estuarine sciencedirect

13
& Available online atwww.sciencedirect.com if öS* ESTUARINE ScienceDirect coastal ELSEVIER Estuarine, Coastal and Shelf Science 71 (2007) 580—592 AND SHELF SCIENCE www.elsevier.com/locate/ecss Long-term changes in summer phytoplankton communities of the open northern Baltic Sea Sanna Suikkanen*, Maria Laamanen, Maija Huttunen Finnish Institute of Marine Research, P.O. Box 2, FI-00561 Helsinki, Finland Received 5 June 2006; accepted 6 September 2006 Available online 17 October 2006 Abstract Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979—2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0—10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as in creases in winter DIN concentrations and DIN;Si04 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria in creased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea. © 2006 Elsevier Ltd. All rights reserved. Keywords; phytoplankton; Baltic Sea; long-term changes; eutrophication; multivariate analysis 1. Introduction Phytoplankton form the energetic basis of open sea food webs, and because of their relatively high growth rates and di rect dependency on both hydrographic factors and dissolved nutrients, phytoplankton species are important indicators of water quality in pelagic areas. However, due to both natural and methodological reasons, phytoplankton species composi tion and abundance data are highly variable, and consequently their use as water quality indicators is usually restricted and only chlorophyll a concentrations are monitored. Also, due to development in taxonomical classification and methodol ogy, sufficiently long comparable time series of phytoplankton are rare. * Corresponding author. E-mail address; [email protected] (S. Suikkanen), 0272-7714/$ - see front matter © 2006 Elsevier Ltd. All rights reserved, doi; 10.1016/j.ecss.2006.09.004 Due to concern over the pollution of the Baltic Sea, the sur rounding states signed the Convention on the Protection of the Marine Environment of the Baltic Sea Area in 1974. To im prove the knowledge on the long-term changes in the factors related to eutrophication and pollution of the sea, the Baltic Marine Environment Protection Commission (Helsinki Com mission, HELCOM) has been coordinating a joint monitoring programme of the Baltic Sea (BMP, later COMBINE) since 1979. Data on physical, chemical and biological parameters of the open sea have now been collected for over 25 years. Ac cording to the latest assessment of the state of the Baltic Sea, covering years 1994-1998 (HELCOM, 2002), eutrophication is still a major problem in most sub-areas, despite the success ful reductions in point-source nutrient loading. The typical annual phytoplankton succession in the open northern Baltic Sea is characterised by a winter biomass min imum stage, a vernal bloom of diatoms and dinofiagellates that depletes the inorganic nutrients in the euphotic layer and leads subito e.V. licensed customer copy supplied and printed for Flanders Marine institute Library (SLI05X00225E)

Upload: others

Post on 07-Feb-2022

23 views

Category:

Documents


0 download

TRANSCRIPT

&

A vailable online a t w w w .sciencedirect.comi föS* ESTUARIN E

ScienceDirect c o a s t a l

ELSEVIER E stu a rin e , C oasta l and S helf S cience 71 (2007) 580—592

AND

S H E L F SC IEN C Ew w w .elsev ier.com /locate /ecss

Long-term changes in summer phytoplankton com m unities of the open northern Baltic Sea

Sanna Suikkanen*, Maria Laamanen, Maija H u t tunen

F innish In stitu te o f M arine Research , P .O . B ox 2, FI-00561 H elsink i, F in la n d

R eceived 5 June 2006; accepted 6 S ep tem ber 2006 A vailable online 17 O ctober 2006

A bstract

Changes in the b iom ass and species com position o f phytoplankton m ay reflect m ajor sh ifts in environm ental cond itions. W e investigated relationships betw een the late sum m er b iom ass o f different phytoplankton taxa and environm ental facto rs , and th e ir long -te rm (1979—2003) trends in tw o areas o f the B altic Sea, the northern Baltic proper (NBP) and the G ulf o f Finland (G F ), w ith s ta tis tica l analyses. An increasing trend was found in late sum m er tem peratu re and chlorophyll a o f the surface w ater layer (0—10 m ) in both areas. T h e re w as also a significant decrease in sum m er salinity and an increase in w inter dissolved inorganic nitrogen to phosphorus (D IN :D IP) ratio in the N BP, as well as in ­creases in w in ter DIN concen tra tions and D IN ;S i0 4 ratio in the GF. Simultaneously, the b iom ass o f chrysophytes and chlorophytes increased in both areas. In the NBP, also the biom ass o f dinophytes increased and that of euglenophytes decreased , w hereas in th e GF, cyanobacteria in­creased and cryptophytes decreased . R edundancy analysis (RDA) indicated that sum m er tem pera tu re and w in ter D IN concentration were the most im portant factors with respect to changes in the phytoplankton com m unity structure. Thus, the phy top lank ton com m u n ities seem to reflect both hydrographic changes and the ongoing eu troph ication process in the northern Baltic Sea.© 2006 E lsevier Ltd. All rights reserved.

K eyw ords; p h y to p lan k to n ; B altic S ea; long -term c h a n g es; eu troph ica tion ; m ultivariate analysis

1. Introduction

P hy to p lan k to n fo rm th e e n erg e tic b a s is o f open sea food w ebs, and b ecause o f th e ir re la tiv e ly h igh grow th ra tes and d i­rect d ep en d en cy on bo th h y d ro g rap h ic fa c to rs and d issolved n u trien ts, p h y to p lan k to n sp ec ie s are im p o rtan t ind ica to rs of w a te r quality in p e lag ic a reas. H ow ever, due to both natural and m eth o d o lo g ical reaso n s , p h y to p la n k to n sp ec ie s co m posi­tion and ab u n d an ce d a ta a re h ig h ly v a riab le , and consequently th e ir use as w a te r q u a lity in d ic a to rs is u su a lly re stric ted and only ch lo ro p h y ll a c o n ce n tra tio n s are m o n ito red . A lso, due to dev elo p m en t in tax o n o m ica l c lass ifica tio n and m ethodol­ogy, su ffic ien tly long c o m p a ra b le tim e se ries o f phy top lank ton are rare.

* C o rrespond ing author.E -m a il a ddress; s an na.su ikkanen@ fim r.fi (S. S u ik k an en ),

0272 -7714 /$ - see fro n t m a tte r © 2 0 0 6 E lsev ie r L td . A ll righ ts reserved, doi; 10 .1016 /j.ecss.2006 .09 .004

D ue to co ncern o ver the p o llu tio n o f th e B a ltic Sea, the sur­rounding sta tes s ig n ed th e C o n v en tio n on the P ro tection o f the M arine E n v iro n m en t o f th e B altic S e a A re a in 1974. To im ­prove the k n o w led g e on th e lo n g -te rm c h a n g e s in the factors re la ted to eu tro p h ica tio n and p o llu tio n o f th e sea , the Baltic M arine E nv ironm en t P ro tec tio n C o m m iss io n (H elsinki C om ­m ission , H E L C O M ) has been c o o rd in a tin g a jo in t m onitoring p rogram m e o f the B a ltic S ea (B M P, la te r C O M B IN E ) since 1979. D ata on p h y sica l, ch em ica l and b io lo g ic a l param eters o f the open sea h ave now been c o lle c ted fo r o v e r 25 years. A c ­co rd ing to the la test a sse ssm en t o f th e s ta te o f the Baltic Sea, covering years 1 9 9 4 -1 9 9 8 (H E L C O M , 2 0 0 2 ) , eu trophication is still a m ajo r p rob lem in m o st su b -a rea s , d e sp ite the success­ful reductions in p o in t-so u rce n u tr ie n t lo ad in g .

T h e typ ica l annual p h y to p la n k to n su c c ess io n in the open northern B altic Sea is ch a ra c te rised by a w in te r biom ass m in ­im um stage, a v e rn al b loom o f d ia to m s a n d d inofiagellates that d ep le tes th e in o rg an ic n u trien ts in th e e u p h o tic layer and leads

s u b ito e .V . l ic e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a rin e in s ti tu te L ib rary (S L I0 5 X 0 0 2 2 5 E )

5. Su ikkanen et a l. ! E s tu a r in e . C o asta l a n d S h e l f Sc ience 71 (201)71 5 8 0 —5 9 2 581

to a su m m er m in im um stag e, a la te su m m er m ax im u m , m ain ly f o rm e d by cy an o b acte ria , and a la te au tu m n b io m a ss decline (N ie m i, 1973). T h is p ap er fo c u ses on the n u tr ie n t-p o o r late s u m m e r (July—A ugust) p e rio d , w h en h igh w ater tem p era tu res a n d stab le w eather co n d itio n s fa v o u r th e d ev elopm en t o f n itro ­g e n -fix in g cy an o b acte ria , an d m ass-o ccu rren ces fo rm ed by A p h a n izo m e n o n flo s -a q u a e , N o d u la r ia spum igena an d A n a ­b a e n a spp. occu r frequen tly . In a d d itio n to th e filam entous a n d co lon ia l cy an o b acte ria , th e la te su m m er co m m u n ity also ty p ic a lly con tains several sp ec ies o f c ry p to p h y tes , d ino flagel- la te s , chrysophytes, e u g len o p h y tes an d ch lo ro p h y tes (K ono- n e n , 1988).

T h e aim of o u r study w as to u se th e H E L C O M m o n ito rin g d a ta to determ ine if long-te rm c h an g e s in hydro g rap h y and n u ­t r ie n t conditions are re flected in th e la te sum m er p h y to p la n k ­to n com m unity . W e evalu a ted th e 197 9 —2003 d a ta se t fo r the la te sum m er p e rio d , c o n sistin g o f q u an tita tiv e p h y to p lan k to n o b se rv a tio n s , a s w ell as severa l en v iro n m en ta l fac to rs in tw o s u b -a re a s o f th e northern B altic S ea ; th e northern B altic p ro p er (N B P ) and the G u lf o f F in lan d (G F ). In a recen t an a ly sis , W as- m u n d and U hlig (2003) used th e B M P data in an in v estiga tion o f p h y to p lan k to n trends in th e so u th e rn and c en tra l B a ltic Sea. In con trast, lo n g -te rm p h y to p la n k to n co m m unity analyses h a v e no t been m ad e s in ce the en d o f th e 1980s fo r the northern B a lt ic Sea (K ononen and N iem i, 1984; K ononen, 1988).

