eurisol driver: heavy ion capabilities a. pisent, m. comunian, a. facco, e. fagotti, (infn-lnl) r....

20
Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Post on 19-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Eurisol driver: heavy ion capabilitiesA. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL)

R. Garoby (CERN), P. Pierini (INFN-MI)

Page 2: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

The heavy-ion capabilities of the linac

Intermediate energy High energyLow energy

5 MeV 85 MeV1000 MeV

Can this same linac accelerate A/q=2 up to the same energy (i.e.same equivalent voltage)?

1000 MeV/q ?

Page 3: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

0.8 1 1.20

0.2

0.4

0.6

0.8

11

0.167

TTFWgappar 0 4( )

TTFWgapdisp 0 5( )

TTFWgappar 0 6( )

TTFWgappar 0 2( )

TTFWgapdisp 0 3( )

1.40.8

Definition of TTF (transit time factor)

E

4 gaps5 gaps

6 gaps

TTF()

• In an electrostatic accelerator

• In a warm linac, where V=Ea*length

• In a superconducting linac

• The energy gain per cavity is:

sTTFqEw cos)],([ 0

3 gaps

2 gaps

222

2 2

11

1

1

McMcWout

sout qVW cos

qVWout

Page 4: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Key point: independent RF sources

• We assumed the existing p linac design.• In Eurisol p linac each cavity has an independent RF source

Page 5: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

We identified three scenarios

• The acceleration of heavy ions, A/q = 2 & 3 up to the end of the proton linac intermediate section (85 MeV).

•       

• The acceleration of heavy ions with A/q = 2 up to the end of the main linac (1 GeV).

• The acceleration of heavy ions with A/q = 3 up to 100 MeV/u with a modification of the proton linac architecture.

5 MeV 85 MeV 1000 MeV

1000 MeV5 MeV 85 MeV/u

5 MeV 255 MeV 1000 MeV

Page 6: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

First scenario: SPES like

• The acceleration of heavy ions, A/q = 2 & 3 up to the end of the proton linac intermediate section (85 MeV).

•       

• The acceleration of heavy ions with A/q = 2 up to the end of the main linac (1 GeV).

• The acceleration of heavy ions with A/q = 3 up to 100 MeV/u with a modification of the proton linac architecture.

5 MeV 85 MeV 1000 MeV

1000 MeV5 MeV 85 MeV

5 MeV 255 MeV 1000 MeV

Page 7: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

ALPI

Exp. Halls

SPES project @ Legnaro

Driver linac:

Eurisol up to 100 MeV/u

BNCTTarget area

238UPrimary p beam Fission fragments

converter

n

1 mA *100 MeV = 100 kW 1013-14 f/s300 W

108 132Sn/s

0.02 pnA

132Sn at 16 MeV/u

ALPISupercond.

p linac100 MeV

Be or 13C100 kW

4 Kg UCx

238UPrimary p beam Fission fragments

238UPrimary p beam Fission fragments

converter

n

converter

n

1 mA *100 MeV = 100 kW 1013-14 f/s300 W

108 132Sn/s

0.02 pnA

132Sn at 16 MeV/u

ALPISupercond.

p linac100 MeV

Be or 13C100 kW

4 Kg UCx

132Sn at 16 MeV/u

ALPISupercond.

p linac100 MeV

Be or 13C100 kW

132Sn at 16 MeV/u

ALPISupercond.

p linac100 MeV

Be or 13C100 kW

4 Kg UCx(d)

Page 8: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Superconducting cavities under developement

(352 MHz)

LadderReentrant

HWR(Half Wave Resonator)

1.E+07

1.E+08

1.E+09

1.E+10

0 1 2 3 4 5 6 7 8 9 10Ea, MV/m

Qo

7W

Q after HPR

Page 9: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

SPES Reentrant+HWR

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 20 40 60 80 100 120

cavity number

TT

F

0

20

40

60

80

100

En

erg

y [M

eV]

TTF

Energy MeV

SPES Reentrant+HWR

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 20 40 60 80 100 120

cavity number

TT

F

0

20

40

60

80

100

En

erg

y [M

eV]

TTF

Energy MeV

SPES Reentrant+HWR

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 20 40 60 80 100 120

cavity number

TT

F0

20

40

60

80

100

En

erg

y [M

eV]

TTF

Energy MeV

SPES nominal linac design

injection 6.8 MeV/u

0

20

40

60

80

100

120

0 1 2 3 4 5 6

M/q

Fin

al E

ner

gy

final MeV/q

final MeV/u

A/q=1

A/q=2

A/q=3

Page 10: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Beam dump

BNCT moderator

rastering

Trips LEBT RFQ

Superconducting main linac

Proton injector

A/q=3 upgrade

Low energy high current applications

RIB production target

5 mA p beam

30 mA pTRASCO RFQ

3 mA d

Page 11: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Second scenario

• The acceleration of heavy ions, M/q = 2 & 3 up to the end of the proton linac intermediate section (85 MeV).

•       

• The acceleration of heavy ions with M/q = 2 up to the end of the main linac (1 GeV).

• The acceleration of heavy ions with M/q = 3 up to 100 MeV/u with a modification of the proton linac architecture.

