60

34.6

50

57.060

12.1

45

34.145

36.765

36.8

46

36.973

36.8

50

34.4

20

34.422

34.4

70

59.968

36.973

37.0

26

36.8

46

115.549

119.

460

119.

700

118.

120

118.

340

122.

480

120.

170

120.

404

120.288

120.

328

120.

359

115.549

118.

560

118.

120

117.

630

118.

478

135.

320

86.3

22

119.206

121.446

121.536

121.

568

121.

400

119.

700

119.

851

119.

890

141.

643

121.

572

121.

484

121.536

G HO

LE PA_H1

PA_H

2

C B B B C A B B C C C C B B B C A C C A B B C B B B B A B B

107

201 96

92 63 173

200

228

197

198

107 86

92

88 71 96 192

196

.359

.196

.135

.054

.062

.127

.411

.072

.509

.4

67

.279

.142

.374

.114

.057

.200

.110

.390

.130

.011

.120

.1

40

.170

.210

.3

90

.280

.160

.127

.419

.1

10

.224

.177

.090

.048

.044

.105

.282

.066

.403

.276

.061

.288

.103

.047

.159

.090

.330

.080

.008

.050

.100

.100

.100

.240

.240

.110

.100

.344

.090

REFERENCE

CIT:

EERL 76-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76-02

CIT: EE

RL 76-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76-02

CIT: EE

RL 76-02

CIT: EE

RL 76

-02

CIT: EE

RL 76

-02

CIT: EE

RL 76-02

USDC

: USEQ72

USGS:

Circ.

713

USGS

: Ci

rc.

713

USGS:

Brad

y

USGS

: Ci

rc.

71 7- A

US

GS:

Circ

. 71 7- A

USGS

: Ci

rc.

71 7- A

CDMG:

OSMS P

R 22

CDMG:

OSMS P

R 22

CDMG:

OSMS P

R 22

USGS

: Ci

rc.

818-

A

USGS

: Ci

rc.

854-

C

USGS

: Circ.

854-

C US

GS:

OFR

79-385

PGA

TBL.

OFR

7

-12

-93

10

:03p

Page

1 o

f 6

Page 22: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

fOiOt

OO

CO COoo coco

§5OO

CO CO CO O OO CO CO CO

roso^fMfM«-

«- »- (0i i «* > < > > i i a: v» i i i i «* at i >* i -4- p> p>inp>p> p>O Op>p> o.in<> p^o om o.p>in p> in

S. S. fM S- S- S- h> h> N- S- CM P. P. fs. fs. (\J S-fM S- OfvJ O*££!_ co«- «-</>«- x os at at of ae at at at at x at at at at foeoooolooooooor^^--- 0^-^

«* in*

ino.inp> _ 4)ru f\is- o o«- o«- co«- o

_ U L. X OS L. u- OO.OO.COO.u-O

ooo ooo

CO CO CO OO O CO CO CO

ooo

OCOCOCOCOCOCOCOCOCOCOOCOCOCOCOCOCOOCOCOCOCOCOCOCOCOCOtDCOCOCOzoooooooooozoooooozooooooooozoooOCOCOCOCO(/)COCO(/)W(/)OCOCOCO(/)(/)(/)Q(/)(/)(/)CO(/)(/)(/)(/)(/)QCO(/)CO

» OOOOOOOOOO«-OOOO OOMOOO-OO OlA OfMOMin «* »O o o N- N- co f\» «* «- o N- CM co eo M »O »- in <M co >»J «* tM «O in «* M <\J M (M (M M <\J »- <\J M OM«M»-«-»-O»-

000ooo + + +COCO COoooCO CO CO

ooo ooo + + +CO CO CO- o o

CO COuCO

oooooX XX XXooooo ooooo + + + + +CO CO CO COCOoooooCO CO CO CO CO

ooooX XX X

8 000 ooo

+ + + +CO CO CO COooooCO CO CO CO

ooo «-m <o ooo

§ 0 00M in»*«-O OO

oooof\«^**<VJ fMOOO

O* incOsO_ . -. . _ inN-mro (\joo»-o rorooo

coco oooC0>* rvj sflsON-«- rorominN- ininin

oooooooooooooooououuooooouoooooo co co co ooo

«**\j (\J

oooo

§ O(M roco i»-m»-in»- coo^o

_ _ _ . >»- rocooN-fcssss f-^ 955 ^(MfM (MfM(M

ininin ininininininininininininininininininininininininininininininin»o(M(M(M(M

tnN-f\« §88

OOLTv(M(M in «>«* O> CON- <<)»

O^ (MO ins. coCMnovO N! s." s! co s.' is." is." is.' s!sOS- S- >OsO

row rororo

2 0

s

3 X ...tO f t- L. L.

> I. L. L. C (Dg>-i en

t L. L. L.

(D (0 ..-. ..-oo ac ooo

N-ro«* roinfsl

OON.N- N-N.N-

L.0 > O

/M

- «- f\| -t-«-«-

2 -g1

*- o xx

*J 4J O *-« 4-> C 4-« CO C0«- CO CO O CO

0)>

CO CO CO CO

O C+ o

'(0(0 (D(D>*-(D(D Q.O. (D E

OOO4Jt_OOOOOOO

>(D (D(D(D

t_ t_ L. I_I_L. >.<<< <ow rOOO flJO

(Den C > tS

CC3 CCCCC C(OCCl)-^a«cua.co(i)cucucucu>cuucu 'x*L. (- QL (0 O 3 O.O CO

.<MO-i-O 3 C) O <04-> x (0 oen

___ 0) O O <U 1- (D > 3 CD X: (D O CD LULULU<mLULULLJLLJLLJZLLJZLLJCCOLLIO2LIJOLIJLIJLIJOOQ.O

- O U Z>OO

tuCA (Do *-

c >.(D (D

CO L.t_

.C C < u oO -I

t- (/> LU 4J W LLJ C Q.

X (- (DO L- W **'Ho

T3 CD C E 3 *- O) en(D (D U- UJ

oXt- o4-> CO

Of Of X

c c re a re L.CO CO 1

(0 Oo> l_ *J O C

o*"- Oen § (0 (DC

aeee <a0) >> c c.*

^- (D (D (D 1 CO CO O

COCO CO COCO

inin in in in

(\J(\J(\J(\JMMM**«*<O

____________________ >ooooooooooininininininininininininininininininininininininininininininintn

OM o in<ooo «*N-(\JCO

o o tt»4-< 4-< 4-<oooXX

0 Oou

S1 ?^3 ^3 ^3 ^3 ^3

ininin ininin ininininm ininmin

(D re (D (D (D (D

4)4)4>4>4) 4)4)4)4)

OOOO CO CO CO CO

SSS S^^^^^^^^8S^8^^^^^in in in inininininininininininininininininininininininininininininininin

c c c c

ts.ts.ts.N-N- (\J <\J (\J (\J (\J

ts.ts.ts.rs.(MfMfMfM

22

Page 23: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

co co co co co oo oo oo oo oo co oo oo co oo co co oo oo oo oo oo oo oo oo oo co co oo oo oo ooooooooooooooooooooooooooooooo oooooooooooooooooooooooooo 0000600006000 ooooo oooooooooooooooooooooooooo ooooooooooooo

OOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOO

oooo ooooooo oooo

0)0)0)0)0) 0)0)Q)0)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)0)Q)Q)Q)0)Q)Q)

O O O O O O O O O O O O O O O O O O O Q* O O O O O O O O O O OU1 U1 U1 U1 U1 U1 U1

WWWWWWW ooooooooooooo

-P-WOOO-*

OOOO

Iffl>

i-»w~go>or\»uiwo~vi>oooOO3:3:>CO^CO03>>>ZCO3:O>OCOCOOCOCOOOO~-i Q) 0) ^3 O O C fD ^3 ^3 ^ -t O 0) Q) O 3 0) Q) -t Q) Q) Q) 0) Oco^^mQjt^* mmmwio < Q. » ~»T^--I-I<TI-I

ccm-ifl>o3mmmco£iQ)* on>~i >f ~? o> o> ?CO Q) Q) r- -|^-OI I"I" C/)<Cflif-(OC..Q)O'fif' r+ Q)c -i -i < 3 o n> n> c/»< o <oooo -»Q.a.>Q)O-nif>>>3Q.~»< O c/> O " to to 3

(D 0) 0) r 3 > n "» 0) 0) 0) »fcoo -» < -» rf "^^ 00 Q) fD W fD

»f-< w Q) co n> -< 3^< a) n> ' - -- -- -- -- -- - i) n>t (O

fl>Z if if Q)

TJ 0) CO 0) 0) CO if 0) if "D 1 * Q) W W11 O* if m 3

x o <n . 3 W-n -n O-n -n 0)

3

QJ QJ COu 3

O

CO fl>

ijnjiwirvjoooo^i->i«nown

QJ --QJ QJ 0) . O >3"O

1^

_ -^^ W 'a)ooa>3Q)Q) of n>o if'3 C 3 f 3 3 -n< C Ji O > 3 *- O 0) O3-Q) 1

0) -» < 3 if > 0) O ^J O -n if > < 0> « X CO < O CO 3 0) -» »f i O CO 3 fl>0) COS-t«0) O 3"O 0)-"33 3CO^fl) o a. co Q. it -»

a: o 0) -» n: 3-3; ft o)

CO X -H

3

<VQ>-»vitaOO

3 Q.OC. if O M Q) .. QJ O O 3 CO Q. 3 f O rf < -O O 0)

I O

0) e_ n> 0) (Q 3 O O

CO 3 CO O rf TJ -» O -»

CO " 3M coin .. o 7)

-I C 0) C0) n> 3 -»3 -» O ?Cfl if 3" fl>if Q) O < 03 i- Q.O

0) ffi -»-n n>o o > o -»-» 3 ?n> C NCO N QJ

O

Q)

CO

0) 3 <& <Q N 3 ~»n> ox c o

-» -n fl> (O

Q) (0CO if -»

Q) ft O CO

o Q. ^- <o(O(Q 3 if

>o oo o)WOCOOO

o ~go 0*^000

oooo QX QX QX QX QX QX QX

OOOOWOO » WWO-»WI\)WU1

-go o o -» w co w w w w>o roco -siuno-p-ooo uiooun >oooCOCO COO >O O OOO *^ -» INJ-» U1O »U1 r\JCO OO OO UICN U1Orvjrv o-» un-» oco w w -»>o co~g *s »co*^ wo>o>o ->O3 ro w