2. M aterials and m ethods

2 .1 . S tu d y area

T h e Baltic S ea is a sem i-e n c lo se d , b rack ish w a te r se a (ca. 4 2 2 0 0 0 km 2, m ean dep th 55 m ), w ith a very re stric ted co n n ec ­t io n to the N orth S ea v ia the D a n ish stra its. It is ch arac te rized b y s tro n g seasonal tem p era tu re v a ria tio n , as w ell as a north - s o u th surface sa lin ity g rad ien t, w ith su rface w a ter sa lin ities d e c re a s in g from ca. 20 in th e K a tteg a t to 1—2 in th e n o rth ern a n d easte rn areas. T he n o rth e rn B a ltic p ro p er c o m p rise s an a r e a o f 2 9 1 0 0 km 2 (Fig. 1). C o n n e c ted to th e N B P w ithou t a s i l l , the G u lf o f F in lan d (2 9 5 0 0 k m 2) is s itu a te d b e tw een F in la n d and E ston ia . It has a su rfa c e w a ter sa lin ity g rad ien t ra n g in g from ab o u t 7 in the w e st to fresh w a te r co n d itio n s in th e N eva Bay, R ussia . G F h as a large c a tch m e n t area (4 2 1 00 0 km 2) and is h e av ily in flu en ced by n u trien t load ing

from the surrounding ag ricu ltu ra l and urban areas, especia lly from the c ity o f St. P e te rsb u rg by th e ru n -o ff from the R iver N eva. The nutrient re se rv e s o f th e G F a re also affec ted by the phosphorus-rich B altic Sea d eep w aters flow ing free ly into the g u lf due to the s ill-free connection to th e B altic proper. T he G F rece ives tw o to th ree tim es the average B altic Sea external nutrient in p u ts re la tiv e to its surface area (H E L C O M , 2002), and it is thus considered as o n e o f the m ost eu trophicated su b -b asin s o f the B altic Sea.

T h e study area is stra tified , w ith a deep, perm anen t ha lo - cline (at a depth o f ca. 60 —80 m ) and a sum m er th erm ocline ( 1 0 - 2 0 m). O ur data o rig in a ted from five H E L C O M m onito r­ing sta tions (Fig. 1): th ree in the northern B altic p roper; H3 (58° 35 ' 00" N , 18° 14' 0 0 " E; bo ttom depth 450 m ), H2 (59° 0 2 ' 00", 21° 0 5 ' 00"; 166 m ) an d H I (59° 29 ' 0 0", 22° 54' 00"; 82 m ), and tw o in the G u lf o f F in land ; F3 (59° 51 ' 06", 24° 50 ' 03"; 77 m ) a n d F I (60° 04 ' 01", 26° 2 1 ' 00"; 66 m ).

2.2. D ata

T h e orig inal da ta c o lle c ted by th e B M P since 1979 consist o f observations o f b io lo g ica l and env ironm en ta l param eters m ade in d ifferen t tim es o f the year. T h e m onitoring p ro ­g ram m e focuses on q u an tifica tion o f sum m er phy top lank ton , w hich is why th e cu rren t p a p e r deals w ith th e nu trien t defic ien t late sum m er period, b e tw een the en d o f Ju ly and the beg inn ing o f Septem ber, 1979—2003. D ata fro m years 1982 (G F) and 1998—1999 (both sub -reg ions) a re lack ing , as the sam ples w ere taken outside th e tim e period o f in terest during those years.

T h e phytop lankton data co n sis ted o f 90 quantitative obser­va tions (50 from the N B P and 40 fro m the G F), re su ltin g in up to th ree observations per y e a r at e ach o f the sub-regions. In 1979—1997, the sam pling d ay s w ere d istribu ted be tw een 29 July and 3 Septem ber, w hereas in 2 0 0 0 —2003, sam ples w ere taken betw een 30 Ju ly and 20 A u g u st each year, due to a ch an g e in the sam pling schedu le . In tegra ted sam ples o f the u p p e r w ater layer (0—10 m ) w ere p reserv ed w ith acid L ugoi so lu tion , and analysed using an inverted m icroscope (U te- rm öhl, 1958). D uring m ost o f the s tudy period (1 9 8 2 —2003), only one person (M aija H uttunen) w as responsib le fo r species iden tification and counting , w h ich en su red the com parab ility

FinlandR ussia

• F I G u lf o f F in landS w ed en

N o rth e rn * B a ltic p ro p e r H I

Estonia

100 km

Fig. 1. L o ca tio n o f th e m o n ito r in g sta tions in the B a ltic Sea. T h e dashed line rep resen ts th e borders o f the tw o sub -a reas studied.

s u b i to e .V . l ic e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a rin e In s ti tu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

582 S. S u ikkanen e t al. / E stuarine . C oasta l a n d S h e l f Sc ience 7 / (2 0 0 7 ) 5 8 0 - 5 9 2

o f the da ta . A lto g e th e r ca. 2 0 0 taxa, m o stly iden tified to sp e ­cies leve], w ere fo u n d in th e sam ples. T h e sp ec ies n o m en c la ­tu re is a cc o rd in g to H ä llfo rs (2 0 0 4 ). T h e b iom ass ca lcu la tions w ere m ad e a cc o rd in g to th e M an u a l fo r M arine M o n ito rin g in the C O M B IN E P ro g ra m m e o f H E L C O M (A nnex C -6; h ttp :// sea .h e lco m .fi/M o n as /C o m b in eM an u a l2 /co n ten ts ,h tm l). C h lo ­rophyll a c o n ce n tra tio n in sam p le s tak en from d iscrete dep ths w as m ea su re d sp e c tro p h o to m e tric a lly acco rd ing to H E L C O M (1988), an d av erag ed o v e r 0 —10 m .

T he en v ironm en ta l d a ta con sisted o f sim ultaneous m easu re­m ents o f tem p era tu re and salin ity , as w ell as concentra tions o f in­o rganic nu trien ts (phosp h a te-p h o sp h o ru s , n itrate, nitrite and am m o nium -n itrogen and silica te -silicon ) m easured at the sam e stations du rin g the p reced in g w in ter (N ovem ber—January). As there w ere often several n u trien t m easurem ents per station and winter, these w ere averag ed fo r the analysis. Long-term trends in surface w a ter n u trien t con cen tra tio n s are m ost reliably detected in w in ter sam ples because in w in te r season the least am ount o f nu­trients are bou n d to b io lo g ica l m ateria l. In sum m er, concen tra­tions o f inorgan ic n u trien ts, especia lly that of n itrogen, are often below the d e tection lim its . H ow ever, variability m ay be g reat due to e.g . o rg an ic aggrega tes and sporadic events such as upw elling . W e also ex am in ed early sum m er n u trien t concen tra­tions in sam p les taken b e fo re th e phytop lankton sam pling , but the large variab ility o f these da ta , due to the reasons m entioned above, p reven ted th e ir in c lu sio n in th e analysis. T h e rationale fo r com paring w in tertim e n u trien t concen tra tions w ith sum m er phytop lankton d a ta w as th at w in te r n u trien t trends can b e ex­pected to be linked to su m m er co m m u n itie s in a long tim e scale. T he w a ter chem istry p a ram e te rs w ere de te rm ined according to K oro leff (1979), an d e ac h v a lu e represen ts the m ean fo r the 0 —10 m w ater layer. T h e lim it o f de tec tio n in the nutrient m ea­surem ent w as 0.01 [iM . S a lin ity w as m easu red using the Practical Salinity Scale.

2.3. S ta tistica l a n a lyses

B oth th e p h y to p la n k to n an d the en v iro n m en ta l da ta w ere analysed fo r th e p re sen c e o f m o n o to n ie increasing or d ec reas­ing trends by th e n o n -p a ra m e tr ic M an n —K endall te s t using the M A K E SE N S 1.0 a p p lic a tio n (S a lm i et a l., 2002). A n o n -p ara ­m etric tren d te s t w as u sed , b e c a u se all d a ta w ere no t norm ally d istribu ted . In the M a n n —K en d all p ro ced u re , the d a ta need not confo rm to any p a r tic u la r d is trib u tio n an d m issin g values are allow ed (G ilb ert, 1987).

R e la tio n sh ip s b e tw ee n th e p h y to p lan k to n com position and the en v iro n m en ta l fa c to rs w e re a sse ssed using redundancy analysis (R D A ), w h ich is a l in e a r m eth o d o f d irec t o rd ination (te r B raak , 1994). F o r the a n a ly s is , w e se lec ted phy top lank ton species o r w id e r tax o n o m ic g ro u p s w h ich w ere iden tified co n ­sisten tly o ver m o st o f the s tu d y p e rio d (a t least fro m 1983 on ­w ards), an d w h ich o c cu rre d in m ore th an seven sam ples in each sea a rea (T able 1). T h e final n u m b er o f taxa in the anal­ysis w as 32 in th e N B P an d 28 in th e GF. A ll b iom ass da ta w ere log(.v-F l) - tra n s fo rm e d to s ta b iliz e variance and reduce the in fluence o f d o m in a n t ta x a on th e o rd ination . R D A was p e rfo rm ed u sin g C A N O C O fo r W in d o w s 4 .0 ( te r B raak and

S m ilauer, 1998), w ith fo rw ard se lec tio n to identify the env ironm ental v a ria b le s th a t b est e x p la in ed the phytoplankton species co m position . T h e s ign ificance o f th e variables and the first o rd in atio n axis w a s d e te rm in ed using M o n te C arlo perm u­ta tion testing (9999 p e rm u ta tio n s), im p le m e n ted in C AN OCO.

3. Results

3.1. L ong-term trends in env iro n m en ta l fa c to r s and phytop lankton

In the northern B a ltic proper, s ig n ifican t (M ann—Kendall test, p < 0 .05) in creas in g tren d s w ere o b se rv ed for sum m er tem pera tu re and ch lo ro p h y ll a co n ce n tra tio n , and w inter d is­so lv ed in o rgan ic n itro g e n to p h o sp h o ru s (D IN :D IP) ratio , w hereas sum m er sa lin ity show ed a d e c re a s in g trend (Table 2, Fig. 2A ). In the G u lf o f F in lan d , in c re as in g trends w ere found fo r sum m er tem p e ra tu re and ch lo ro p h y ll a, and w inter D IN co n cen tra tion an d D IN :S i0 4 ra tio (F ig . 2B). In the an a l­ysis o f early su m m er n u trie n t c o n ce n tra tio n s (data not show n), no sign ifican t trends w ere o b se rv ed d u e to a large variance (M ann—K endall test,/? > 0 .05 ), H ow ever, th e re was a decreas­ing tendency in D IN co n ce n tra tio n s in b o th sub-areas, but e s­pecially in th e GF.

In the p h y to p lan k to n b iom ass d a ta (F ig . 3), significant increasing trends w ere fo u n d fo r d in o p h y te s , chrysophytes and ch lo ro p h y tes in the n o rth ern B altic p roper (Table 2, F ig . 3A ), and fo r cy an o b acte ria , ch ry so p h y tes and ch lo ro ­phy tes in th e G u lf o f F in lan d (F ig . 3 B ). N egative trends w ere obse rv ed fo r e u g len o p h y tes in the n o rth e rn B altic p roper and fo r c ry p to p h y tes in th e G u lf o f F in lan d .