5 MeV 85 MeV 1000 MeV

1000 MeV5 MeV 85 MeV/u

5 MeV 255 MeV 1000 MeV

Page 12: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Second scenario: d up to 500 MeV/u

nucleon mass[MeV] 938.00 MeVq 1m 2Z 1Injector eq Voltage 170.88 MVbeta 0.4000Ekin 85441.91 keV/ue 1.60E-19 Cc 3.00E+08 m/sBrho 2.503 T-mEnergy 170.884 MeVBold numbers must be modified by userbeam power Injector 0.0342 Finale 0.21 MWStripping beam current 0.200 mA

total V 1060.5 MV

last cavity 146 0.86 13.5 14 1.2 0.8612 -30 6047 530270 0.769 7.53572 889.7 1061

Stripping 27 0.5 4.5 5.36 1.2 0.9863 -30 2319 134893 0.485 3.474513 98.9 270cry. cav. Nom. beta # Eacc Esurf Bsurf beam loadVacc VT on TTF Phis E gain Energy beta Brho Eq.Volt. Energy [MeV]# # gaps MV/m MV/m mT kW MV MV off deg keV/u keV/u T-m MV/q MeV

1 0.5 5 8.5 30.515 49.81 0 4.52 3 1.2 0.483 -30 1135.19 86577.1 0.4023 2.750 2.3 1732 0.5 5 8.5 30.515 49.81 0 4.52 3 1.2 0.507 -30 1192.63 87769.7 0.4047 2.770 4.7 1763 0.5 5 8.5 30.515 49.81 1 4.52 3 1.2 0.532 -30 1251.25 89021.0 0.4072 2.790 7.2 1784 0.5 5 8.5 30.515 49.81 1 4.52 3 1.2 0.558 -30 1310.85 90331.8 0.4098 2.812 9.8 1815 0.5 5 8.5 30.515 49.81 1 4.52 3 1.2 0.583 -30 1371.16 91703.0 0.4125 2.834 12.5 1836 0.5 5 8.5 30.515 49.81 1 4.52 3 1.2 0.609 -30 1431.90 93134.9 0.4153 2.857 15.4 1867 0.5 5 8.5 30.515 49.81 1 4.52 3 1.2 0.635 -30 1492.78 94627.7 0.4182 2.881 18.4 189

transit time factor

0.000

0.200

0.400

0.600

0.800

1.000

0 50 100 150

cavity number

TT

F

0

200

400

600

800

1,000

TTF

Energy [MeV]

• Injector doubled, so to have 85 MeV/u input energy•Main linac maximum B field increased from 50 mT to 60 mT

1000 MeV5 MeV

85 MeV

85 MeV/u170 MV linac

Page 13: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Influence of the cavity field level

0

200

400

600

800

1000

1200

1400

1600

50 55 60 65

Maximum surface B field [mT]

equ

ival

ent

volt

age

[MV

/q]

deuterons

protons

Page 14: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Third scenario

• The acceleration of heavy ions, M/q = 2 & 3 up to the end of the proton linac intermediate section (85 MeV).

•       

• The acceleration of heavy ions with M/q = 2 up to the end of the main linac (1 GeV).

• The acceleration of heavy ions with M/q = 3 up to 100 MeV/u with a modification of the proton linac architecture.

5 MeV 85 MeV 1000 MeV

1000 MeV5 MeV 85 MeV/u

5 MeV 255 MeV 1000 MeV

Page 15: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Third scenario: heavily revised architecture

Page 16: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Third scenario: heavily revised architecture

7 MeV/u 90 MeV/u 1000 MeV

5 MeV 255 MeV 1000 MeV

Proton mode

Intermediate energy part extended up to 255 MeV: the first high energy cavity family is avoided (HWR or spoke up to high energy)

Heavy ion mode q/A=1/3

Page 17: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

2 gaps up to 300 MeV(Ea=6 MV/m, 352 MHz)

bore diam#gaps beta #cavities mm

ladder 4 0.12 6 25ladder 4 0.17 6 25hwr 2 0.25 83 30hwr 2 0.45 126 30

221

0

50

100

150

200

250

300

350

0 1 2 3 4

A/q

Fin

al e

ner

gy

final MeV/q

final MeV/u

transit time factor

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 50 100 150 200 250

cavity number

TT

F

0

50

100

150

200

250

300

TTF phase

TTF

Energy [MeV]

transit time factor

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 50 100 150 200 250

cavity number

TT

F

0

50

100

150

200

250

300

TTF phase

TTF

Energy [MeV]

transit time factor

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 50 100 150 200 250

cavity number

TT

F0

50

100

150

200

250

300

TTF phase

TTF

Energy [MeV]

A/q=1

A/q=2

A/q=3

Page 18: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Conclusions

• The superconducting linac is flexible, but increasing heavy ion capabilities have increasing costs

Page 19: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Very approximately for the three scenarios

• The injector costs about 14 M€•    

•    

• doubling the intermediate linac costs approximately 25 M€

• Two gap architecture for up to 255 MeV: first guess 25 M€.

5 MeV 85 MeV 1000 MeV

1000 MeV5 MeV 85 MeV/u

5 MeV 255 MeV 1000 MeV

Page 20: Eurisol driver: heavy ion capabilities A. Pisent, M. Comunian, A. Facco, E. Fagotti, (INFN-LNL) R. Garoby (CERN), P. Pierini (INFN-MI)

Conclusions

• The superconducting linac is flexible, but increasing heavy ion capabilities have increasing costs

• The developement of a superconducting version of the intermediate part is very important for Eurisol linac, for protons and for heavy ions

• The applications of such a linac are much wider (and synergies in the R&D are possible).