-g*J1

OOOOO ODOOODOOODOOODOOOOOOOOOOOOOOOOOOOOODODODODODODODODOO

INJ » rvj INJINJINJ rvrorv) » -»w -» _»-»-» rvo-» ooo -P- wroo oo-* ro

OOOOunoco

OOO-»-»rv)«^^->co ro ^i o o -»

_»O-»-»

oo-»ooo-»-»-»-»-»-»oo-»-»ro »rvj*»r\jr\»i»nwun( oooco-g>oo-»oorNJWCocoi - .-._...._ OOOO(~~~~~~~~~~

Scoococooocoocoocooooooooo oooooccooocco COOOCOOCOOOOCOOOCOOOCOOOOOOOOOO OOOOOCOCOOOOCOCOO

ZOZZOZOZZZOZZOZZOZZZZZZZZZ ZZZZZOCDZZZOCDZOtOOOCOOCOOOOCOOOCOOCDCOOOOOOOOOO OOOOOCOCOOOOCOCOO

CO CO CO COooooCO CO CO CO

o oo o-» oo »** w o »o-^->i-P-r\>-P-.p-o o

c c c: _ CO CO CO CO CO CO COo o o o n o nCO CO CO CO CO CO CO

CO CO CO CO O (7) IT) (7) CO CO CO CO

O ^5 ^5 ^3 ^3 -n co co co co 33ZZZ Z

CO CO CO CO 00OOO OOOO 00

i OOOO U1 i i i i

too oo o

oooooooooooooooooooooooooo co-ncoco-nco-ncococo-ncoco-nc/)co-ncococococococococo

CO COCOCO CO CO COCO COCO CO CO CO CO CO CO CO CO COCO CO CO CO CO CO CO CO00 00 00 00

OOOOOOOOOOOOOOOOOOOOOO OOOOOiiOOOiiO

U1U1

ooooooo

ooooooo

o oo n

oooo

oooooooooooooooooooooooooo ooooooooooooo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOCOCOOOOCOCOO

00 OOOO 00 U1U1U1U1*s *>*>*>

Page 24: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

in in in i in

CO CO (M CO CO CO CO

in in in in in o oo oo(M i <(M(\J «PJPJ

O O O O C) OcooococooooococoXC-(-XX(-(-(-<-ZZ COOOCOCOOOOOCOCO OO.O.OOO.O.O.O.OO

xooo xo x xo x xooo x xXi i iXiXXiXXi i iXX

fMfMfM i fM i i fM i i fMfMfM

CO CO CO CO CO CO CO CO CO CO CO CO CO CO COCOttzxxctfxctfcexctfctfzzxctfctfxctfxctfxxxxctfxxU-COOOCOU-COU-U-OOU-U-COCOCOLl-U-COU-COU-COCOCOCOU-COCO

U>COCOU>U>U>COCOCOU>COU>COU>_JU>U>U>U> C3COCOC3C3COCOCOCOOO ZC3C3ZZC3C3C3C3ZH QCOCOQQCOCOCOOOQQ

ooooooooooooooooooo N.O>»r»3-o>«-o>o<oooo»3-K>>3-o<o»nN.oo«- «- CM w O fM w fM «- *- O fM «- O fM fM O fM O

oooooooooO

ovO

COCJCJCJCOCJCOOOC3COCOC3OOCOOOC3COC3COC3OC3C3COC3C3 UJOZZZC3ZC3OZOC3XZZOC3ZOZC3ZXXXC3ZXucooaacoacocoacocoaaacocoacoacoaaaacoaa

ooooooootoooooooooooooooooooo MfMir>N.ir>M>Oininf\joOfM>*-MvOinM«*«*«*MfMOOir>ir>M<O«* ^o«-ooooooo»-ooo*-oooooooooooooo

I

ooooofMMOfMO «-fMfM«-«-fMfM«-«-«-

ooooooooMO>J<OO»r>O>00 M«-OfMfMOfMO

!£ 8 «*ir»a-M>*-in«*ir>fMOO>*-inM«*MOO»-OOOOOOOOOOOOOO

fMM fMM«*«*lT> . . . (M«- «-«-«-«-«- «-«- «-«- «-

uuuououuuuuuuuuuoou

)>J -O >"- fM

fM fM fM fM fM fM fM fM fM fM (M fM

-OcoeofMLnofMoosOrou-icocOvtfMcoo^ooO'OinvOcotoOinoo

T3 C '

(0

X4-1

U

S- (0

o4->

XW(_ QJ

O h-4-> CO U

(M I

U

CXCJ * >

4-> L.

CO

0) <Q>

3 Xo c ccO)D <CO

4-> O d> (- O ""^'^ Q"~"S< X

to to to a ro 3 t-4J 4J 4J t_ 4J O) OCO CO CO' CO (0 tO 4-«

< U. > COX X O X (0 i 0) (0 L. O z fM_, i_ .,- _, a> i

O A

0) *J3OT3

(A <(-4->(0< <0<OO<0"DC"D-'- <Q<OC> Cl->GT3C«3Cs- C >«- O _l-f-u. (_V<OOD<OC."- o c E <- LU <- a> E < o <(oa><OLu^c<o><o^(/)^a><0<04Jt-OQ.3«JO '<QO<0(- COa.COU.CQ<OCOCQ_l<O lOd

U- ' O)

§ M O T3 C 'DO-' O«-> a>->- c Of co

^ 4-> O O O 4J CO .C 1- tO 3 CO 4J (0

< to Ecorouc J coU- 00 C) O CO 4-> O

Q. L. o c a» L. c_ < ( (A U. I- 4-> O Q. ul _ xu < tax ' u.s-to a»

> - to to oco<-» < » ^^OCC(0 ft)(0 (0

4->CCO(-(_ -^ 3~V L. L.

a. co u of u- u. _i o to co LU u.o o

->U4->a roa >

c X tO

. . 4-> w4->to

3(- O

c to«->'D C <X4-»t-

cc a» O "tO Z 4->

Coo-' (-to a» 0)

eg o;4-> toc 4->4->c

a 4-> c 3 < E c toco a <o X <- to t- ' c» a a. ^4-> oo. 'to oc00 O) tO tO

(_<Q4->C 'CO..o>O eo

CK (- <o; u.Vac

o

C O

n x0> C

.& ~O<o*-'t- o a» to <c en _. .t- o) to to ca.(- CO (- Q.E

. <o g a» x 3 o x wo3 to 3 0» T3 CJ O TJ G (/! O

u- C W (/)U.J=4->O. < -(- 3 <(/)O(-o u- o a> to o <Q(/)<DO4J<Q-f- <a>Q. XX J= J=U3 Wb(-gJ=J=COT3^} 'ao to o a» o <j=c-'bEa>ouo) to i- 4-- .QT>Nccnc !_£: > -c i_ to 4--t- E 4» C -^ fO - JC. 3 <0 <0 to 1- 4-> to O

t

N

OOOOOOOOOOO

ooooooooooo o(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)(/)

ooooooooooooooooooo00000000000000000000000000000000000000

24

i(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0 (0

fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM fM

clclaaaaaaclaa a §§§§§§§§§§§§§§§§§§§§§§§§§§§§ §<««<<<<« < -> ~t ~t ~t ~t ~t ~t ~t -i -i -i -i -i -i -3 -3 -i -i -i -i -3 -3 -3-3 -3 -3 -3-3 -3

Page 25: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

000000000000 00000000000000000000 00000000 00

§§i§S5§§5§5§§§§5§§§5§S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

I

2.2.2.2.2.2.2.2.2.2.2.3.2.2.2,2.2.2,2.2.2. 2.2.2.12.112.2.2.2.2.2.2.2.12.2.2.2.2.12.2.2.2.2.2.2.2.2.3.2.2.2.2.2.2.2.2.2.2.2.2. fDfDfDfDfDfDfDfDfDfDfDfDfDrDQfDnjfDfDfDfD fDfDfDn>rDfDrDfl>rDfDfDfDrDfDrDrDfl>fDrDrDfDfDfDfDfDfDfDfDrDfDfDfDfDfDfDfDfDfDOfDfDfD<1>fD -1 -1 -1 -1 -1 -I<fl<flv><flv>v>v>v>v>v><nv>v>v>v>v>v>v>v>v>v> v)V)</>(nv)v>v)V)V)v>(nv)V)v>v)V)V)(nv)v>v)V)v>v)v)(nv)v>v>v>v)(f>v)v>v)V)v>v>v>v)V)V)V)V)

OOGOO lOGOGOGOGOZxOZZZGO"-"- |-O-< Oa>CfDfDQ>Q>Q>Q>fl>fpn * ~ - 1'-T3W«-3330Q.-i it 3 n n it o _ _ fDO-<>O~!OOOOOOOQ>Q>Q>r+rrc_O

CO 3 Q.C <t 3 fD fD fD 3 0>o -i-1-iiQ.-n-nnoi 3 ^o _ . _ _ _ OT _._.._._,. -ne_S.-i

; |/j i i i - 1 -Q -^Q> 3 3 3 70) fD 3 O.Q.O.O 1

ta coco 3 3 3 "

m-»ni TJ > 3 CD eov> it -i < * <7TXO

O 1 O 5C W «< O

JDTJ <

>-3 3 -t,-l it

in it n ~i 3-«< - O -n

OO"<r»O OTJ3o a> -i 7r a> ca W </> I O«Q W « W

rt rr -" 3" I O 3

it it -I 0) t C-.-.Q) ^«-3

O -1 >-0» Q.OV> 0)

n a.

UIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIUIMUIUIUIUI^^^^^^uiw^LnwLn^^^*~*~*~ww-fs--fs--fs--fs-*~^WLn^

'S3S30000 >- O- »S0WI\jW

nnonnnnnnoononnnnnnnn

o »oo o >< .P-w o oo v/i-P- oooooo<1OOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-vlO-OOO-vl

o »-»oo->o-»o-»-»oWVJ1O-

cnnngnnncggcggggg^cgg

oooooooo-»-*o-»ooo ->ooooo->oooo->oooooo->->-»-»o->roro-»-»oov/ioov/i-<>jv/iv/iv/irot>«iv/i-*s3ooo^ -*r>tKioos3s3rov/i«oo<>v/i-*ooo^s3v/i-<>jo<>^ro->j-^ootKirooov/iQOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOO-VI-P--OOOOO

ooooooooooooooooooooo -ncOCOCOCOCOCOCO-nCOCOTI(/)(/)(/)(/)(/)-n-n(/)(/)OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OO -------'-''-'-

_____ __CO CO CO CO CO CO CO COCO CO CO CO CO CO COCO

S3 S3 S3 S3 S3 l*IS3S3S3S3S3S3S3l*IS3S3l*IS3S3S3S3S3l*IUIS3S3i r\j i\» r\j IM i\» r\j r\j ' roi\» i roror>oror>o roroX OQOOOOOX OOX OOOOOX X OOx S3s3->js3-g-gs3x -j-jx ->j->j->j-«js3x x

xxxxooooooxooxxoxxxxoxxxxxxoxoxxxxxxooxxx XXXX->JS3->J->J->J->JX->J->JXX->JXXXX->JXXXXXX->JX->JXXXXXX->J->JXXX

Page 26: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

28-Jun-92

Land

ers

28-J

un-9

2 La

nder

s7.

30 11

5.3

Prado

Dam

7.30

117

.6 P

omon

a33

.888

117.640

C 34.056 117.748

C.0

90.050

.080

.070

USGS

: CD

MG:

OFR

93-x

xx

OSMS

92-

07

PGAT

BL.O

FR

7-12-93

10:0

3pPa

ge 6 o

f 6

Page 27: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Expanded R

eferences

for

Table

4:

Shor

tRef

LongRef

to

CDMG:

OSMS 89

-06

CDMG:

OSMS 92-05

CDMG:

OSMS 9

2-07

CDMG:

OSMS 92

-09

CDMG

: OSMS PR

22

CDMG:

OSMS PR

26

CD

MG:

OSMS

PR

28

CI

T: EE

RL 76

-02

NCEL:

Lew2

SCE

USDC

: US

EQ72

USGS+CDMG

USGS:

A Brady

Circ

. 713

Circ

. 71

7-A

Circ

. 818-A

Circ

. 85

4-B

Circ

. 854-C

Circ.

914

OFR

79-1654

USGS

: US

GS:

USGS:

USGS

: US

GS:

USGS:

USGS:

USGS:

USGS

: US

GS:

USGS

: US

GS:

USGS

:

OFR

79-3

85

OFR

89-5

68

OFR

93-x

xx

PP 1254

Porc

ella

.

Shakal et al.

(1989)

Shakal et al.

(1992a)

Calif. Div. Mi

nes

and

Geol

ogy

(1992)

Shakal et al.

(1992b)

Port

er (1978)

MeJu

nkin

and

Ragsdale

(1980a)

MeJu

nkin

and

Ragsdale

(1980b)

Calif. In

st.

of Te

chno

logy

(1976)

T. K. Lew

(1990)

S. Ca

l. Ed

ison

mem

oran

dom

date

d Ju

ly 3

0, 19

92,

from

T.

A. Kelly

U. S.

De

pt.

of Commerce (1

974)

PGA

H1 fr

om U

SGS: Circ.

914;

the

othe

rs are

from C

DMG:

OSMS

PR

28.

horTz. fr

om U

SGS: OFR

79-1654; ve

rt,

scal

ed b

y R. L.

Po

rcel

laA.

G.

Br

ady

(U.S.

Geological Survey,

written

commun., 1977)

U.S.

Ge

olog

ical

Su

rvey

(1974)

U.S.

Ge

olog

ical

Su

rvey

(1

975)

U.S. Geological Su

rvey

(1

979)

U.S. Geological Su

rvey

(1980a)

U.S.

Ge

olog

ical

Su

rvey

(1980b)

U.S. Ge

olog

ical

Su

rvey

(1981)

Porc

ella

an

d Ma

tthi

esen

(1979)

PGA

H1 provided b

y R. L.

Po

rcel

la (w

ritt

en c

ommun.); ot

her

valu

es in

Por

cell

a et al

. (1

979)

Ma ley

et

al.

(1989)

Ethe

redg

e et

al.

(199

3)Br

une

et al.

(1982)

R. L.

Po

rcel

la (U.S.

Geological Survey,

written

commun,

various

years)

PGAF

OOT.

OFR

7-13-93

6:43p

Page 1

of

1

Page 28: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Tabl

e 5.

DATE

19-M

ay-4

0

21-Jul-52

21-J

ul-5

221-Jul-52

21-Jul-52

22-Mar-57

28-J

un-6

628

-Jun

-66

28-J

un-6

628

-Jun

-66

28-J

un-6

6

9-Ap

r-68

9-Feb-71

to

9-Fe

b-71

00

9-Fe

b-71

9-Feb-71

30-J

ul-7

2

23-Dec-72

28-F

eb-7

9

6-Aug-79

6-Aug-79

6-Aug-79

6-Aug-79

6-Au

g-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-Oct-79

15-O

ct-7

9

Records

used in

EART

HQUA

KE

M

Imperial Va

il

Kern C

ount

yKe

rn C

ount

yKern C

ount

y

Kern C

ount

y

Daly C

ity

Parkfield

Park

fiel

d

Parkfield

Park

fiel

dPa

rkfi

eld

Borr

ego

Mount

San

Fern

ando

San

Fernando

San

Fernando

San

Fernando

Sitka

Managua

St.

Elias

Coyote L

ake

Coyote Lake

Coyo

te L

ake

Coyote Lake

Coyote Lake

Imperial Va

ilIm

peri

al Va

il

Impe

rial

Va

ilIm

peri

al Va

ilIm

peri

al Va

ilIm

peri

al Va

ilImperial Va

ilImperial Va

ilIm

peri

al Va

ilImperial Va

il

7 7 7 7 7 5 6 6 6 6 6 6 6 6 6

the

deve

lopm

ent

of th

e equations

for

resp

onse

spectra.

DIST STATION

LAT.

LONG

. G

.00

.40

.40

.40

.40

.30

.10

.10

.10

.10

.10

.60

.60

.60

.60

6.60

7 6 7 5 5 5 5 5 6 6 6 6

.70

.20

.60

.80

.80

.80

.80

.80

.50

.50

.50

.50

6.50

6 6 6 6 6

.50

.50

.50

.50

.50

12.0

42.0

85.0

109.

0

107.

0

8.0

16.1

17.3 6.6

9.3

13.0

45.0

17.0

25.7

60.7

19.6

45.0 5.0

25.4 9.1

1.2

3.7

5.3

7.4

14.0

26.0 .6 1.3

2.6

3.8

4.0

5.1

6.8

7.5

El Centro A

rray S

ta 9

Taft

Santa

Barb

ara

Pasadena

- At

hena

eum

Hollywood

Storage

Bldg P

E Lo

San

Fran.: Golden G

ate

Park

Cholame-Shandon: Temblor

Park

fiel

d: Cholame

12W

Park

fiel

d: Ch

olam

e 2

Park

fiel

d: Ch

olam

e 5W

Park

fiel

d: Cholame

8W

El Ce

ntro

Array S

ta 9

Lake H

ughes

Sta

12Pasadena

- At

hena

eum

Wrig

htwo

od

Lake H

ughes

Sta

4

Sitka

Mana

gua:

ESSO R

efinery

Icy Bay

Gi Iro

y Array

1

Gilroy Array 6

Gilr

oy Array 4

Gilroy Array 3

Gilr

oy Array 2

Parachute

Test

Site

Supe

rsti

tion

Mtn

El Ce

ntro

Arr

ay S

ta 7

El Centro A

rray S

ta 6

Bonds

Corner

El Ce

ntro

Array S

ta 8

El Ce

ntro

Array Sta 5

El Centro:

Differential Arra

El Centro A

rray S

ta 4

Holtville

32.7

94

35.1

5034

.420

34.1

40

34.0

90

37.7

70

35.7

1035

.639

35.7

3335

.697

35.6

71

32.7

94

34.5

7034

.140

34.360

34.6

50

57.0

60

12.1

45

59.9

68

36.9

73

37.0

26

37.005

36.9

8736

.982

32.9

2932

.955

32.8

2932

.839

32.6

9332

.810

32.8

5532

.796

32.8

6432.812

115

119

119

118

118

122

120

120

120

120

120

115

118

118

117.5

49

.460

.700

.120

.340

.480

.170

.404

.288

.328

.359

.549

.560

.120

.630

118.

478

135 86 141

121

121

121

121

121

115

115

115

115

115

115

115

115

115

115

.320

.322

.643

.572

.484

.522

.536

.556

.699

.823

.504

.487

.338

.530

.466

.535

.432

.377

C B B B C A B B C C C C B B B C A C B A B C C C B B C C C C C C C C

HOLE 107

201 96 92 63 173

200

228

197

198

107 86 92 88 71 192

196

195

194

193

116

105

104 97 106

103

112

102 99

SOURCE

n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nPS

VTB

L.O

FR

7-1

2-9

3

10:0

4pPa

ge 1

of

3

Page 29: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

cccccccccCO** O>OO «-N- 0*- 00*- «-«-

ouuouuuuuN-CMCM-J-vQN-OrOO<O«-oo>oro«-corM inin-j-inro>orovOinininininininininin

o«-ocM^oeooo-o coo>'^in«-«-'«ooro s. & 35 s- o s- o s- «-CMrVJIMCMCMCMCMCMrOroroKirorororororo

cj

o «- o KIT- «-CJ T-«-

4->CD (u (u ID 10 ID(/> tO </> tO tO tO

<o 10 ID 10 ID 10

0 0 0 0 O O

co cccccra0» X to to to to to CL USOJUUUUU

(0

in fr> f ^ in in in in in t >

iniA<O<OOOOOO

eocoocj^oeocjcjro«-«-«-»- CM CJ CJ

ooooooooo inmininininininin^o *o ^o ^o ^o ^o ^o ^o ^o

IOIOIOIOIOIOIOIOCD

lOIDIOIOIOIOIOIOlO

QUQQQQ&&QQ Q Q Q Q Q Q Q QBCBBBBBBE

£££££££££ooooooooo oooooooooininininininininin

O 3 3 O O O

CM «-O-Oo- «-OCM«- CVICMCVI

<M<O<O OS- CO! » -j- in o o co tn -j- s- ro co ro«-«-«-«-«- CMCM CM CJ CM CM <\J

KlinNOKiS- >frK- <OC>inON- O S- ro N- in 10<ONOS-NO<ON-ro ro ro ro ro ro

4-14-> a"3 ra no (. > > «-

L. ID O 0» <D-i- O) M Z (/>

«- (0 0»to at X

X <*J <D i 4-> C L. <0 £ O <0 l_ l_ *J L. < <L> U- 3 >.U-

4-> O 4) X (A >-(/> L. C O- I- 4) (D L. > L. O 4-> CO 0» «J C o.c< o .CJ Z O WZ W

in o.m«-N-^oO O-fM-J-CMN-«- tMroro^^o

CM CM CM «\l CM CM OO>OOOt>

^O ^O ^O ^O ^O ^«O

<D <D <D <D <D <D

O O O O CD O

0.0.0.0.0.0.