3 .2 . R e la tio n sh ip s be tw een p h y to p la n k to n a n d environm en ta l fa c to rs

T h e p h y to p lan k to n tax a se lec ted fo r th e R D A and the sp e ­cies in c lu d ed in each co m b in a tio n tax o n a re listed in Table 1. T h e 32 co m b in a tio n tax a u sed in the R D A consisted o f 11 d inophytes, 6 cy an o b acte ria , 6 d ia to m s, 4 chlorophytes, 2 ch ry sophy tes and 1 tax o n o f c ry p to p h y tes , euglenophytes and zooflagella tes, i.e. E bria tr ipartita (T ab le 3). M ost o f the included sp ec ies are ty p ica l o f w arm b rack ish water, but so m e o f the taxa a lso con ta in lacu strin e o r co ld -w ater species. S om e o f the sp ec ies u se m ixo- o r h e te ro tro p h ic nu trition , although they a re trad itio n a lly re g a rd e d as phytoplankton sp ec ies (T ab le 3). T h e m o st co m m o n ta x a in th e m aterial, o c ­cu rrin g in all sam ples, w ere A p h a n izo m e n o n spp. and P yram i­m o n a s spp. C ryp to m o n ad s w ere a lso fo u n d in all sam ples in the GF. A p h a n izo m en o n spp. and c ry p to m o n ad s had the h ig h ­est m ean b io m ass in both sea areas (8 7 .9 an d 68.1 pg T 1 in the NBP, and 103.7 an d 99.3 p g l -1 in the G F, respectively). T he th ird h ig h est b iom asses w ere fo rm ed by p ico co lo n ia l cy an o ­bac teria in th e N B P and th e to x ic c y an o b ac te riu m N odu laria spum igena in th e G F (T able 3). G o n y a u la x spp ., D inobryon fa cu life ru m , C ylindro theca c lo s teriu m a n d N itzsch ia spp. w ere enco u n tered freq u en tly en o u g h in th e N B P only, and thus they w ere excluded fro m the a n a ly sis o f th e G F data.

s u b ito e .V . l ic e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M a r in e In s titu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

S. Su ikkanen el aí. / Estuarine . C oasta l a n d S lie lf Science 71 (2007) 5 8 0 —5 9 2 5 8 3

Table 1T h e phy top lank ton tax a p re sen t in m ore than seven sam ples p e r sea area, and occurring at leas t from 1983 onw ard s; the codes u sed in the RDA and the s p e c ie s in c lu d e d in each taxon. N o m en c la tu re is acco rd in g to H ällfors (2004)

Code N am e: sp ec ies included

P ic o c o lo

G o m p h o sp

Anablem

A n ab aen a

A p h a n iz o

N o d u s p u

C ry p to m o

D in o a c u

D in o n o rD in o ro tA m p h id in

G y m n o d in

G yro d in i

G len o d inO b le ro t

P ro to p e r

G o n y au la

P ro tre t

D in o fac

P se u d o p e

A c tio c tC h ae d anC h ae to ce

P ic o c o lo n ia l c y a n o b a c te r ia :A p h a n o c a p sa spp. N iigeli, A. reinhold ii (M icrocystis reinhold ii) (P. R ichter) K om árek & A nagnostid is A p h a n o th ece spp, N iigeli, A. cla thra ta W, & G .S . WestC h ro o co cc u s spp. N ag eb , C. m icroscopicus K om árková-L egnerová & CronbergC oelo sp h a eriu m kue tzing ianum N ageb , C. m inutissim um L em m erm ann , C. subarc ticum K om árek & K om árková-L egnerová C yanod ic tyon spp. P ascher, C . im perfectum C ronberg & W eibull. C. p lanc ton icum M eyer C ya n o n ep h ro n spp. H icke l, C. stylo ides H ickelL em m erm a n n ie lla spp. G eitler, L. pallida (Lem m erm ann) G eitler, L. pa rva H indák M erism o p ed ia tenu issim a L em m erm ann, M. warm ingiana (L agerheim ) G eitler M ic ro c ystis spp. K ü tz in g ex Lem m erm ann S yn ech o co cc u s spp. N ageb G o m p h o s p h a e r io id s :C oelo m o ro n spp. B uell, C. pusillus (van G oor) KomárekS n o w e lla fe n n ic a K om árek & K om árková-L egnerová, S. lacustris (G om phosphaeria la cu stris ) (R. C hodat) K om árek & H indák.S. lito ra lis (H áy rén ) K om árek & H indák, S. sep tentrionalis K om árek & H indákW o ron ich in ia spp. E lenk in , W. com pacta (G om phosphaeria com pacta) (L em m erm ann) K om árek & H indák , W. elorantae K o m árek & K om árková-L egnerová, W . karelica K om árek & K om árková-L egnerová A n a b a e n a lem m erm a n n ii'.A n a b a e n a flo s-a q u a e (L yngbye) B rébisson in B rébisson & G odey ex B om et & F lah au lt, A . lem m erm annii P. R ichter in L e m m e rm a n n A n a b a e n a spp .:A n a b a e n a spp. B ory ex B o m et & F lahau lt, A. baltica J. S chm idt, A. cylindrica L em m erm ann , A. inaequa lis K ützing ex B o m e t & F lahau lt, A. sp iro ides K lebahn A p h a n iz o m e n o n spp .:A p h a n izo m en o n spp. M orren ex B om et & F lahault. A. flo s-aquae (L .) R alis ex B o m e t & F lahau lt, A . g racile (Lem m erm ann) L e m m e rm an n , A . sp . ( " b a ltic a " nom . ined.)N o d u la r ia spu m ig en a :N o d u la r ia spp. M ertens ex B om et & F lahault, N . baltica K om árek e t al., N . spu m ig en a M ertens ex B o m e t & Flahault C ry p to m o n a d s :C ryp to m o n a s spp . E hrenbergH e m ise lm is spp . P arke, H . virescens D roopP la g io se lm is spp. B u tc h e r ex H ill, P ■ pro longa B utcherT e le a u la x spp. H ill, T. acuta (B utcher) H ill. T. am phioxeia (C onrad) HillD in o p h y s is a c u m in a ta C laparède & Lachm annD in o p h y s is norveg ica C laparède & Lachm annD in o p h y s is ro tu n d a ta C laparède & L achm annA m p h id in iu m spp .:A m p h id in iu m spp. C laparède & L achm ann, A . crassum Lohm ann, A. e lenkin ii Skvortzov/, A . longum L ohm ann , A. sphenoides W u l f f

G y m n o d in iu m spp .:G ym n o d in iu m spp. S te in , G. gala theanum B raan id , G. gracile (G. abbrevia tum , G . lohm annii) Bergh, G . helveticum Pénard,G . sa n g u in eu m H irasak a , G. sim plex (Lohm ann) K ofoid & S w ezy , G . vestificii S chü tt

G y ro d in iu m spp .:G yro d in iu m spp. K ofo id & Swezy, G . fu s ifo rm e Kofoid & S w ezy, G . cf. p ep o (S chü tt) K ofoid & S w ezy, G. sp ira le (Bergh)

K o fo id & S w ezyG le n o d in iu m s p p . E hrenbergO blea r o tu n d a co m p lexO blea ro tunda (L ebou r) B alech ex SourniaP r o to p e r id in iu m sp p .:P ro to p e rid in iu m spp. B ergh em end. B alech , P . bipes (Paulsen) B alech , P. brevipes (Paulsen) B alech , P. g ran ii (O stenfeld)

B a lech , P . p e lluc idum B ergh G o n y a u la x sp p .:G o n y a u la x spp. D ies in g , G . sp in ifera C laparède & Lachm ann, G . ve rio r Sournia P e rid in ie lla carenata (G onya u la x catenata) (L evanderi B alech P r o to c e ra tiu m re tic u la tu m :P ro to cera tiu m re ticu la tum (G onyau lax grindleyi) (C laparède & L achm ann) B ütschli D in o b r y o n fa c u life r u m :D in o b ryo n fa c u life ru m (D . petio la tum ) (W illen) W illén P s e u d o p e d in e lla spp .:P seu d o p e d in e lla spp. N \ Carter, P. elastica S ku ja, P. tricostata (P edinella tr icosta ta) (Rouchijajnen) T hom sen

A c tin o c y c lu s o c to n a riu s Ehrenberg C h a e to cero s d a n ic u s P.T. C leve C h a e to cero s sp p .:C haetoceros spp. E hrenberg , C . ceratosporus O stenfeld, C. m in im us (R h izo so len ia m inim a) (L evanderi M arino e t al„ C. sub tilis P.T. C leve , C . tenu issim us M eunier, C . throndsenii (M arino el al.) M arino e t a l„ C . w igham ii B rightw ell

(con tinued on n e x t p a g e )

s u b i to e .V . l i c e n s e d c u s to m e r c o p y s u p p l ie d a n a p r in te d fo r F la n d e r s M a rin e In s titu te L ib ra ry (S L 1 0 5 X 0 0 2 2 5 E )

584 S. S u ikkanen er a l. / E stuarine , C oasta l a n d S h e lf Sc ience 71 (2007) 5 8 0 —5 9 2

T able 1 (c o n tin u ed )

C ode N am e: sp ec ies inc luded

T halassi

C yliclo

N itzsch i

E utrepti

P y ram iin o

M onocon

O ocystis

P lan lauE britri

T h a la ss io s ira spp .:T h a lassio sira spp . P.T. C leve em en d . H asle , T. baltica (G runow in P.T. C leve & G ru n o w ) O sten fe ld , T. g u i l la r d i i H asie ,T. lacustris (G runow in P.T. C leve & G n inow ) H asle in H asle & G . F ryxell, T . le v a n d e r i van G oor, T. p se u d o n a n a (H usted t) H as le & H eim dal C ylin d ro th ec a closterium -.C ylindro theca c lo ster iu m (E hrenberg) R eim ann & J. Lew inN itzsch ia acicu la ris v. clo ster io ides G runow , N. long issim a (B rébisson in K iitzing) R a lfs in P ritch ard N itzsc h ia sp p .:N itzsch ia spp . H assa ll, N . p a le a (K iitzing) W. S m ith , /V. pa leacea (G ninow ) G runow in van H eu rck E u tre p tie lla sp p .:E utrep tie lla spp. d a C u n h a , E. gym nastica T hrondsen P y ra m im o n a s spp .:P yram im onas spp . S chm arda , P . g ro ss ii P arke em end . M antón, P . orien ta lis M cF ad d en , H ill & W e th erb ee , P . virg in ica Penniek M o n o r a p h id iu m c o n to r tu m :K oliella long ise ta H in d ák , K. sp icu lifo rm is (V ischer) H indák M o n oraph id ium con to rtum (T h u re t in B réb isson) K om árková-L egnerová O ocystis s p p .:O ocystis spp . A . B raun , O. borgei S now , 0 . lacustris R . C hodat, 0 . subm arina L a g e rh e im P la n c to n e m a la u te r b o rn ii Schm id le E b ria tr ip a r tita (S ch u m an n ) L em m erm ann