oooooo.00 00 00 00 00 CO

u u u u u u o oo ooo00 0000 000000

OOOOOOOOO3OODOO3OOO3ODOOD

oo in ^OCM ro CM »* «- N» CM o «- mco N- ro«- CM t>»* »*rotM <O«-«-«* «* in ro

rocMco«-ot>OKi»*eo»-vtN-ooo«-roroooo«-in«-<ocM OinvOroo>O>OOooc\jin»-oin»-fMT-vtocp'«Ot>>Ooooo oot>inooinoeo>3->OinN-eocMt>rorororoooro«-ooo«-«-«-f\J«\l«-CM«-«-«-«-«-»-CM«-r\H\K\ltM«-«\l«-tMtMtM CMtMtMtM«\ltMtMCMfVJC\JtMtMtMCMfMCVJfVfMtMfMtMtMfVJ«\ltM

lO-J-KlintMO-'-OiO'OvtCOCMO'OCO'J-infVJN-O'KlN-OO'>3-N-S>in'«ooo«-tM<OfvJrointMrol>».oo>O«-O'CMSwinN-N- oO-O-fM«\joo<\JO«-«-ro>*>3-in^>3-»*ininin^o^o^o>o

MrororororoMMrorororororororororororororororoKi

j 5 iO) - * * Q> **" £ Doa:i.4-i QU.U. O 4-> 3 o u. u. CD ID (A O

>0» » C </) (AC* * 0) (A 0) X O) O Z 8 3 1. O L. C

' O <L> O O C»- LU4-> O (D.C t- O O-N-«- Ot_mrO<D

>0» >0» Q. 4-> 0) t- (D E 1- (A(D(D(D 4->tO(D(DtO(D O) 4->"- +J <O <D <L> O4-i4-i4-i <D 4->4-i X <L> (AU- C O CA -> to to to 4-> IO tO H- 0» <D >- E X <L> tO<D OCX 3TJ V> 10 0} to to cx CXXX 4-> X X< 4->

CA o u L. o -^ nnraiD <L> w o> nj oa -O U "O 3 t- <D (A IO t- L. L. L. > L. U 4-> <D (0(0 L. 0» < C 1 (D ID 0> L. L. L. - !__> |_ .__>CO>a>"O(A O >l-'DC<«<l->u-UID<TI'U > o o o o x OXMO> a>->-o c > i_i_ID4-I '4->4->OID->O(.4-i(A>(A->-_l_l_lO '(- _IIDID L.->-->-IDIDI-4-i L. 0) O - '(D"D(/5UJUJUJEOa>L.UJ33 L. Q. > L. t_ > CC >~6 > ' 'OtAUJUJUJ 'CSIDIUXX OIDIDIDID > '-IDRI l >-COIDIDO < >-a.a.a.lL>3Oa>a.lDID OUUtOtOUtOtOU<UXU3Z<<<CQtO ICD<XZ

^3 ^3 o* r*- ^^ to m CM o* cj r*- 10 <* r*- ^3 >j in 3 r*- o* ^^ r*- ^3 r*- r*-oeoo«-tMtMCMrooo«-t>'«ooocM'«O'«o<ooot>roro'«ON-oo

«\ltM«\l«\l«\l«\l«\l«\ICMtMCMr>JtMCMtMfMtMtMfVJCMtMtMtMtMtMo-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-ooo-o-o-o-o-^3 ^D ^D ^3 ^3 ^D ^3 ^3 ^3 ^D ^3 ^3 ^D ^D ^D ^D ^3 ^D ^D ^D ^3 ^D *O ^3 ^3

inininininininiDiniQiniDiDiDiDiniDininiQinininininQ>Q>Q>Q>Q>OQ>Q>Q>Q>IUQ>Q>Q>Q>Q>Q>Q>Q>IUQ>Q>Q>Q>Q>

0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.

O-O-OOOO-O-O-O-O-OO-OO-O-O-OO-O-O-O-O-O-O-O- eoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeo

ooooooooooooooooooooooooo ooooooooooooooooooooooooo0000 0000 0000 0000 0000 0000 00000000 OOOOOOCOCOOO 0000 00

29

UOUU3U33UOU333U3U3

ro -J- m «- N- «- 'O tQ*to*fO ro^ O- O- o ro -J- CM ro cMro»*«*in CM-J-

uuuuuuuuuuuooououu<O>OfM>3-rOCMv3-tMN-CMtMinO.OrOCMOOrOinrororo*- in«\ioo>3'« otM-j-ooroo«* inmin»*»*O.o»*oo^O«-tMO.fMOO.ro«-«-«-»-«-«-«- f\l»-«-«-«\l CM «-«-«\l«- «\l«- CMfMfVJtM«\ltMfMtM«\ICM«\l«\lf\ltMtMtMfVJtM

CMN-inrOCON-fM«-O«-K»O'inOON-O'fMtMoooooroooo-OinroN-in«-roininotMro O.ooooorov3-oo>3"«o>t>»in'«O'«ON-'«Oin

rororoKirororoKiMMKiKtKiMKiroKir'i

CO Xto o>C Uc .a< <*- (D

<*- I

= °~ C 4-> ID XCA rviaiO4->oU I t- <L> «-CM <-«-«- O O t 4-> O Q. X 4-> ID ID ID Q.ID

XXXX< O CM -I <C IDIDIDID tOXXVX L. |_ L. L. 0) ID L. 0» L. 1_ 1_ L. L. O L. O I-"- <<<<0> ' <L> (/5 4->^ ' L. U- C '

4-> ID4->ID(A 'L.4->ID< 1010 XXXXCA >(A4->IO<OC> C t- > O 0 0 0 » X C M- 0 _i-^u- i_i_«_i- a> c Q.'- o c 6 t. ai i- > > > c c ID 35 iDai^ c ID ~->-'>-'»-ODf»3O"-IDI04-<l_IUQ.3IDa» UUUUX<tOXZtOO.tOU.CD<OtOCD

«-oooro-j-oinoo«*>3-ooo^o.ro>ocMrocM-j-in-j-inN-N-N-T-r-vtintMOiOT-roN- «-»-«-r\jtMtMfMtMrorororo»*inin^O>O^O

CMfMCMrVltMCMrMCMtMtMCMfVJtMtMtMtMtMfM O-O-O-OO-O-O-O-OO-O-OO-O-O-O-O-O-

vQvOOO'O'OvO'O'O'O'O'OvOO'O'OvO^O

IDIDIOIDIOIDIOIDIOIDIOIDIOIDIOIDIOID

QjQ>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>Q>

Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.O.Q.O.O.Q.Q.O.

O-OO-O-O-OOO-O-O-OOO-O-O-O-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

oooooooooooooooooo oooooooooooooooooo0000 0000 0000 0000 COCO 0000 OOCOOOCO 00 CO

u u

CD CD

(MvQin coKICM

>» »CJCM

CO-J- >»tM MK1

0 Cape Mendocino 40

0 Pet roli a 40

oo

oo

l^l^

(0 10

"o"o(_ l_4-> 4->to 0)0.0.

CM CM O-O-

Q.Q. «

in inCJfVJ

K> 'S

rvi

f

fo ^«

? rvi* ri.

§ gi

Page 30: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

K/T4PRIMT

CD CD CD CD

OlTtCXCO

ucnucocncnuu

CDCDCDCDCDCOCOCD O O O

OJO^PJ ** *o ^ co N-o*^ *£ ro«-*o

I

tnoco «-OOCOOOCOCM oco^ «* >* ro * ro ro >* in -a-rorororotorororororo rororo

0) CD.*C- 4->

.3 > Sw o a. u<

o c- o> c_ - O.C 3 QCU. COUJ

OQ. W

I0*

0>"io

4- ** t-O) C CU&*=:

ID

to

? -co eo-- cn^j cnDC ID C (0 i- 1_.^ u.

, C- 0) L.Q.C CU^ (/> <U (/> 0)

~ 0 E2: c. o t_ _. u a: <u to 3* 4-* a. c a t_

»4-* ID O O«: t_ a j= *jI <l> _ 4J CO CO + . CO O C- CO t_ L.I 4> O O ID O

co uO)(D C 0

4> flj

« *- <M <M <M <M ro '"O <Mrotn

"o'o'o'o

(MCM(M(M O>CX CXO>

i i i i

co co co<U <U 0)

ID CD

cocococococococoCUCUiU<U(U(UOO

CO CO CO

0)0*0) I

ss§ §§§§§§§§ ss§

^

30

Page 31: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Foot

note

s fo

r Table

5:

CODE

RE

FERE

NCE

c Re

spon

se s

pectra from t

he C

alif

orni

a Strong-Motion

Instrumentation

Prog

ram.

g Re

spon

se spectra

computed f

rom

digital

unco

nnec

ted

accelerati

on

time

series

recorded on

te

mpor

any

deployments

of GEOS

instruments; data pr

ovid

ed b

y S.

Hough.

n Response s

pectra from t

apes d

istr

ibut

ed b

y th

e World Da

ta C

enter

Afor

Solid

Eart

h Ge

ophy

sics

, National Ge

ophy

sica

l Data Center,

Boulder,

Colo

rado

; primary

data providers

ane

the

U.S.

Ge

olog

ical

Su

rvey

and

the

California St

rong

-Mot

ion

Inst

rume

ntat

ion

Prog

ram.

s Re

spon

se spectra

computed from d

igital unconnected

acce

lera

tion

ti

me s

enies

pnovided b

y De

nnis

Ost

nom

of th

e Southenn C

alif

orni

a Edison C

ompa

ny.

u Response s

pectna fnom U

. S.