T h e re su lts o f th e R D A are d isp lay ed in tw o o rd ination p lo ts fo r bo th sea a rea s (Fig. 4 ). F o r m o re d e ta iled in te rp re ta ­tion o f th e trip lo ts , see te r B ra ak (1994). In bo th areas, the R D A w ith fo rw ard se lec tio n y ie ld ed tw o sig n ifican t env iron ­m enta l va riab les ex p la in in g th e v a riab ility in the p h y to p lan k ­ton b io m ass: tem p e ra tu re (N B P: F = 3 .02 , p = 0 .0001; GF: F = 2 .85 , p = 0 .0 0 0 2 ) and D IN c o n cen tra tio n (NBP; F = 1.93, p = 0.011 ; GF: F = 2 .06 , p = 0 .008). In th e NBP, th e e ffec t o f S i 0 4 co n ce n tra tio n (F = 2 .09 , p = 0 .006) was a lso s ig n ifican t. A lth o u g h in th e NBP, th e length o f th e sa lin ity v ec to r in the o rd in a tio n p lo ts (F ig . 4 A ,B ) also in d ica ted a high c o -v arian ce w ith th e p h y to p lan k to n d a ta , the re la tio n w as not s ig n ifican t (F = 1.52, p = 0 .0 6 1 ). In th e G F (Fig. 4C ,D ), the e ffec ts o f sa lin ity , S i 0 4 c o n cen tra tio n an d D IP co n cen tra tion w ere n o t sig n ifican t ( p > 0 ,0 5 ). T o gether, all en v ironm en ta l

T able 2R esu lts o f the M an n —K endall te s t fo r d e tec tio n o f long -term trends in the env ironm en ta l fac to rs and the p h y to p lan k to n b io m ass d a ta (Z = test s tatistic , p = s ign ificance , n = n u m b e r o f sam p lin g years)

N o rth e rn B altic p ro p e r G u lf o f F in land

Z P n Z P n

T em p era tu re 3 .02 < 0.01 20 2.63 < 0.01 20S alin ity - 3 .4 1 < 0.001 20 - 1 .0 7 > 0 .0 5 20C h lo ro p h y ll a 2 .8 2 < 0.01 20 2.95 < 0.01 20DIN 0.23 > 0 .0 5 20 2.17 < 0 .05 19D IP - 1 .8 5 > 0 .0 5 20 0.21 > 0 .05 19SÍO 4 - 1 .0 1 > 0 .0 5 20 - 1 .7 5 > 0 .0 5 19DIN:DTP 2.43 < 0 .0 5 20 1.47 > 0 .0 5 19D L N :S i04 1.78 > 0 .0 5 20 3.92 < 0.001 19C yanobac te ria 0 .85 > 0 .0 5 23 2.03 < 0 .0 5 22C ryp to p h y ceae - 1 .7 4 > 0 .0 5 23 - 3 .1 0 < 0.01 22D in o p h y ceae 2 .3 2 < 0 .0 5 23 - 0 .6 2 > 0 .0 5 22C hrysophyceae 3.20 < 0.01 23 3,10 < 0.01 22D ia to m o p h y ceae - 1.11 > 0 .0 5 23 - 0 .3 9 > 0 .0 5 22E ug len o p h y ceae - 3 .0 9 < 0.01 23 - 1 .1 7 > 0 .0 5 22C h lo ro p h y ta 2 .38 < 0 .0 5 23 2.26 < 0 .0 5 22E b riid ea - 0 .4 8 > 0 .0 5 23 - 1 .4 4 > 0 .0 5 2 2

variables (and a ll c an o n ica l ax es) a cc o u n te d fo r 16.4% of the variation in th e p h y to p la n k to n b io m a ss d a ta in th e NBP, and 20,0% in th e GF. In the NBP, D IP w a s o m itted from the RD A because o f its n e g lig ib le va rian ce .

In the R D A o rd in a tio n (Fig. 4), th e f irs t tw o ax es explained 12.7% (N B P) and 15.0% (G F ) o f th e to ta l v a ria n ce in the phy­toplankton b iom asses (N B P: ax is 1: 7 .5 % , ax is 2: 5 .1% ; GF: axis 1: 9 .2% , ax is 2: 5 .8 % ). T h e first R D A ax is w as signifi­can t in both a reas (N B P : F = 3 .6 7 , p = 0 .0 0 0 1 ; GF: F = 3.45, p = 0 .029), an d it d e sc rib e d a g ra d ie n t from a rela­tively h ig h er s ilica te co n ce n tra tio n and sa lin ity to w ard s higher tem perature and D IN c o n ce n tra tio n . W h en p lo tte d against the env ironm ental v a riab le s (F ig . 4 A ,C ), th e sa m p le s (fitted with the p h y to p lank ton b io m a sses and e n v iro n m en ta l variables) from the d iffe ren t d e ca d es fo rm e d lo o se c lu s te rs , indicating a transition in the e n v iro n m en ta l c o n d itio n s d u rin g th e study period. In g enera l, sa m p le s fro m th e la te 1970s an d 1980s w ere assoc ia ted w ith h ig h e r s i l ic a te c o n c e n tra tio n s an d salin­ity than sam ples taken in the 1990s a n d e a r ly 2 0 0 0 s , which w ere ch arac te rised by h ig h er te m p e ra tu re s an d DIN concen tra tions.

S im ilarly , the p h y to p la n k to n ta x a c o u ld be c lass ified ac­cord ing to th e ir a sso c ia tio n w ith th e e n v iro n m e n ta l variables (Fig. 4B ,D ). T h e v ec to r len g th in d ic a te s th e g o o d n e ss o f fit o f each tax o n ’s b io m a ss to th e d isp la y e d o rd in a tio n , and acute angles b e tw een tw o v e c to rs in d ic a te a h ig h p o sitiv e correla­tion. T hus, the b io m ass o f e .g . P se u d o p e d in e lla spp . was strongly re la ted to a h ig h D IN c o n c e n tra tio n an d a h igh tem ­perature, but a lso to a low sa lin ity and lo w s il ic a te co n cen tra ­tion in bo th su b -a reas (F ig . 4 B ,D ). In g e n era l, the phy top lank ton ta x a co u ld b e d iv id e d in to tw o m ain g ro u p s ac­cord ing to th e ir co rre la tio n w ith the e n v iro n m e n ta l factors. T he first group w as fo rm e d b y ta x a w h o se b io m a ss w as high­est in e ith e r low tem p era tu res an d lo w D IN co n cen tra tions (e.g. g om phosphaerio ids, c ry p to m o n ad s , D in o p h y s is norveg­ica, E bria tripartita ), or in h ig h sa lin ity and h ig h silicate

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a rin e In s titu te L ib rary (S L I0 5 X 0 0 2 2 5 E )

S . Su ikkanen e t a l. I Estuarine. C oasta l a n d S lw l f Science 71 (2007) 5 8 0 - 5 0 2 585

22 -T em pera tu re

2 0 -

UCU3S<uD.E

t -

□□

C h lo rophy ll a'

.....■CU

D isso lved inorgan ic phosphorus

o.Q

0 .4 -

0 .2 -

20 -D IN :D IP *

5ZQ

2005199519851975

7.0 -

6.5 - o..

co 6,0 -

5 .0 -

D isso lved inorganic n itro g en

S3.

z5

Silicate20 -

O* 1 0 -

D IN :SiO ,0.7

0.6

-Q-a'zo

0.3 ' □ /

0.2

1995 200519851975

F ig 2 S um m er tem pera tu re , s a lin ity and ch lo rophy ll a , w in te r concentrations o f inorganic nu trien ts (D IN , D IP and s ilica te), and m olar ratios o f D IN:DIP and D IN -SiO * from 1979 to 20 0 3 (m e a n 0 - 1 0 m ). A Loess curve (span = 0 .75) (so lid b lack lines) w ith 95% confidence in tervals (dashed lines) is fitted to describe th e long-term variation A ste risk s ind ica te s ta tis tic a lly significant trends (M a n n -K e n d a ll test, p < 0 .05). (A) N orthern B altic proper, (B) G u lf o f Finland.

co n cen tra tio n s (m ain ly E u trep tie lla spp . and the d iatom s A cti­nocyc lu s o c to n a r iu s , C h a e to cero s d a n icu s , C haetoceros spp. and T halassiosira sp p .). A l l b u t one d ia to m taxon in the w ho le s tudy area b e lo n g ed to th is group.

T h e second g ro u p in c lu d e d tax a genera lly p referring a h igh tem p e ra tu re and D IN co n cen tra tio n , an d a low silica te co n cen ­tra tio n and sa lin ity (p ico c o lo n ia l and filam entous cyanobacte­ria : A nabaena le m m erm a n n ii, A phan izom enon spp. and N odularia, sp um igena , th e d inoflagellates D inophysis

rotundata , A m p h id in iu m spp., G ym nodinium spp. and Oblea ro tunda co m plex , P seudopedinella spp. and Pyram im onas spp .). M o st o f th e d ino flagella te taxa in the w hole study area, and, add itionally , both chrysophyte taxa in the NBP, and m ost o f the cyanobacteria l tax a and a ll chlorophytes in the G F could be assigned to th is group. T he biom ass o f the for­m er group gen era lly decreased , w hereas that o f the latter g roup increased , sim ultaneously w ith the change in environ­m enta l co nd itions th roughout th e study period.

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M arin e In s titu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

586 S . S u ikkanen c t a l. I E stuarine , C oastal a n d S h e l f Science 71 (2007) 5 8 0 - 5 9 2

T e m p era tu re

?ya2

C h lo ro p h y ll a*

.P -□□

D isso lv ed inorgan ic phosphorus

Q

0.2

20 -D IN :D IP

19851975 2005

S alin ity6.5

6 .0 -

□Dc

3 5.0

4.5

4.0

D isso lved in o rg a n ic n itro g en1 0 -

2Q

□ /

S ilica te2 0 -

- Q . ,

10 -

D IN :SiO ,

O<75SQ n . /

0 .4 -

0 .2 -

1975 1985 2005

Fig . 2 (continued).