Geological Su

nvey

computen

files,

pn

ovid

ed

by P

. Mo

nk.

PSVFOOT.OFR

7-11

-93

5:43p

Page

1 of

1

Page 32: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

o>

I

O>O>O>O>O*O*O>O*O^OxO*O> 6*(>v>v>OOv>OC>OvOv>

OOCOCOCOOOOOCOCOOOCOOOOOGOOOCOOOCO

^WWWWWWWVWWWoooooooooooo

" ~Q)0)0)0)0)0)0)Q)Q)Q)

> 4J 4-> 4-» 4-» 4-»

CMOxJCMCM 0>0>. Ox Ox Ox Ox 4-* 4-* 4-* O» Ox Ox Ox 4-» 4J 4-»

'eoeoooeoeoeoeoeooooocoooeoeoeooSeoeoeocoeo^^^^ii 3 3 33 3 3 3 x 33 Ox O*> G* Ox Ox Ox O* O* O* O« Ox O« O« Os O* Ox O* O* O* O* O«

>CACACACA<A<A<ACACACA<A 1.O.O.O.O.Q.Q.Q.O.O.O.Q I22222222J322

CA « CA-

ooooooooooooooooooooo-

I

^ ^ § * ec^^ S S §2 S E § M %* ° i*- fM Kl * - K> Ki . .,_._ .,- f*-} . (^.,- h- - >O

M<>

"O "O TJ to "O T3 O O (Q (Q (Q O (Q *D (Q *D (0 "D (D ' Q) O fl> ^ O fl> ' *^~ ^ O O * Q> ^ _ _ 4^4^4.1 O4-J 4-J +*'4-J Q Q O ^-* Q *^ O 4-> O 4-* O 4-* 4-* 4-* _ (QCD<QCL(Q(DCD(Qu.u.u.(DQ.<OCL(DQ.<OCL(D(D(DO(Q

(Q (Q (Q ^^ (Q ^^ (Q ""^ (Q «* (D ^^ ««^ ^^ ^^ ^^QOQt-QOOO(-(-(-O(-O(-O(-O(-OQ QO Q. Q. O.4-* Q. Q. Q. CL4-> 4-* 4-* Q.4-* Q.4-J Q.4-* Q.4-J Q. Q. O.«-cococoxcocococoxxxrexcoxcoxcoxcococo

0> « 0> 4-» 4J 4J (0 (Q <0

III CO CO 0

O OO4->O4->O4JO4->O4J4->4J(A4-> CCC4->C4JC4JC4->C4J4->4->C04->

ins»oOM «--d-<o-d-o>ooo

fO f\IOO-d--d-inM«-in«-inO^

^

^

0> UJO

CO C O

CO Q.

(_ +j o a> sz*j o co^ c 3 o co

O >«A _lre <_o) a> a> (A Q- 3 S

0>O) 0>co c. t_ -^OO u. 4J 0. CO (A

Q N^= UO C O) OO D 3 t-5.ZZ ^

I

-. Q.fl> 4J t:-* 4J

E re co 5-0 a. o>

§ "o.t- Z U--

(A I «A fl> fl> O ID ID .Q

CO ' 0> CO COa. a. a.

a>a> a>

fi'D'D C t- E E 0> 04-

CO4J 0>

O*-OxJM C fl> CO 4J »-»-^«- fl> tO ^-

0> tO >«4J (.

cococoracocococococococoH-4->(.»-4->

.oooooooooooo Q, ^: o> co o

Q.3C<tO J= J=4J >cOO^ x cr\i raocAco

§ C C -OO-i-4J O'O^C O C <- < O u (_ <_ 0> O

i Q.4J u o re 0> g fl> Q.3C< H- 3^3 tO 4J O O'«-

^=C(.0>0>H-(ACO.. . O)0> flj 4J 4JX)_ O M'O 4J

t. O-^ t_..-_-O_._..-_. C C--OCA 'COfc. 'VCOCOC-COCOOO. _ U.(OUj33<LJLJLJUa.COCOZLULUUJUJUJUJUJUJLLIUJLULULLI>->l

V-CMSON-N.N-N.N.OOOOOOOO

32

*

Page 33: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

142

143

144

145

146

147

150

158

164

170

173

182

190

192

193

194

195

196

197

198

200

201

208

Anderson Dam

Cala

vera

s Re

serv

oir

Bear V

alle

y #12

(Wil

liam

s Ranch)

Bear

Val

ley

#5 (Call en

s Ranch)

Bear

Val

ley

#10

(Web

b Ranch)

Hoi li

ster

Ai

rpor

tJohn M

uir

Scho

ol (A

PEEL

#2

E ?)

Cal

State

Hay w

ard

Pulgas Tu

nnel

(A

PEEL

#7

?)

Brid

ge wa

y Pa

rkPrayer boo

k Cr

oss

KGEI

(A

PEEL

#1)

Audubon

Scho

olGa

vilo

n Water

Tank (G

ilro

y #1)

Mission

Trails M

otel (G

ilro

y #2)

Gilroy S

ewag

e Tr

tmnt

(Gilroy

#3)

San

Ysid

ro S

choo

l (Gilroy

#4)

Canada Ro

ad (G

ilro

y #6)

Cockrum's

Garage (C

hola

me-S

hndn

5)

Shan

don

Pump

Station (C

hola

me 8

)Temblor

IILincoln

Scho

ol (Taft)

Keen

wi Id

37 37 36 36 36 36 37 37 37 37 37 37 37 36 36

.164

.453

.664

.673

.531

.889

.656

.657

.486

.529

.774

.544

.568

.974

.981

36.9

8637

.000

37 35 35 35 35 33

.027

.696

.671

.708

.149

.714

121

121

121

121

121

121

122

122

122

122

122

122

122

121

121

121

121

121

120

120

120

119

116

.631

.807

.249

.195

.144

.411

.084

.060

.314

.253

.477

.235

.258

.572

.554

.536

.521

.485

.328

.358

.171

.456

.711

506

482

330

391

311

218

276

522

435

134

732

115

133

1415 309

306

223

714

278

260

509

429

811

tt extrapolated 0

.7m

tt extrapolated 4

.4m

no t

t ex

trap

olat

ion

tt extrapolated 0

.4m

tt extrapolated 11

mtt extrapolated 1.2m

tt extrapolated 2

.5m

tt ex

trap

olat

ed 10

.7m

no t

t ex

trap

olat

ion

no t

t extrapolation

tt extrapolated 0

.4m

tt extrapolated 2

.5m;

no t

t extrapolation

tt extrapolated 1.7m

tt extrapolated 2

.3m

no tt

ex

trap

olat

ion

hole is

391

m N2

12E

of

basi

s fo

r ex

trap

olat

ion

not

well

the

coords above

J.F. Gibbs,

J.F. Gi

bbs,

J.F. Gi

bbs,

J.F. Gi

bbs,

J.F. Gibbs,

J.F. Gibbs,

Gibbs

et al

Gibb

s et

al

Gibb

s et

al

Gibbs

et al

Gibbs

et a

IGi

bbs

et al

Gibbs

et al

Fuma

l et

al

Fuma

l et

al

Fumal

et a

IFumal

et al

Fuma

l et

al

Fuma

l et al

Fumal

et al

Fuma

l et

a

IFu

mal

et a

IFl

etch

er et

written

comm

.written

comm.

written

comm

.written

comm

.written

comm

.written

comm

..

(1976)

. (1976)

. (1976)

. (1977)

. (1977)

. (1977)

. (1977)

. (1

982a

).

(198

2a)

. (1

982a

).

(198

2a)

. (1

982a

).

(198

2a)

. (1982a)

. (1982a)

. (1982a)

al.

(1990);

Aster

and

Shea

rer

(199la,

209

210

211

212

213

214

W

216

W

217

219

220

221

224

225

228

Note:

Mont

erey

Belm

ont

Sago S

outh (H

oi lister

Hill

s)Piedmont Jr

. Hi

gh Sc

hool

San

Francisco, Rincon H

ill

San

Francisco, Pa

cifi

c Heights

San

Fran

cisc

o, Di

amon

d Heights

Poin

t Bo

nita

Capi

tola

So.

San

Fran

cisc

o, Sierra Point

Agnews Ho

spital

Mission

San

Jose

Santa

Cruz

Park

fiel

d #2

AVGVEL = 30

m divided

by t

he t

rave

l

36 37 36 37 37 37 37 37 36 37 37 37 37 35

time

.597

.512

.753

.823

.786

.790

.740

.820

.974

.674

.397

.530

.001

.733

121

122

121

122

122

122

122

122

121

122

121

121

122

120

to 3

0m;

.897

.308

.396

.233

.391

.429

.433

.520

.952

.388

.952

.919

.060

.288

769

645

1224

1154

1429

1034

1875 484

1071 270

405

698

194

units

are

extrpltd 10.4m

to b

ottom

(nee

d 10.4m

of slower 9

21 m/s

no t

t ex

trap

olat

ion

a ra

nge

of velocities

given, co

rres

p. to

71

and

31 ms

ecextrpltd 4.9

m top, 4m bo

ttom

(nd

4.9m

of 250m/s for

750m

extrpltd 2

.7 m t

o su

rfno tt ex

trap

olat

ion

, 5.

5m t

o dpth (nd 2.

7m o

f 16

5m/s

used

shallow v

el.

to f

ill

in g

ap from 1

0m t

o 14

m, so

Av

tt ex

trap

olat

ed 2

m to

surface

(nee

d 2m

of

84m/

s to

give

tt extrapolated 1.

8m t

o su

rfac

e (n

eed

73m/

s to

reduce

att

ex

trpl

td 4

m to

sur

fno t

t ex

trap

olat

ion

no t

t ex

trap

olat

ion

tt ex

trap

olat

ed 16m

to

(nee

d 4m o

f 23

3 m/s

to lo

wer

avg

depth

(need

over

20,000

m/s

to g

tt based

on v

eloc

ity

vrs

depth

plot

m/s.

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

EPRI/CUREE

1993

1993

1993

1993

1993

1993

1991

b)

R. E.

Wa

rric

k, written

comm.

BOREHOLE.OFR

7-15

-93

4:49

pPa

ge 2

of

2

Page 34: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

o c

§ 0) o"85

a *->

«j-5

cnc> o c/>

£g52oS.

«-c\jf\«c\JrororoM

cvjcvjcvjcvjcvjcvjcvjcvjcvjcvjcvjcvjr^cvjrjcvjcvjcvjrjcvjrjrjcvjcvjrjrjcvjcvjrjcvjcvjcvjcvjrjcy

CVJ CVJ CVJ CVJ CVJ CVJ CVJ fVJ CVJ CVJ CVJ fVJ f\« CVJ f\« CVJ CVJ CVJ CVJ CVJ

»- * IA w eo »- o- «o ro CM f\« M IA eo c\j «- h- h- c\j c\j IA f\« «- >» «o «o «» N. IA h- ro c\j ro h-

«o &. &. r»- «* o «» eo «- c\j «* >» c\j &. «» eo o c\j c\j c\j «- o eo IA CM eo M IA «o <o «» «- eo ro eo M o IA o M IA «o r»- r»- r»- «o orv«>» «o eo o «- rvi «» IA «o eo o «- ro »» «o h- eo & o «- «- cvi w w IA <o r»- co

f\itn eo«- -j- OLAO. -J-(>. roeo eviso «-

«- r»- o>. o N- «» o «o cvi N. N. eo eo eo o>. o «- »- «o M cvi cvi «» eo fvi eo >» »- o>. N- «o eo «- «o cvi eo «o

O OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOO O

O OOOO OOO OOO

OOOO OOO OOOOOOO

OOOO OOOO

eo o o o>. eo «o «» «- o>. «o >» eo M N- rvj N. M eo ^ o «o M o> «o M o «» o>. * o r»- >» cvj o a. eo r»- r»- eo o M «o ». M N. cvj «-rjrvj«-«-«-«-«-ooo»>oeoeoN.K<o>o<OiAiA>3->3->3-»»wcvicvirvi«-«-*-*-o oooo «-«-«-«- cvicvim°°

i i i i i i i i i i i

*- >» «o eo o>. o o «- »- o

34

3

Page 35: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

o c-C'«-

E 0)

TJ Cc a

<D"D 3 0)era. 0) E

u c*-> o> co

w d>

55 O Q.

jrvjrjr^rvjrjrjrvirjrjr^

ooooo

o oo oo<

ONeocoeocoeocoeoeoeocoooeocoeocoooeooNONO>ONONONONONONONOOooooooo

«- eo eo ro Nt <- ^ o cvj ro f\i o> r>~ * f\i o o o «- * f>~ <- <o ro r\i r>~ <o o r^ eo f\j o> eo o «-f\i(\j f\i«-«-oa>'O ro «- o> f>~ in t«T- &> f^ in * f\i «- eo in ro f\i o o> o> oo eo o>

ro in r>~ ^ o f\j ro * in ^o r>~ o> «- f\j Nt in ^ r^ eo ^ o «- cvj f\j ro ro in ^o l^ eo ^ o o «- «- cvj f\j ro ro ro ro ro ro ro ro

NtrN.ONONCorN.intoorN.Ntcof\jNOONtocofvjrN.rvirN.f\icoNtONorN.otocotoONinrviocoin>»tONtNOco«- tototototototototo«MfNi^-»-oONONeoogrN.rN.sONOinininNtfotofM»-«-ooooONO>ONONO>ONONO

i i i i i i i i

I I r i i i i i i i I I t i I i i I

fN. eo to ON fN. in in in NO oo ON to eo to ON Nt o in o NO «- in o in ON <- oo in «- fN. f\j NO o fN. f\i NO ON «- f\i to f\i t\i «-

to in r^ oo Nt r^ in to eo ON fN. oo rj t\i ON >» fN. ON o o o o o o o «- fN. in in fN- «- so to rvi t\i Nt o »- NO in NO o NO in in fN. in r^ oo r^ NO ON «- to Nt in NO ^ eo oo fN- fN. vo in in ->t to (\j «- o ON eo in to <- ON oo NO in * to f\i «- o ON ON ON o o «- t\i to

r^ cvj t\i t\i t\i to to to to to * * * * * in in NO NO fN. fN. eo co ON ON o «- f\i ro >» in NO N. eo ON o

35

Page 36: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

re4->

SEN^£

T3H- 0~

tfl 01££A) C) *0

o"So

4->

U 01

O Q.

ISU) O

o

01

10

f\j M !* >«- o r^ >»«- <o hv o* «- f\J ro in >o K~ eo o> o f\J ro in >o K~ eo o- o o «- f\j M ro ro in >o r^ r^ eo o> o* o o «- «- f\j f\j f\j tvi ro ro ro ro ro

in o. »- f\j >» in >o K eo eo o* o

O>O>o>o>o>o>o>^o>^o>o>^coeoeoeoeoeoeoeoeoeoro eo >» o >o ro o r^ in ro «- N. in ro>o in in in ^^s- ro ro ro ro M CM r\i f\j tvi »-»-»-»-»-eoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeo

I I I I I I

o «- «- «- o o> eo >o >» ro «- r^ ro o >o r>j o»o ro o r^ in M o eo >o r>j eo in ro «- o eo r^ >o >o >o >o eo o f\j m eo f\j in o> o> o. o> o> o> eo eo eo eo eo eo r^ K. >o >o >o in in in in >»>»>»>» ro ro ro M M M r>J «- «-«-«-«-«-«-«- f\j M f\j f\j ro ro ro

. _ o» o in o in«-f^ ro om«->o M f^ f\j s.«-f\j f\J«-o >o r>J eo ro f^«-eo ro >o eo o o o>« f\j»-ooo>o>o»o»o>&>oo»-»-f\jf\Jroro*tininvo^oi^s-coo>o«-»-{\jroro>»»»inin>O'' - -- - ro ro ro ro f\J f\J f\J f\J f\J f\J ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro >»>»>»>» ^» >»

^io^in^h^^h^f\Jinino>^pJrof\JO>orjvoo>»eo»-incof\J>Ofvieoin>»ro>»ineoin>oo>inrof\J>»t>^»->o - - - - - - »-f\j ro >» in in in in «* >» ro ro f\J»-»-o o* eo >o in ro f\J»-o o> eo r^ >o in >» ^sj-sj-^ >»min

o<-(\jro>*in>or>^eooo<\jx*>ocoo<\j>*>oeoo(Mx*>ocooinoinoinoinoinooooooooooo«-«-«-«-«-«-«-«-^«-f\jf\jf\jrjf\jrororororo>»>»>»^'>»inin>o>ot>^t>^eoeoo>(>.o«-f\Jro>»in>ot>^eoo>o...................................^.^.^.^.^.^.^j^.^.^.^.

10

o4->toI

36

Page 37: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

K/T4PRINT

o

oooooooooooooooooooooooooooooooooooooc

^» <r iri in in in>*o r-^f\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jf\jrvjrvjf\jf\jf\jf\jf\jf\jf\jf\jrv.'"'"'"'"'^

_ _ _ _ _ _ OOOOOOOOO» »-» » «-» » » » » fMfMfMfMfMfMfMrOrOrOK"a oooooooo'

O"- «-» » » » » » «.-» » » «-«.-» » » » » » » «-» » » «-» » r- » » » » » «-» » f\lf\|{Mf\lf\lf\lf\lf\lf\lf\l

O

<6 a: >o o»o o>ooomoino>rocMno>Of\JO^inrorororo>»«ocof\Joo«o^«-«Of\Joo«-in>*inco>»'-oof\j>» CD _ +* >o f>- oo co o oo co oo S- «o «o >» to f\j o o> r^ «o in >» to f\j«- o o oo r^ m >» to to f\j rvj rvj f\j f\j f\j ro >» in r^ o>«- to in r^- - <o M

<u f -

o o c<0

w > ^ ^o « in *o ^ *o >J f\i co >j o o O1* *o ro O1* ^ o* ro ^ o ro *o O1* *^~ fn O1* ro *o o f\j in O1* * f\i in ^ O1* ^ f\i >J in *o ^ oo

<o tt)

Sm "^00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

O 4-<

S o

££Q)Q) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

H^fM H-<UH-oo ro <- rM«-ocxcooinM*-o«oroo«o>»<-co>o>»rviooo«o>»roo^in>»f\j<-«-ooo«-roin^oro>oo>» ooo m oo co oo co r^ r^ r^ r^ K- r^ r^ «o «o o in in in >» -j- >» >» >» ro ro ro M ro f\J f\J f\J f\J f\J f\j rvj CNJ f\J f\J f\J f\J f\J ro ro ro >» >» >»-DC °°°°°°°°°°°°°°°°°°.°°°°°°°°°°°°°°°°°°°°° .§

_ o oo Q- CM f\i>ofMoo>o>o>pfvi>*^fMr^roo>in« N.fMoprocofnooror-r^-N-inroQ>o»^->o» inrviN.* -j- >o co co co co N-

^ooor<o

cCD - __.._ _ ___ _______ _

<U .................. .-.-.-.-. -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-. <g

JQ<0

o^f\JM>»in^.^cocxp.NJ>»^^Qrvi>»^opp.v>»^cooinQinQinQinpinooooooQQooo. o f\J

5in

K

CD

37

Page 38: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

K/H4PRINT

-. - _._._._._.__._: «V N <N <S! K> f*1 K> M 5* * ?* >n !T» in so NO N- r^- N- co i_i co

LUCO ______ _ ________

oooooooooooooooooooooooooooooooi

o IM < *

d> o>oo z eoi(- C >*< co co

^^ - S^-SSRliO^aSSiRS^SRS^SSSS^SS.SS^SiKRKSSSSS ^

o w ** >o roororoo>oo>»-rjrj»->oo>oo-eoinrj-^roh^rj>oo-M^oro^ino>* eorj^ooroo>orjeoroo>ino>o« § CQ ^~ >^ ^D 00 cj ~ rj >^ i_% ^D ,*^ 00 O» ^~ ^~ rvi fo <*^ **^ i-^ m ^D ^3 ^D r^ ,*^00 00 O» c^ (^ (^ ~ ^~ rvi rvi fO fO >^ <*^ i/^ i/% ^D ^^ ^^ CO

> oooo«-«-«-«-«-« ^^rjrjrjrvirjrjrjrjrjrvirjrjrjrjrvirJrorororOKirorororororororororororo4J O. .............................................. ^

llQ) Q CQ l^ \f\ D 3 MD D MD ^ i^ "^ "^ O fV T~ C> GK Op .^ **O O l^ *^ fO fO r^ r^ *^ CD O1* 00 00 t*** t*** f*1** t*** 1^ 00 OO O^ CD ~ r^

0*0 I I I I Io

*-> c --t oooooooooooooooooooiS O) CQ O OO OOOOOOOOOOOOOOOOI

O OOOOOOOOOOOOOOOOOOO(___________________________

O 0)

n0) C/lo M- ro rvi m.^ coco oo>O mro «- O-mo mo>o«- ,*.rvioo>* « .* >* 0.^0 >* co ro O> ut rj Q> <O -<f»- O-eo oooo O-o ru>* N- 3 oo CQ rjrjrj rj rj rj rvi rvi rvi rvi ^»-^ o o o-o-eo oo ^ N-t^ %o <o ^ in in «.* M K» rj rj rj»-»-«-«- ooooo»-«-«-»- st: T-T-T-TvT-7-7-7-7-Tv777° 0-°°°v°° <~

0) O4J

O P QQ fO fO **^ *^ *^ *^ *^ **^ *^ lf\ m V\ ^9 ^3 ^9 ^9 ^^ n** ^^ QO 00 00 CO t

(/> o ..........