4. Discussion

D u rin g the p a s t 25 y e a rs , th e p e la g ic eco sy stem o f the B altic Sea has und erg o n e d ra s tic c h a n g e s b o th due to c lim ate-d riven ch an g es in h y d ro g rap h y an d to a n th ro p o g e n ic in fluence. The p re sen t study in d ica tes th a t in th e n o rth e rn B altic S ea , a transi­tio n h as o ccu rred in e n v iro n m en ta l co n d itio n s in 1979—2003, fro m m ore sa line su m m e r c o n d itio n s , w ith h igher silica te con­c en tra tio n s in w in ter, to w ard s h ig h e r su m m er tem pera tu res and h igher w in ter D IN c o n ce n tra tio n s an d D IN iD IP and D IN :- S i 0 4 ra tio s. A t th e sa m e tim e , th e su m m ertim e ch lorophyll

a co n cen tra tion o f th e su rface w a te r has s ig n if ic a n tly increased , ind ica ting an o n g o in g eu tro p h ica tio n p ro c e ss o f th e open sea. C hanges in en v iro n m en ta l fa c to rs , e sp e c ia lly in c re a se d sum m er tem pera tu re an d w in te r DIN c o n c e n tra tio n , se e m to b e reflected in th e late su m m er p h y to p la n k to n c o m m u n ity s tru c tu re .

4.1. L ong-term ch a n g es in h y d ro g ra p h y a n d n u tr ien ts

T h e d ecreased frequency a n d d u ra tio n o f sa lt w a te r inflows from the N orth A tlan tic s in ce th e 1970s an d sim u ltan eo u s in ­crease in ra in fa ll an d riv er ru n o ff , c o n tro lle d b y c lim atic

s u b ito e .V . l ic e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a rin e In s titu te L ib ra ry (S L 1 0 5 X 0 0 2 2 5 E )

S. S u ikkanen e t a l. / E stuarine . C oastal and S h e l f Science 71 (20071 5 S U -5 9 2 587

1400 - C yanobacteria Cryptophyceae600 -

500 -1000 -

400 -

300-

2 00 -

1 0 0 -2 0 0 -

B O

D inophyceae ' 2(jo . C hrysophyceae700 -

150 -500 -

100 -

CQ

5 0 -100

Euglenophyceae'100 - D ia tom ophyceae 40 -

SO -30 -

60 -so=L2 0 -

I 40 -

2 0 -

Ebriideago . C h lo rophy ta 30 -

60 -20 -

oof «■CQ

tx.

10 -

200519852005 1975199519851975

F ig . 3. B iom ass o f Ute m a jo r p h y top lank ton g roups (p g I " 1) from 1979 to 2003 (m ean 0 - 1 0 m ). A L oess curve (span = 0 .7 5 ) (solid b la c k lin e s ) w ith 9 5 % c o n fid en ce intervals (d ash ed lin es ) is fitted to desc rib e the long -term variation . A sterisks indicate sta tis tica lly significant trends (M a n n -K e n d a ll te st, p < 0 .0 5 ).

(A ) N orthern B altic p roper, (B ) G u lf o f F in land .

fa c to rs in th e A tlan tic , h ave co n trib u ted to a general decrease in B altic S ea sa lin ity and deep lay e r d isso lv ed oxygen concen­tra tio n s (H E L C O M , 2 0 0 2 ). C o n seq u en tly the coverage o f ox ­y g e n defic ien t near b o tto m areas h as in creased (P itkänen et al.,2 0 0 3 ). In the n o rth ern B altic Sea, sa lin ity has d ecreased since th e early 1980s (F lin k m an e t al., 1998; R önkkönen e t al.,2 0 0 4 ). T his trend w as a lso found in th e n o rth ern B a ltic p roper in th e p resen t study, w h ereas on ly a s lig h t decrease w as ob ­se rv ed in th e G u lf o f F in land . In stead , th e d a ta suggests a no ­ta b le increase in su m m er tem p era tu re in 1979—2003 in both a rea s . H ow ever, in th e e n d o f the s tu d y period (2 0 0 0 -2 0 0 3 ) ,

the sam ples w ere generally taken earlie r d u rin g A u g u s t th a n in 1979—1997, w h ich m ay thus p a rtly explain th e o b se rv a tio n . On th e o ther h and , so m e w arm ing m ay have o c c u r re d , c o rre ­sponding to a general atm ospheric heating d u rin g th e la s t c e n ­tury: R önkkönen e t a l. (2004) a lso reported an in c re a s e in sum m er tem perature in the n o rth ern B altic S e a i n 1950— 1999. In the sou thern B altic Sea, in te rm ed iate w in te r w a te r tem peratures and su m m er tem pera tu re m ax im a in th e su rfa c e m ixed layer h ave in creased s in ce th e late 1980s, c o n n e c te d w ith a change in the N orth A tlan tic O scilla tio n in d e x f ro m a negative to a p o sitiv e phase (A lh e it et al., 2 0 0 5 ).

s u b i to e .V . l i c e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a r in e In s titu te L ib rary (S L I0 5 X 0 0 2 2 5 E )

588 S. Su ikkanen e t al. / E stuarine , C oasta l a n d S h e l f Sc ience 71 (2007) 5 8 0 —592

B

C ryp to p h y ceae1C y an o b a c te ria ’800 -1000 -

800 - 600 -

3 600 - Sm 400 -

400 -

2 0 0 -200 -

D inophyceae C h ry so p h y ceae’250 - 1 0 0 -

2 0 0 - 80 -

B 'SO­ISm 1 0 0 -

60 -

40 -

50 - 20 -

250 - D ia tom ophyceae E uglenophyceae80 -

200 -

60 -

40 -

2 0 -50 -

C h lo ro p h y ta ’ E briidea25 -200 -

2 0 -■ ff 150 -M32 mo -cû 7-0 ao '■ 10 -

50 -

975 1985 2005

F ig . 3 (con tinued ).

1975 1985 1995

S ta tistica lly s ig n ifican t in c re a se s in to ta l N and P, as w ell as D IN and D IP have b e e n re c o rd e d fro m m o st o f th e B altic Sea since th e la te 1960s (W u lff an d R ah m , 1988; Sandén and R ahm , 1993; H E L C O M , 1996). T o a larg e part, the h ig h nu trien t co n ten t o f th e su rfa ce w a te r is d u e to th e h eavy an th ro p o g en ic nu trien t load ing : N co n c e n tra tio n s h ave b een a ttrib u ted to riv e r­in e and a tm o sp h e ric lo ad , w h e re a s P m ain ly o rig in a tes fro m the riv e rin e load an d a n o x ic se d im e n ts (S andén and R ah m , 1993; P itk än en e t al., 2 0 0 1 ). E sp e c ia lly in th e GF, n u tr ie n t leve ls are h ig h and e u tro p h ica tio n co n tin u e s d u e to in te rnal n u trie n t lo a d ­in g (P itkänen e t al., 2 0 0 1 , 2 0 0 3 ). In th e p re sen t d a ta set, th e re w as a s lig h t d e c re as in g te n d e n c y in w in te r su rface w a ter D IP c o n cen tra tio n in th e N B P , b u t n o d e c re a se w as o b se rv ed in the

GF. Instead , the D IP c o n ce n tra tio n in th e G F seem s to h av e in­c rea sed s in ce th e b e g in n in g o f th e 1990s. F u rth e rm o re , DIN co n cen tra tio n s ig n ifican tly in c reased in th e su rface w a te r of th e G F during th e s tu d y pe rio d . T h is is m o st like ly th e resu lt o f a co m b in a tio n o f N lo a d in g an d in c re a sed N accu m u la tio n in th e G ulf. In ad d itio n to P re leases , b o tto m an o x ia lead s to w eaken ing o f the d en itrifica tio n cap ac ity o f th e se d im e n t an d ac­c u m u la tio n o f am m o n iu m , w h ich is o x id iz e d into n itra te w hen transported to th e su rface w a ter (K u p a rin e n an d T u o m in en , 2 001). T he am o u n t o f D IN in re la tio n to th e o th e r in o rg an ic nu­trien ts (DIP, S i0 4) w as a lso fo u n d to g e n e ra lly in c re a se in the study area, w h ich m ay h av e h ad c o n se q u en c es fo r th e p h y to ­p lan k to n co m m u n ity (d iscu ssed below ).

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M a r in e In s titu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

S. S u ik k a n e n et a i / E stuarine , C oasta l anti S h e l f Science 71 (2007) 5 8 0 - 5 9 2 589

Table 3List o f phytoplankton taxa in c luded in the R D A (C ode : see T able 1 fo r inc luded species), th e ir system atic g roup , n u tritio n , the n um ber o f non-zero observations (N orthern Baltic proper, to tal ;i = 50; G u lf o f F in la n d , to tal n = 40 ). m ean b iom asses and standard deviations in the an a ly sed da ta

Code G roup11 N u tritio n 11 N orthern B altic proper G ulf o f F in land

Obs. M ean ± SD pg 1 1 Obs. M ean ± SD pg I“ 1

Picocolo C yano A 26 48 .6 ± 168.2 16 18.5 ± 110.5G om phosp C yano A 35 3.3 ± 6.3 36 19.9 ± 6 2 .6Anablem C yano A 26 1.6 ± 3.9 32 7.3 ± 11.6A nabaena C yano A 17 11.7 ± 77.8 17 8 .4 ± 28.4A phanizo C yano A 50 87.9 ± 76.9 40 103.7 ± 75.2Noduspu C yano A 38 25.1 ± 35.8 29 54.1 ± 154.2Cryptom o C ryp to A h i 49 68.1 ± 81.8 40 99 .3 ± 143.9D inoacu D ino A/I-I 39 3.6 ± 4.9 38 18.4 ± 17.9

D inonor D ino A /H 31 9.6 ± 23.6 10 4 .3 ± 22.9D inorot D ino H 29 2 .0 ± 3 .7 17 0.8 ± 1.6A m phidin D ino A/M 22 2 .0 ± 5 .0 12 2 .4 ± 7.7G ym nodin D ino A /H 45 30 .0 ± 86.8 37 11.7 ± 14.0

G yrodini D ino A /H 16 2.1 ± 7 .7 14 1.0 ± 1.9

G lenodin D ino A /H 14 4,8 ± 14.5 12 2.7 ± 4.9O blerot D ino H 8 4.9 ± 32.8 10 0 .4 ± 1.1P rotoper D ino H 8 0 .6 ± 2 .1 8 0.3 ± 0.9

G onyaula D ino A 13 0.8 ± 2.4 2 0 .0 ± 0.2

Protret D ino A 31 3.1 ± 6 .1 19 6.3 ± 13.3

D inofac C hryso A 10 0.2 ± 0.8 5 0.1 ± 0.4

Pseudope C hryso A 39 13.8 ± 2 7 .9 32 11.3 ± 15.3Actioct D iatom A 28 2 .0 ± 4 .3 20 7.5 ± 34.4

Chaedan D iatom A 21 0 .6 ± 1.3 11 0.5 ± 1.3

C haetoce D iatom A 20 1.2 ± 3 .2 16 2.1 ± 10.9

Thalassi D iatom A 23 4 .4 ± 13.9 12 0 .4 ± 0,9

Cyliclo D iatom A 9 0.1 ± 0 .2 1 0.0 ± 0 .1

N itzschi D iatom A 10 0 .2 ± 0 .6 6 0.2 ± 1.3

Eutrepti E ug leno A 39 4.8 ± 8.5 24 4.9 ± 14.0

Pyram im o C hlora A 50 25 .8 ± 16.5 40 39.1 ± 4 2 .6

M onocon C hlora A 24 0.1 ± 0 .3 29 0 .4 ± 0.7

O ocystis C hlo ra A 35 3.4 ± 6.7 27 3.3 ± 6 .1

Planlau C hlora A 10 0.1 ± 0 .4 9 0.0 ± 0 ,0

Ebri tri Ebri H 43 4.2 ± 5.7 35 5.3 ± 6 .9

;l C yano = C yanobacteria. C ryp to = C ry p to p h y c e a e , D ino = D inophyceae , C hryso = C hrysophyceae , D ia tom = D iatom ophyceae, E ugleno = E uglenophyceae,

C hlora = C hlorophyta, E bri = E briidea . h A = autotrophy, H = hetero trophy.

W e found slight d ec reases in w in te r tim e silica te co n cen tra ­tion in the w hole study area a n d a d istinc t in crease in D IN :S i0 4 ratio in th e GF. In the su rfa c e w aters o f th e w hole B altic Sea, there have been s ig n ific a n t decreases in silicate concentration and S i0 4:D IN ratio s in c e th e late 1960s (Sandén and Rahm , 1993; R ahm et al., 1996; K u p a rin en and T uom inen , 2001). This has been a ttribu ted to in c re a se d sed im en tatio n o f b iogenic silica as a resu lt o f in c re a se d d iatom p roduction due to eutrophication in th e m a r in e en v ironm en t (W ulff et al., 1990; Conley e t al., 1993), a n d a lread y in the catchm en t area, leading to d rastic red u ctio n s in r iv e rb o m e silica te loads to th e Baltic Sea (H u m b o rg e t a l., 2 0 0 0 ). S ilica te lim ita tion o f spring bloom diatom s m ay also le a d to changes in th e sum ­m er phytoplankton co m m u n itie s, a s m o re inorganic nu trien ts are le ft in th e su rface m ix ed la y e r fo r th e ir use (R ahm e t al., 1996; Kuparinen and T u om inen , 2 0 0 1 ) . T h e re la tio n sh ip b e ­tw een d inoflagellates and d ia tom s d u r in g sp rin g b lo o m has ac­tually changed in fav o u r o f d in o fla g e lla te s in th e sou thern B altic Sea (W rzoiek , 1996; W asm u n d e t al., 1998) an d in the B altic proper (W asm u n d and U h lig , 2 003), and since the 1990s, the late su m m er p h y to p la n k to n b iom asses have

in creased in re la tion to th e spring b lo o m in the G F (R aateoja et al., 2005).

4.2. P hytop lankton co m m unity ch anges in relation to environm enta l fa c to rs

B iolog ical effects o f eutrophication o f the open sea include in ­creases in prim ary productiv ity , chlorophyll a concentrations, al­gal b loom s, deposition o f organic m atte r and oxygen deficiency o f bo ttom w aters, and reductions in w a te r transparency and bot­tom fau n a (C loem , 2001). A ll o f th ese h ave been docum ented in the B altic Sea; e .g . w a ter transparency has decreased (Sandén and H âkansson, 1996) and phytoplankton production and bio­m ass have increased since the end o f 1960s, especially in sum m er (H ELC O M , 2002). S ign ifican t increasing chlorophyll a trends w ere also docum ented in the present study in both sub-regions. In th e GF, the increase was m ore p ronounced than in the NBP, p robably reflecting the severe internal nutrient loading. Further­m ore, our results ind ica te that major changes have also happened in sum m er phytop lank ton com m unities.

s u b ito e .V . l ic e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M arin e In s ti tu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

590 S . S u ikkanen c l at. / Estuarine . C oasta l and S h e l f Sc ience 71 12 0 0 7 ) 5 8 0 —592

+ 1.0

A2 0 0 2 200 V J

T e m p e r a tu r e * ©

2 0 0 2 ^ . * 1096

2002 N W f t o

0 1 9 8 41984

3

S I O /

' / o '979/ 1 9 8 0 1 9 8 1

/ 9 8 0 -1 9 8 8 1983 / 0 9 ) 9 8 3 | 9 8 | / _JDÍ2S¿—- — f a l t a n *

BT e m p e ra tu re *

* ^ S\ vD ¡nom i

D IN * yX XP y ra im rn rS fR g t ^

P leocola

S i O /

/ G lenod in o c y s f í s /

/ / / C h aed an

U O f C i y r o d in i ---------» S a l in i ty

1991 °

2001 #d°Vù)4 « » a O «1997 U o a o o

l 9 9 5 ° « IOS» 19912000 i9(

o1991 O

1992

3 , 9 9 0 0 1 9 8 5

V w * 7 O„ 1989 I9 »’’

, â o o |W ,1981

>seuJ° P A ,Í íh íd i* O b le s s ^ / / ¡Prom et NojKÍspu /

D inoacu /

A p han izo

yN o c í5Rp^ iuu T h a la ss i

bit tr i r

D in o n n rO

1994O 1979-1989

O 1990-1997

• 2000-2003

- 1.0 + 1 .0 - 1 .0

A xis 1 (A , = 0 .075) A xis 1 (A ,= 0 .0 7 5 )

+ 1.0

- 1 .0

C '9s40

1981W q Q s i o .

S a lin ily X

1979 1786 I98K L 1992 ÔÇ

1984O

2002 T e m p e r a tu r e '' • 2002®

j » > Xi d 200.1 fc » ¿ O i9 9 j_____ ► • d i n *

D

S io ,

S a lin U y V

P ru tre t W h S!

T e m p e r a tu r e *

D I P G le n o d in ^

D IN *

- , O |086 m i

1992 ° r )9 8

1987 2000

™ f e 7° .9 9 6

1991 20011 ©

2000

A ctluct D \ n o n a ¡ ^ ^ ¿ V Ebrllrl v y y ,

C ry p to m o / * ‘ G o m p litw iC h a e m e d

»Pro toper A li D inoacu Ohlercn

— ■» Pscu tlupe V ^ s . P y ram im u

1 \ /^ « » n u c o n A n a h lc m

O o c y s (ß ü ral

+ 1 .0 - 1 .0 + 1.0

A xis 1 (A, = 0 .092) A xis 1 (A, = 0 .0 9 2 )

F ig . 4 . C orre la tion plots o f the red u n d an c y an a ly sis (R D A ) fo r the northern B altic proper (A, B) and the G u lf o f F in la n d (C . D ), on th e re la tio n sh ip betw een (A , C) the environm ental variables and s am p le years , w ith the periods 1 9 7 9 - 1989. 1 9 9 0 -1 9 9 9 and 2 0 0 0 -2 0 0 3 in d ica ted w ith d iffe re n t co lo u rs , and (B , D ) the biom ass o f phy top lank ton taxa (sm all vec to rs) and en v iro n m en ta l va riab les (large vectors). T he plots d isp lay 12.7 and 15.0% o f th e v arian ce in th e phy top lank ton biom ass in the N B P and GF, respectively , a n d e igenva lues o f th e first tw o axes are indicated by A| and A - C odes o f the p h y to p lan k to n lax a a re a s in T able 1. A sterisks in d ica te statistical s ign ificance ( / ; < 0 .0 5 ) o f en v iro n m en ta l variables.

T em perature and D IN c o n ce n tra tio n w ere the m ost im p o r­tan t environm ental fac to rs m o d ify in g th e late su m m er p h y to ­p lank ton com m unity. In th e NBP, s ilic a te co n cen tra tio n also p lay ed an im portan t ro le. T em p era tu re has been found to be th e m ost significant fa c to r a ffec tin g th e p h y to p lan k to n co m ­m u n ity structure th ro u g h o u t th e B a ltic Sea, b e in g positively re la ted w ith the b io m ass o f e.g . cy an o b a c te ria and ch lo ro ­p h y tes and negatively w ith d ia to m s (L aam an en , 1997; A lh e it e t al., 2005; G asiüna itè e t a l., 2 0 0 5 ). S alin ity , w h ich is the k ey fac to r affecting th e b a lan ce b e tw een sp ec ies o f m arine an d freshw ater orig in in th e B a ltic S ea , w as no t found to be a s ig n ifican t factor in th e p re sen t study , bu t its decrease m ay h av e affec ted som e taxa.

S om e o f the obse rv ed tren d s in th e p h y to p lan k to n group b iom asses 1979—200 3 m ay b e ex p la in ed by th e resu lts o f th e R D A . In th e w h o le s tu d y area , th e b io m asses o f ch ryso ­p h y tes and ch lo rophy tes in creased . T h e ch ry so p h y tes m ain ly co n sis ted o f P seu d o p ed in e lla spp ., w h ich in th e R D A w ere

highly assoc ia ted w ith h ig h D IN co n ce n tra tio n s an d a high tem peratu re. T h e in c re a s in g tre n d s o b se rv e d in these p a ram e­ters thus seem to b e a sso c ia ted w ith th e in crease in ch ry so ­phytes. C h ry so p h y tes sh a red th ese p refe ren ces with P yram im onas spp ., w h ich fo rm e d the b u lk o f the ch lo rophy te b iom ass. P yra m im o n a s spp . h av e been fo u n d to co rre la te pos­itively w ith tem p era tu re in th e G F (R a n ta jä rv i et a l., 1998), and increases in th e ir su m m e r b io m a ss h a v e also b een d o cu ­m ented in the so u th e rn B a ltic S ea s in c e 1979 (W rzo lek , 1996), T h e in crease in c h lo ro p h y te s m ay, on the o th e r hand, be assoc ia ted w ith th e d e c re a se in sa lin ity , as m any o f the com m on ch lo ro p h y tes (e .g . M o n o ra p h id iu m co n to r tu m and O ocystis spp .) are o f lacu s tr in e o rig in (N iem i, 1973).