5

0) .............................................. 10 rvi rjrjrjrjrjrvirvirjrjrjrjrjrjrjrjrjrjrjrvirvirjrjrjrvi«-«-»-«-«-«-«-«-«-«-»-«-«-«-«-«-«-«-«- 38"

<VJ

38

Page 39: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

K/T4PRINT

o o

PPPOPOPOPPOOPPC

>»>»rororo>»>»>»>»inin'ON.eoo rTirTirTirTirororororororororororororororororororororororororor^

ra ________ _______

c o o

*~ ______________ _.ppopoopppoop«-^«-«-«-«-«-«-«-*-«-«-rororororororooc «- «-«- *-«-*-«- ^^^^^^^^rorororororororororororororororororororororororororororo roro ro E

1-0) Pa* o >

iien "~ «-«-«-«-«-*-

, ^^r^r^r^^^^^^^^^,

ro_ o> in N- >o ro N- o> o> o> N- in eo eo N- «~ »o«~ in o> ro in eo KI in p in o> MN- p »* N-« in ro o> >o «* -~ o> N- info« N-

§ > oa ro >oeoororo>* in>oN.eo c>p «-rororo >* >* >* in in in >o >o >o N-N-N- eoeooo C>PO«- »-ro ro >* >* in >o K. eooo opo^^^^^^^^^rororororororororororororororororororororotvjrororororororoMroMroro

<DTJ 3 0)<T Q. in «- c>>* eoc> c>c> eo>o>*»- >o p >» eo ro s-«->o«->o«-N-ro o»o eo ro s-ro p s->o in in in eoroN-ro«- oeoeoeocoo E co ro roro ro ro ro ro ro ro roro roro» p oo> o> eo eos- N-«o «om in >* >*roro ro roro roro roro roro>* in in«os-eoo>

ro c>c>c>c>c>c>c>c>c>c>c>c>c>c>c>c>eoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeoeo nO i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i*- pv> c

o«4-

|oo ro >» pro >ON-N-N- s-in>*ro c> in»->o ro eo ro c> >o ro eo in»-eo in eo ro N. ro CMn ro p eo >o >* ro ro ro >* >oc> roin eo 3*j ________________________

T3 C 0) 0) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i-c c o+-> oo Q. ro «- PP »-roroin >oeo pro <o»-inc> >* eoro>oc>roN-oro>ooN->*p>oroN.ro>op>*ro eo«* c>>* eoroineo «-

_ pr>r^>oin>ororoc>roro>o>*^>oroeoroineoc>^ro>*>oeoeoc>rof^rO'^^ro>»eoc>>*ro>*c>N.<oeo«-in eo co p S-ro eo ro in eo o«-ro >» in >o <o >o <o in in >* ro ro ro»-p c> eo >o >* ro»-o c> eo N->o in>»>*>t «*>* in>o s-c> p

r^r>-eoeooooooooooooooooooooooooooooeoeoeoeoeoeoeocoeoeoeoeoeocoo

I PPPPOPPPPf_ ^i tt^. ..* tf\ wA K^ _v\ rw * i

(M

39

Page 40: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

O» «J t_ 4JCD U

CO 1

?-i Si <

O 4->

U 01

- Q.

O Ou

4-1

01 01

eo01

oo oooo oooo coco oooo oooo coo*o*o*o*o*o>>oooooo«-«-«-«-«M«M(\jr'nr*ir*i»»»»»»inin'O'O'OKN.co oo

oooooooooooooooooooooooooooooooo

eo eoeoeoeoeoeo eoeoeoeoeo o oo oo oo

>O 00 O «M «M «M «M «M «M «- «- 0^ N- in »* «M O 00 K- in »* «M «- O «M »* >O 0^ «- »* 00 «- in

N. *-*->o 0^«- «M »» in <O N. CO eo 0* o«-oo

o> r*ro oo 0^ o o o o* co *o »» «- o> <o r*i «- co <o >» CM ON co <o «- co in r*i «- 0* eo eo N- N- eo o^ru ino^ o>> o o o o *- - - o oo o o o>>o* 0^0^ oooo ooco^N-h-h- "O^^^ inininin inm in>o ^>oOOO^O^O^O^O^O^O^O^O^O^O^O^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOO

......... .I................ ...................I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOo o o o o o o o o o o oo o o o o oo oooo oo oo o o oo ooo o o o o o o o oo oo o

**rj»-r-»-rjs*inN.O^«-<)«-inoinO^MOOrj'OOMN.o>*r\io^in«-N.r\i'O«-inooinoinoOf\is*N.O^o«-

"8

40

Page 41: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

o

oooooooooooooooooooooooooooooooi

eoeor^r^r^r^r^r^eoeoc>p»^r\jroNji«xor^eoc>o»-«\jroNj<>eoo»-ro«*<>r^eoc>»-roir><>eoc>o»-»-«\j r^r^r^r^r^r^r^r^rs>r^r^s-eoeoeoeoeoeoeoeoeoo^o»o»o»o»o»o»oooooooo»-»-»-»-»-»-«Moj«\j«\j

«M«M«\H\H\H\H\H\H\HM«M«M«M«M«M«M«M«M

u ' V)re

4->

SEHl£

£ c (/>O"-*«,£S * ror- o^or-roooror-roo^ ^oo^o^^o^ «fM«^ r^^o^ ^«r^ 2 i_ 4-> .-?"-.. »-r- . _ r~ _ .ra co""" o .-.- _ _ (|o> v

g| ^~.^^.~~.~^M.^ M.^M.^M.^*.*.^^^ ^

^ S00. '^ D

re o»J Q

Q} re co r*» oo oo oo ^K o^ ^K ^K ^K ^K ^K ^K ^K ^K ^K ^K ^K ^K o^ ^K ^K OK ^K oo oo co oo oo oo oo co co co co co co co co co co co &* ^K ^K ^K r^^3 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO OO CO CO 00 CO CO CO CO OO O* II

H-o + >£ 0

._ o ..............................................:~ "80) M- CO

o c ^^.^.^^.^.^.^.^ 0. 0. 0.° 0.°°°°° 0.°°°°°°°°0.°°°0. 0.°° 0.°.°°°°°°°° j|j0)0) i i i i i i i i i i i i t i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

o«M . _ .. .._. .._.... . _ _ _ _ .. _....__._... ........ . .._

(/JO .. ... . ...!. ...... .................. I ... . (0

D «- co m0)

5re^^ o«-«Mro«*irc>or^coo»OPj-j"«oooo«M-j"«ocoo«MN3">ooooir>oir>OLnoir>oir>oooooooooooco ^^^^^^^^»- rof\irorororororororo«*«*«*«*«*ir>i«<><>r^-F~eocoo»o»o -roro«*ir><>r^-eoo»o <u

§

f

?<x

^

41

Page 42: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Tabl

e 9.

Co

efficients o

f equations

for

the

rand

om a

nd larger h

orizontal

comp

onents o

f pe

ak a

ccel

erat

ion

(in

g; distance in k

m).

Comp

onen

tB1

B2B3

B4B5

B6B7

S1SC

SRSE

SLOGY

torandom

-.105

larg

er

-.038

.229

.216

0.0

0.0

0.0

-.778

0.0

-.77

7.162

.158

.251

5.57

.254

5.48

.186

.193

.098

.000

.210

.193

.093

.068

.230

.205

The

equations

are

to b

e us

ed f

or 5

.0 <

= M

<= 7

.7 a

nd d

<=

100.

0 km

.

RLPA.TBL

7-19-93

12:21p

Page

1 of

1

Page 43: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Table

10.

Comparison o

f uncertainies

in the

old

and

new

regr

essi

on

resu

lts.

T(sec)

SLOGY-OLD

SLOGY-NEW

....

..

..........

....

....

..0.

3 0.28

0.23

1.0

0.34

0.27

SIGM

A.TB

L 7-

13-9

3 6:19p

Page

1 of 1

Page 44: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

8 -

0 -o 7- 4

0) CO

c 6-0E o^

5 -

8 _i

0

"§ 7 ""cO) CO

4 cc 6 -0

0**

5 -

Peak Acceleration o o

*- A A AAtA A4M

oo <D) o oooaDoaiSifiaD&S

°O O OOD

O O O OO dDZD <ODO

O O OOQIDOOO Q O OO (QD

OQ. O

o old dataA new data

, , , , , ,| , , , , , , ,,| r i i . . ,.| ii

Response Spectra o o

(2) A A AAA^AA 00 A M M

<QDO O O O O O ©OGDDOGDUDCD

°0 O OOD

O O O OO

O

o old dataA new data

10° 10 1 102

Closest Distance (km)

Figure 1. The distribution of the data in magnitude and distance space (each point represents a recording). The data points labeled old data are the ones that were also used in previous studies. The top frame is for the peak acceleration data set and the bottom is for the response spectral data set.

44

Page 45: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

P 0

-1

Acceleration

. . I .... I .... I ..

M8

P 2 o _

P 2

T = 0.2 s

M

T = 0.3s

8

M

o -

Figure 2a. The data and regression for the second stage of the analysis, for peak acceleration and 5 percent damped response spectra at selected periods.

45

Page 46: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

P 2

1

3

P 2

, I ..,,,.......