T h e in tensity and freq u en cy o f c y ano bac teria l b lo o m s has increased in th e B a ltic S e a d u rin g th e la s t h a lf a cen tury (K ahru e t al., 1994; F in n i e t a l., 2 0 0 1 ), a n d several extensive cyanobacteria! b lo o m s o ccu rred in th e la te 1990s and early 2000s in th e G F (P itk än en e t a l., 2 0 0 3 ). D esp ite th e high

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M a rin e In s titu te L ib ra ry (S L 1 0 5 X 0 0 2 2 5 E )

S. S u ik ka n en e t a!. / E stuarine , C o asta l a n d S h e l f Science 71 (201)7) 5 8 0 - 5 9 2 591

v a ria b ility in the b iom ass da ta , w e o b se rv ed a s ig n ifican t in ­c re a se in cyanobacteria ! b io m a ss , m a in ly fo rm ed by A p h a n izo ­m e n o n flo s-a q u a e an d N o d u la r ia sp u m ig en a , in the G F during 1 9 7 9 —2003. U sing the B M P da ta , W asm u n d and U h lig (2003) a lso fo u n d an au tu m n in c rease in c y an o b a c te ria in th e B altic p ro p e r in 1979—1999, b u t in th e sa m p le s from 2 0 0 0 —2003, th is trend seem ed to h av e lev e lled o ff. T h e in crease in the G F w as possib ly asso c ia ted w ith th e in c rease in tem pera tu re a n d in o rgan ic nu trien ts: in th e R D A , gom pho sp h aerio id s w e re the only cy an o b ac te ria l ta x o n n o t a sso c ia ted w ith high tem p e ra tu re s and h igh D IN co n ce n tra tio n . In th e GF, g o m ­p h o sp h a e rio id s are m ost a b u n d a n t d u rin g the cool, w e ll-m ix ed s p r in g and au tum n p e rio d s (L aa m a n e n , 1997). T em pera tu re ( > 1 6 °C ) is the m ain fa c to r d e te rm in in g the o n se t and in ten ­s ity o f b loom s d o m in a ted by N . sp u m ig e n a in the B altic S ea (W asm u n d , 1997; K an o sh in a e t a h , 2 0 0 3 ), w h ereas the b io ­m a s s o f A ph a n izo m en o n sp p . m ay be s tro n g ly re la ted to D IN c o n ce n tra tio n (Jaan u s and P e llik k a , 2 0 0 3 ). A lso the s lig h t de­c re a s e in salin ity , co m b in e d w ith the in creased tem p era tu re , m a y have favoured e .g . th e p ico c o lo n ia l cy an o b acte ria . A n a ­b a e n a spp. and A p h a n izo m en o n spp . (L aam an en , 1997; H äll- fo rs , 2004).

O n the o ther h and , w e fo u n d no s tro n g asso c ia tio n betw een w in te r D IP co n cen tra tio n an d th e n itro g en -fix in g c y an o b ac te ­r ia l b io m ass , a lth o u g h in c reased c y an o b a c te ria l b loom s in the G F have often been a ttrib u ted to in c reas in g D IP c o n cen tra ­t io n s and d ecreas in g D IN .'D IP ra tio s , o rig in a tin g from the se d ­im e n t efflux (P itk än en e t al., 2 0 0 3 ). In stead , the b io m ass o f b o th A ph a n izo m en o n spp. and N o d u la r ia sp u m ig en a co rre ­la te d positively w ith w in te r D IN co n ce n tra tio n . I t h as been s ta te d , how ever, th at c y an o b a c te ria l b lo o m s in the G F have an a sso c ia tio n w ith the a m o u n t o f e x ce ss D IP le ft o v e r from th e spring b lo o m (K iirik k i et a l., 2 0 0 1 ), and no t so m uch w ith the n u trien t c o n ce n tra tio n s d u rin g m id -w in ter, w hen th e sam p les fo r th is s tudy w ere tak e n . A s d iscu ssed above, th e v e rn al b iom ass has d e c re a se d (R a a teo ja e t al., 2 005), p os­s ib ly leav ing a g re a te r a m o u n t o f D IP fo r the use o f sum m er c o m m u n itie s , in c lu d in g th e c y an o b a c te ria , w h ich h av e in ­c re a se d in b io m ass . In c re a se d n itro g e n -fix in g cy an o b acte ria m a y , on the o th er hand , h ave c o n tr ib u te d to th e in creased D I N level in the w in te r su rfa ce w a te r (K o n o n en and N iem i, 1 9 8 4 ). M oreover, in b o th su b -a rea s , th e re w as a d ecreas ing ten d e n cy in early su m m e r D IN co n ce n tra tio n s , w h ich m ay h a v e favoured th e c y a n o b a c te r ia o v e r o th er sp ec ies unab le to f ix a tm ospheric N.

T h e b iom ass o f c ry p to p h y te s d e c re ased in the GF, w h ich m a y be co nnec ted w ith th e in c re a se in tem p era tu re : in the R D A , the c ry p to p h y tes w e re a sso c ia te d w ith low tem p era tu res . In te re s tin g ly , the decrease in c ry p to p h y te s co in c id ed w ith the in c re a s e in c y an o b ac te ria in th e GF. E x tra c ts o f the m o st c o m ­m o n B altic c y an o b ac te ria (A p h a n izo m e n o n flo s -a q u a e , N o d u ­la r ia spum igena an d A n a b a e n a sp p .) h ave recen tly been fo u n d to inh ib it th e g ro w th o f c ry p to p h y te s in lab o ra to ry ex­p e rim e n ts e m p lo y in g a n a tu ra l B a ltic S e a p lan k to n co m m unity (S u ik k a n e n e t ah , 2005).

In th e NBP, m an y o f th e d in o p h y te s (e .g . D in o p h ysis ro tu n ­d a ta , G ym nod in ium spp ., O b lea ro tu n d a co m p lex ) m ay have

been favoured by the in c re a s in g w a ter tem p era tu re and /or DIN concentra tion (cf. N iem i, 1973; K ononen , 1988; H ällfors,2004). A lso, the general in c re a se o f sm all-celled species (chrysophytes, ch lorophy tes), a g g reg a te s o f ageing cyan o b acte ­ria w ith associated b ac teria a n d excre ted D O M m ay have benefited the dinoflagellates, m a n y o f w h ich are m ixo- or het- ero trophs. W asm und and U h lig (2003) a lso reported an increase in sp rin g and sum m er d in o p h y te b iom ass in the N B P in 1979— 1999, coincid ing w ith a decrease in d ia tom s. In c reasing dinofla­g ella tes m ay be a cause o f c o n c e n t, as so m e B altic dinoflagellata species are also po ten tially to x ic (H E L C O M , 1996).

In sp ite o f the ra th e r low sa m p lin g frequency and the high variab ility in som e variables, w e b e lieve that the B M P data gives a reliable p ic tu re o f th e genera l changes in th e pelagic ecosystem o f the B altic Sea. T h e ra th e r low percen tag e o f var­iance in the phytop lankton d a ta exp la in ed by the env iro n m en ­tal variab les in the R D A is quite com m on in com plex eco lo g ica l m onito ring data ( te r B raak and S m ilauer, 1998), and is partly due to o th er fac to rs , not con sid ered in th is study, in fluencing phytop lankton p o p u la tio n s (e.g. grazing , sed im en­tation , m icronutrien ts, in h ib ito ry substances, light conditions).

To conclude, the long-term d ev elo p m en t o f the late sum m er phytop lankton com m unities in th e northern B altic S ea seem s to reflect the com bination o f o n g o in g eu tro p h ica tio n and clim ate- driven changes in hydrography. T h e sign ifican t in crease o f ph y ­to p lank ton biom ass, ind icated as ch lorophyll a concen tra tion , is due to a considerab le increase in cyanobacteria , v a rio u s flagel­lates and chlorophytes. O ur resu lts ag ree w ith those o f Kononen (1988), w ho also no ticed an in crease in n an o p lan k to n ic flagel­lates, ch lorophytes, p ico co lo n ia l cy an o b acte ria and hetero tro- ph ic species in the G F in 1972—1985, suggesting an increase o f th e re la tive im portance o f reg en e ra ted p roduction an d the m i­c rob ia l loop. A cy an o b acte ria -flag ella te dom inated com m unity is generally poor food fo r m an y g raze rs (O fficer an d Ryther, 1980), but the large-scale co n seq u en ces o f the changes in phy­to p lank ton fo r h igher tro p h ic lev e ls and th e ir connections w ith observed long-term changes in e.g . Zooplankton, ben th ic and fish com m unities are ye t unknow n.

Acknowledgements

W e are grateful to th e s ta ff o f the F in n ish In stitu te o f M a­rine R esearch fo r sam pling , h y d rograph ical m easurem ents and chem ica l analyses. J. E ng strö m -Ö st, M . K arjalainen and M. V iitasalo are acknow ledged for co n structive com m ents on th e m anuscrip t. F inan cia l su p p o rt to S .S. was p rov ided by th e M aj and Tor N essling F o u n d a tio n and the W alter and A n d rée de N ottbeck F oundation .

References

A lheit, J ., M öllm ann, C ., D u tz , J., K ornilovs, G ., L oew e, P., M ohrho lz , V.,W asm und, N ., 2005 . S ynchronous eco log ica l reg im e sh ifts in th e centralB altic Sea and the N orth Sea in the la te 1980s. IC E S Journal o f M arineS cience 62, 1 2 0 5 -1 2 1 5 .

te r B raak , C .J.F., 1994. C anonical com m unity o rd ina tion . P art 1: B as ic theoryand linear m ethods. E cosc ience 1, 1 2 7 -1 4 0 .

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p lie d a n d p r in te d fo r F la n d e r s M a rin e in s ti tu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )

592 S . S u ikkanen er al. / E stuarine , C o asta l a n d S h e l f Sc ien ce 71 (2 0 0 7 ) 5 8 0 —592

te r B raak. C.J.F., S m ilau er, P., 1998. C A N O C O R efe ren ce M an u a l and U ser's G u ide to C A N O C O fo r W indow s: S o ftw are fo r C ano n ica l C o m m un ity O r­d in a tio n (version 4 ). M ic ro c o m p u te r P ow er, I thaca , NY, 351 pp.

C loem , J .E ., 2001. O u r e v o lv in g co n c ep tu a l m ode l o f th e coasta l eu troph ica­tion p roblem . M arine E c o lo g y P ro g ress S eries 210 , 223—253.

C onley , D .J., S chelske , C .L ., S to erm er, E .F ., 1993. M odifica tion o f the b iogeo ­chem ica l cyc le o f s i lic a w ith eu tro p h ica tio n . M arin e E co logy Progress S eries 101, 1 7 9 -1 9 2 .

F inn i, T., K ononen, K ., O lsonen , R ., W alls tröm , K ., 2001 . T h e h isto ry o f cy­anobacterial b loom s in th e B a ltic Sea. A m bio 30, 172— 178.

F linkm an , J., A ra , E ., V uorinen , I., V iitasa lo , M ., 1998. C h an g es in northern Bal­tic Zooplankton and h errin g n u tritio n fro m 1980s to 1990s: top-dow n and bottom -up p rocesses a t w ork . M arin e E co logy P rog ress S eries 1 6 5 ,127—136.

G asiflna ité , Z .R ., C ardoso , A .C ., H e isk an en , A .-S ., H enriksen , P., K auppila , P., O len ina , I., P ilk a ity tè , R ., P u rin a , I„ R az inkovas, A ., S agert, S., S chubert, H „ W asm und , N ., 2 005 . S easo n a lity o f co a sta l phytop lank ton in th e Baltic S ea: in flu en ce o f sa lin ity a n d eu troph ica tion . E stuarine, C oasta l and S h e lf S c ie n ce 65 , 2 3 9 —252.

G ilbert, R .O ., 1987. S ta tis tic a l M e th o d s fo r E n v iro n m en ta l P o llu tion M on ito r­ing. Van N ostrand R ein h o ld C o ., N ew Y ork, 320 pp.

H ällfors, G ., 2004. C h e c k lis t o f B a ltic S ea P h y to p lan k to n S pec ies (Including S om e H etero trophic P ro tis tan G ro u p s). B altic S ea E n v iro n m en t P roceed­ings 9 5 , 208 pp.

H E L C O M , 1988. G u id e lin es fo r th e B a ltic M o n ito rin g P rog ram m e fo r the T h ird S tage. P art D . B io lo g ica l D e te rm in an d s . B altic S e a E nv ironm ent P roceedings 27D , 161 pp.

H E L C O M , 1996. T h ird P e rio d ic A ssessm en t o f th e S ta te o f the M arine Envi­ro n m en t o f the B altic S ea 1989—1993. B ack g ro u n d D o cu m en t. B altic Sea E nvironm ent P ro ceed in g s 64B , 2 5 2 pp.

H E L C O M , 2002. E n v iro n m en t o f th e B a ltic S ea A rea 1994— 1998. B altic Sea E nvironm ent P roceed ings 82B , 2 1 5 pp .

H um borg , C., C onley, D .J., R ah m , L ., W ulff, F ., C ociasu , A ., Ittekko t, V.,2000 . S ilicon re ten tio n in riv e r b a s in s : fa r-reach in g effec ts on b iogeochem ­istry and aquatic food w ebs in co a sta l m a rin e env ironm en ts. A m bio 29, 4 5 - 5 0 .

Jaanus , A ., Pellikka, K „ 2 0 0 3 . D oes ex cess iv e p h o sp h o ru s necessa rily cause increasing b iom ass o f d ia zo tro p h ic c y a n o b ac te ria? P ro ceed in g s o f th e E s­tonian A cadem y o f S c ie n ces B io logy . E c o lo g y 52, 2 0 5 —217.

K ahru , M ., H orstm ann, U ., R ud , O ., 1994. S a te lli te de tec tio n o f inc reased cy ­anobacteria b loom s in th e B a ltic S ea : n a tu ra l fluc tuation o r ecosystem change? Am bio 23 , 4 6 9 —472 .

K anosh ina, I., Lips, U ., L e p p an en , J .-M ., 2003 . T h e in fluence o f w ea th er con ­ditions (tem perature a n d w in d ) o n cy an o b ac te ria l b lo o m deve lopm en t in the G u lf of F in land (B a ltic S ea). H a rm fu l A lg ae 2, 2 9 —41.

K iirikki, M ., Inkala, A ., K uosa , H ., P itk ä n en , H ., K uusisto , M ., S arkku la , J „2001. E valuating the e ffec ts o f n u tr ien t lo a d reduc tion o n the b iom ass of toxic n itrogen-fix ing cy a n o b a c te r ia in the G u lf o f F in la n d , B altic Sea. Bo­real E nv ironm ent R esea rc h 6, 131—146.

lo nonen, K ., 1988. P h y to p la n k to n s u m m e r a s sem b lag es in re la tion to env iron­m enta l factors a t the en tra n c e to th e G u lf o f F in land d u rin g 1972— 1985. K ie ler M eeresfo rschungen S o n d e rh e ft 6 , 2 8 1 —294.

K ononen, K „ N iem i, À ., 1984. L o n g -te rm v a ria tio n o f th e phy top lank ton co m ­position at the en tran ce to th e G u lf o f F in la n d . O p h e lia S upp l. 3 , 101—110.

K oroleff, F., 1979. M eriv e d en y le is im m ä t k e m ia llise t ana lyysim enete lm ät. M eri 7 , 1 -6 0 (in F inn ish ).

K uparinen , J„ T uom inen , L ., 2 0 0 1 . E u tro p h ica tio n and self-purification: counteractions fo rced by la rg e -sc a le cy c les a n d h y d ro d y n am ic processes. A m bio 30, 190—194.

L aam an en , M .J., 1997. E n v iro n m e n ta l facto rs a ffec ting the occu rren ce o f dif­fe ren t m o rp h o lo g ica l fo rm s o f cy a nop roka ryo tes in th e northern Baltic S ea . Jou rnal o f P lan k to n R e s e a rc h 19, 1385— 1403.

N iem i, Â ., 1973. E c o lo g y o f p h y to p la n k to n in th e T v ä rm in n e area , S W coast o f F in la n d . I. D y n am ics o f h y d ro g rap h y , nu trien ts , ch lo ro p h y ll a and phy­to p lan k to n . A c ta B o ta n ica F e n n ic a 100, 1—68.

O fficer, C .B ., R y ther, J .H ., 1980 . T h e po ssib le im portance o f silicon in marine e u tro p h ica tio n . M arin e E c o lo g y P ro g ress S eries 3 , 83—91.

P itk än en , H ., L e h to ran ta , J . , R a ik e , A ., 2001 . In te rnal n u trien t fluxes counter­ac t d ec reases in ex te rn a l lo a d : th e case o f the estuaria! ea stern G u lf o f Fin­la n d , B a ltic S ea . A m b io 3 0 , 195—201.

P itk än en , H ., L e h to ran ta , J ., P e lto n e n , H ., L a ine , A ., K otta , J ., K otta , I„ M o sk a len k o , P., M äk in en , A ., K an g as , P., P erttilä , M ., K iirikk i, M ., 2003. B en th ic re lea se o f p h o s p h o ru s a n d its re la tio n to en v iro n m en ta l conditions in the estuaria! G u lf o f F in la n d , B altic S ea , in the ea rly 2000s. Proceedings o f th e E s to n ian A cad em y o f S c ie n ces B io logy . E co lo g y 52 , 173—192.

R aa teo ja , M ., S eppälä , J . , K u o sa , H ., M y rb erg . K ., 2005. R e c e n t ch an g es in tro­p h ic s ta te o f the B altic S ea a lo n g S W c o a st o f F in land . A m bio 3 4 ,1 8 8 — 191.

R ahm , L., C on ley , D ., S an d én , P., W ulff, F., S tâ lnacke , P., 1996. T im e series an a ly sis o f n u trien t in p u ts to the B altic Sea and ch a n g in g D S i:D lN ratios. M arin e E c o lo g y P rog ress S e r ie s 130, 2 2 1 -2 2 8 .

R an ta jä rv i, E ., G ran , V., H ä llfo rs , S ., O lsonen, R ., 1998. E ffec ts of en v iro n m en ta l fac to rs on th e p h y to p lan k to n c o m m u n ity in the G u lf of F in la n d — u n a tte n d e d h ig h f req u en c y m easu rem en ts and multivariate ana ly ses . H y d ro b io lo g ia 3 6 3 , 127—139.

R önkkönen , S ., O javeer, E ., R a id , T ., V iitasalo , M „ 2004 . L o n g -te rm changes in B a ltic h e rr in g (C lu p e a h a r e n g u s m em b ra s) g row th in the G u lf o f Fin­land . C a n a d ian J o u rn a l o f F is h e r ie s and A quatic S c ie n ces 61, 219—229.

S a lm i, T„ M äättä , A ., A n tti la , P., R uoho -A iro la , T ., A m nell, T., 2002, D e te c tin g T rends o f A n n u a l V alues o f A tm ospheric P o llu tan ts by the M a n n -K e n d a ll T est a n d S e n 's S lo p e E stim ates — th e E xcel Template A p p lic a tio n M A K E S E N S . F in n ish M e teo ro log ica l In s titu te , Helsinki, P u b lic a tio n s on A ir Q u a lity 31, 35 pp.

S an d én , P., H âk an sso n , B ., 1996. L o n g -te rm trends in S ecch i d ep th in the B a ltic S ea . L im n o lo g y and O c ean o g ra p h y 4 1 , 346—351.

S an d én , P., R ahm , L ., 1993. N u tr ie n t trends in th e B a ltic S ea , Environm etrics 4 , 7 5 - 1 0 3 .

S u ik k an en , S ., F is taro l, G .O ., G ra n é li , E ., 2005 . E ffec ts o f cy an o b ac te ria l al- le lo ch em ica ls on a n a tu ra l p la n k to n com m unity . M arin e E co lo g y Progress S erie s 2 8 7 , 1—9.

U term öh l, H ., 1958. Z u r V erv o llk o m m n u n g d e r qu an tita tiv en Phytoplankton- M eth o d ik . M itte ilu n g en . In te rn a tio n a le V erein igung fü r T h e o re tisch e und A n g ew an d te L im n o lo g ie 9 , 1—38 .

W asm und , N ., 1997. O ccu rren c e o f cy a n o b ac te ria l b loom s in the B a ltic Sea in re la tion to en v iro n m en ta l co n d itio n s . In te rna tiona le R evue d e r Gesamten H y d ro b io lo g ie 82 , 169—184.

W asm und , N ., U hlig , S ., 2003 . P h y to p la n k to n trends in the B altic Sea. ICES Jo u rn a l o f M arin e S c ie n c e 60 , 177—186.

W asm und , N ., N ausch , G ., M atth äu s , W., 1998. P h y to p lan k to n sp rin g bloom s in th e so u th e rn B a ltic S e a — sp a tio -tem p o ra l d ev e lo p m en t an d long-term trends. Jo u rn a l o f P lan k to n R e se a rc h 2 0 , 1 0 9 9 -1 1 1 7 .

W rzo fek , L „ 1996. P h y to p la n k to n in th e G dansk B a s in in 197 9 -1 9 9 3 . O cean o lo g ica l S tu d ie s 1-2, 8 7 - 1 0 0 .

W ulff, F., R ah m , L ., 1988 . L o n g -te rm , seaso n a l a n d sp a tia l v a r ia tio n s of n itrogen , p h o sp h o ru s and s ilic a te in the B altic : an overv iew . Marine E n v iro n m en ta l R esea rc h 26 , 19—37,

W ulff, F., S tig e b ran d t, A ., R ah m , L ., 1990. N utrien t d ynam ics in the Baltic S ea . A m b io 19, 1 2 6 -1 3 3 .

s u b ito e .V . l i c e n s e d c u s to m e r c o p y s u p p l ie d a n d p r in te d fo r F la n d e r s M arin e In s titu te L ib ra ry (S L I0 5 X 0 0 2 2 5 E )