T = 0.75 s

T = 0.5 s

OQ

T = 1.0s

P 2

T = 1.5s T = 2.0s

8 8

M M

Figure 2b. The data and regression for the second stage of the analysis, for peak acceleration and 5 percent damped response spectra at selected periods.

46

Page 47: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Random component, 5 percent PSV

2.4

^ 2CO

1.6

-0.1

-0.2

0.4

0.2

0.6 l-rr^r

CM 0.4

0.2

-0.6

infij -0.8

-1

0.6

0.4

0.2

0.1 0.2 1 2

Period (sec)

0.1 0.2 1 2

Period (sec)

Figure 3a. The unsmoothed and smoothed coefficients (light and heavy lines, respec­ tively) for the 5 percent damped response spectra of the random horizontal component.

47

Page 48: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Random component, 5 percent PSV

10

8

6

4

oCO

0.16

0.12

0.08

0.1 0.2 1 2

Period (sec)

0.24

CO 0.2

0.16

0.16

to 0.08

0

0.1 0.2 1 2

Period (sec)

Figure 3b. The unsmoothed and smoothed coefficients (light and heavy lines, respec­ tively) for the 5 percent damped response spectra of the random horizontal component.

48

Page 49: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

5 PCT DAMPING M=7.5 D=01000

100

CO

io

CO Q_

10

c

B

10.1

I I I I I I I I I I I I

1 PERIOD (S)

10

Figure 4. 5 percent damped, random component response spectra for magnitude 7.5 at 0 km distance, predicted from the unsmoothed and smoothed regression coefficients. The three sets of curves are for site classes A, B, and C.

49

Page 50: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

5 PCT DAMPING D=0 S=C1000

100

CO

io

10

T I I I I I L

M 7.5

M 6.5

M 5.5

1 0.1 1

PERIOD (S)10

Figure 5. 5 percent damped, random component response spectra for site class C at 0 km distance, predicted from the unsmoothed and smoothed regression coefficients. The three sets of curves are for magnitudes 5.5, 6.5, and 7.5.

50

Page 51: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

5 PCT DAMPING M=7.5 S=C1000

CO

io

COQ_

100

10

10.1

1 I 1 I I I

I I I I I I I

1 PERIOD (S)

10

Figure 6. 5 percent damped, random component response spectra for magnitude 7.5 and site class C , predicted from the unsmoothed and smoothed regression coefficients. The five sets of curves are for distances of 0, 10, 20, 40, and 80 km.

51

Page 52: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

ID

100 101 10s

Distance (km)

102 -

O. 101 -

I

in

10°

Site Class =

T = 0.3 sec

10°

M7.5

M6.5

M5.5

101 102

Distance (km)

10° 101 102

Distance (km)

Figure 7. Attenuation with distance of peak acceleration and response spectra for the random horizontal component.

52

Page 53: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

T = 0.3 sec1

0.5

o ! 0.5

-1

1

0.5

0

0.5

-1

1

0.5

0

0.5

-1

1

0.5

0

0.5

_i

X

Xx ° x

' / *" * x i * * " *x °

* x *»$ U x*X&*^*t*°*

' 5 x x ° °

1

M5 x M6 o M7

0

w o

All Sites

i

X X

o " x°; . x o

0

1

M5 x M6 o M7

Site Ai

J ." /__ . . ^ x^o

r *<x xx> xo o *fc o o" x

1

M5 x M6 o M7

0

o

SiteB

X

: xxx x x X X u x x K It «»^**^**w^ ** *

^^J[ X X " ^C O ^ X ^x x Mo *( X X o

1

M5 x M6 o M7

SiteC i

0 50 100

Distance (km)

Figure 8a. Residuals (log Yobserved logVpredicted), as a function of distance for mag­ nitude groups and site classes.

53

Page 54: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

T = 1.0 sec1

0.5

0 ,

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0 ,i

-0.5

-1

1

0.5

0

-0.5

-1

C

M5* M6, «. «Vv " " ." "" ' °. M7

* X x o * ° 0*x° o

All Siteso

I 1 1 . , 1 . 1 1

M5 x x M6

* " o M7X

^ X

0o

o0

: Site A i , , , , i .

M5 x M6

** x *o" Xx °° M7

_0 Site B

i , , . . i .

: M5L K x x x x M6

: x « K o M7 _*C. -~ x . * o1 x "

Lj»V x x ox

: Site C i . . , , i ,

) 50 100

Figure 8b. Residuals (log F0 &serwed log predicted), as a function of distance for mag­ nitude groups and site classes.

54

Page 55: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

5 PCT DAMPING M=6.5 D=201000

100

CO

io

CO Q_

10

1 0.1 1

PERIOD (S)

soil

rock

10Figure 9a. Comparison of random component, 5 percent damped response spectra

computed from our previous equations and our new equations for the various site classes.

55

Page 56: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

5 PCT DAMPING M=7.5 D=01000

100

CO

io

COCL

10

1 0.1

soil

rock

1 PERIOD (S)

10

Figure 9b. Comparison of random component, 5 percent damped response spectra computed from our previous equations and our new equations for the various site classes.

56

Page 57: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

10

(0

1010C

Distance (km)

M = 6.5 T= 1.0 sec

! X

10C 10C

Distance (km) Distance (km)

Figure lOa. Comparison of ground motions computed from our previous equations and our new equations as a function of distance for magnitudes 6.5 and 7.5 and soil site classes.

57

Page 58: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

10

10° -

(0 (D

D_

10" -

10"

10C

Distance (km)

10C 102 10C

Distance (km) Distance (km)

Figure lOb. Comparison of ground motions computed from our previous equations and our new equations as a function of distance for magnitudes 6.5 and 7.5 and soil site classes.

58

Page 59: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

2.4

^ 2GO

1.6

COCD

0

-0.1

-0.2

0.4

CO CQ

0

Random component, 2 percent PS V

0.6

Sl 0.4

0.2

-0.6

CD -0.8

-1

0.6

CQ0.4

0.2

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Ala. Smoothed and unsmoothed regression coefficients.

59

Page 60: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Random component, 2 percent PSV

10

8

6

4

o co

0.16

0.12

0.08

0.24 n-"T

0.2

0.16

0.16

co 0-08

0.1 0.2 1 2

Period (sec)

0.1 0.2 1 2

Period (sec)

Figure Alb. Smoothed and unsmoothed regression coefficients.

60

Page 61: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

2.4

CD

1.6

CO CO

0

-0.1

-0.2

0.4

CD CQ

Random component, 10 percent PSV

0.6

' fxf^J^; "V -

SI 0.4

CO

0.2

-0.6

-0.8

-1

0.6

0.4

0.2

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Ale. Smoothed and unsmoothed regression coefficients.

61

Page 62: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Random component, 10 percent PSV

10

8

6

4

oCO

0.16

0.12

0.08

0.24

CO 0.2

0.16

0.16

co 0.08

0

0.1 0.2 1 2

Period (sec)

0.1 0.2 1 2

Period (sec)

Figure Aid. Smoothed and unsmoothed regression coefficients.

62

Page 63: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

2.4

DO

1.6

COm

0

-0.1

-0.2

0.4

COas 0.2

0

Random component, 20 percent PS V

0.6

S! 0.4

0.2

-0.6

IT)ft -0.8

-1

0.6

CD0.4

0.2

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Ale. Smoothed and unsmoothed regression coefficients.

63

Page 64: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

10

8

OCO

0.16

0.12

0.08

Random component, 20 percent PSV

0.24

CO 0.2

0.16

0.16

co 0.08

0

0.1 0.2 1 2

Period (sec)

0.1 0.2 1

Period (sec)

Figure Alf. Smoothed and unsmoothed regression coefficients.

64

Page 65: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

2.4

,. 2CD

1.6

S

0

0.1

0.2

0.4

0.2

0

Larger component, 2 percent PS V

0.6

0.4

0.2

-0.6

m -0.8

-1

0.6

r- °'4

0.2

0

0.1 0.2 1 2 0.1 0.2 1 2

Period (sec) Period (sec)

Figure Alg. Smoothed and unsmoothed regression coefficients.

65

Page 66: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 2 percent PSV

10

8

6

4

OCO

0.16

0.12

0.08

0.24 I-TTTT

to 0.2

0.16

0.16

0.08

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Alh. Smoothed and unsmoothed regression coefficients.

66

Page 67: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 5 percent PS V

2.4

CD

1.6

CO CD

0

-0.1

-0.2

0.4

CD CO

0

0.1 0.2 1 2

Period (sec)

0.6

0.4

0.2

-0.6

in no CQ -U.o

-1

0.6

CO0.4

0.2

0

0.1 0.2 1 2

Period (sec)

Figure Ali. Smoothed and unsmoothed regression coefficients.

67

Page 68: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 5 percent PSV

10

8

6

4

OCO

0.16

0.12

0.08

0.24 rrrrr

CO 0.2

0.16

0.16

Jo

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Alj. Smoothed and unsmoothed regression coefficients.

68

Page 69: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 10 percent PSV

2.4

_ 2

1.6

CO

0

-0.1

-0.2

0.4

0.2

0

0.1 0.2 1 2

Period (sec)

0.6 n-rrr

0.4

CD

0.2

-0.6

-0.8

-1

0.6

0.4

0.2

0

0.1 0.2 1

Period (sec)

Figure Alk. Smoothed and unsmoothed regression coefficients.

69

Page 70: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 10 percent PSV

10

8

6

4

oCO

0.16

0.12

0.08

0.24 I-"-"

0.2

0.16

0.16

co 0.08

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure All. Smoothed and unsmoothed regression coefficients.

70

Page 71: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

2.4

CD

1.6

Larger component, 20 percent PS V

0.6

... .I/ . .......I

COCO

0

-0.1

-0.2

0.4

COco 0.2

0

0.4

CD

0.2

-0.6

-0.8

-1

0.6

0.4

0.2

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Aim. Smoothed and unsmoothed regression coefficients.

71

Page 72: ESTIMATION OF RESPONSE SPECTRA AND PEAK … · spectra as a function of earthquake magnitude, the distance from the earthquake source, and the type of geologic material underlying

Larger component, 20 percent PSV

10

8

6

4

oCO

0.16

0.12

0.08

0.24 n-"f

CO 0.2

0.16

0.16

co 0.08

0

0.1 0.2 1 2 0.1 0.2 1

Period (sec) Period (sec)

Figure Aln. Smoothed and unsmoothed regression coefficients.

72