european standards of harm [en 50126] - tu...

25
R. Slovák OPERATIONAL PROCESS MODELLING FOR SAFETY ANALYSIS OF RAILWAY SYSTEMS ON EXAMPLE OF A LEVEL CROSSING PROTECTION Traffic Process Model Functional Control Model Traffic Process Model Functional Control Model Bieleschweig Workshop, BS, October 11, 2007 LX_OK Safe_defect Fail_Safe LX_repair HR Hazard_defect Fail_Hazard Hazard_detection FR MTDH Dependability Model MTTR LX_OK Safe_defect Fail_Safe LX_repair HR Hazard_defect Fail_Hazard Hazard_detection FR MTDH Dependability Model MTTR Motivation Holistic model based approach for safety analysis Modelling language Level crossing example Risk and system hazard analysis Conclusions

Upload: others

Post on 12-Feb-2021

242 views

Category:

Documents


0 download

TRANSCRIPT

  • R. Slovák

    OPERATIONAL PROCESS MODELLING

    FOR SAFETY ANALYSIS OF RAILWAY SYSTEMS

    ON EXAMPLE OF A LEVEL CROSSING PROTECTION

    T ra ff ic P ro cess M od e l

    F u n ctio n a l C o n tro lM o de l

    T ra ff ic P ro cess M od e l

    F u n ctio n a l C o n tro lM o de l

    Bieleschweig Workshop, BS, October 11, 2007

    L X _ O K S a fe _ d e fec t

    F a il_ S a fe

    L X _ re p a ir

    H R

    H a z a rd _ d e fe c t

    F a il_ H a z a rd H a z a rd _ d e te c t io n

    F R

    M T D H

    D epen da b il i ty M o de l M T T R

    L X _ O K S a fe _ d e fec t

    F a il_ S a fe

    L X _ re p a ir

    H R

    H a z a rd _ d e fe c t

    F a il_ H a z a rd H a z a rd _ d e te c t io n

    F R

    M T D H

    D epen da b il i ty M o de l M T T R

    • Motivation • Holistic model based approach for safety analysis• Modelling language • Level crossing example • Risk and system hazard analysis• Conclusions

  • European Standards for Railway applications:

    Legislative guidance in the area of RAMS

    Ø Safety: Freedom from unacceptable risk of harm [EN 50126]

    Ø Risk: The probability of occurrence of a hazard causing harm and the degree of severity of the harm

    SD 2004/49/EC

    EN 50126

    EN 50129

    EN 50128

    Motivation

    degree of severity of the harm

    Ø Hazard: A physical situation with a potential for human injury

    Ø Proposal of three risk acceptance criterions(GAME, ALARP, MEM)

    Ø General recommendation to formal methods application(e.g. RBD, Markov chains, state diagrams, Petri nets,…)

  • Risk analysis

    THR‘s, SIL‘s for

    Railway operation

    ApportionmentAccident

    Car in DZ Train in DZ Car in DZ Train in DZ

    Enter detfailed

    LX ctrlhazard

    Diagnfailed

    Warnung1 failed

    Warnung2 failed

    ABKfs

    ABKfs

    λΑ

    λΚ

    µ

    λΒλΒ 7

    2

    4

    5

    Safety Methods

    Hazard list

    Preliminary hazard analysis

    Safety targets

    System functions specification

    Safety requirements apportionment in the railway system design (EN 50126)

    Functionalsafety requirements

    Component‘ssafety requirements

    System hazard analysis

    THR‘s, SIL‘s forfunctional

    assemblies

    THR‘s, SIL‘s for technical

    components

    Apportionment

    Technicalimplementation

    specification

    W a r n i n g 2 f a i l u r e

    W a r n i n g 1 f a i l u r e

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e

    L X c t r lh a z

    f a i l u r e

    I n i ts t a t e

    9 e - 6 %

    5 e - 6 %

    3 e - 7 %

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e 5 e - 1 3 %

    ABK

    ABKfs

    ABK

    ABKfs

    ABKfs

    ABKfs

    ABKABK

    ABK

    λΒ

    µR

    λΑ

    λΑ

    λΑ λΑλΒ

    λΒ

    λΚ

    λΚ

    λΚλΒ

    µR

    µR

    µR

    µR µΚ

    µR17

    3

    5

    6

    8 9

    10 11

    µΚ

  • System functions specification

    -Modularity- Hierarchy- Causality

    - Temporality- formal/informal

    -Scenarios (incl. system & human dependability) - causality

    - stochastic temporality (rates)- stochastic causality (probabilities)- operation conditions (traffic flows)

    - Individual tolerable risks for passengers, staff, LC users,

    Availability,Reliability

    requirements

    Apportionment

    Hazard list

    Safetytargets

    Form of apportionment inputs and outputs

    passengers, staff, LC users, unauthorised persons, others

    - time based rates

    - Tolerable hazard rates for functions of system

    requirements specification

    - Tolerable failure rates for functions of system

    requirements specification

    Functional safety requirements

  • Fault treeAccident

    Car in DZ Train in DZCar in DZ Train in DZ

    Enter detfailed

    LX ctrlhazard

    Diagnfailed

    Warnung1 failed

    Warnung2 failed

    W a r n i n g 2 f a i l u r e

    W a r n i n g 1 f a i l u r e

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e

    L X c t r lh a z

    f a i l u r e

    I n i ts t a t e

    9 e - 6 %

    5 e - 6 %

    3 e - 7 %

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e 5 e - 1 3 %

    Event tree

    Reliability Block Diagram

    • Different description means for different analysis tasks -> no transformations possible

    • Missing integrating formal background -> limited verification

    • No direct connection to the functional system state space -> event independence required

    ABKfs

    ABKfs

    ABK

    λΑ

    λΚ

    µR

    λΒ

    λλΒ

    µ17

    2

    4

    5

    Markov chain

    Drawbacks of conventional safety methods

    independence requiredABKABKfs

    ABK

    ABKfs

    ABKfs

    ABKfs

    ABKABK

    ABK

    λΒ

    µR

    λΑ

    λΑ

    λΑ λΑλΒ

    λΒ

    λΚ

    λΚ

    λΚ

    µR

    µR

    µR

    µR µΚ

    µR1

    3

    6

    8 9

    10 11

    µΚ

    • Often limitation on exponentially distributed stochastic events

    • Limitation on dependability description -> missing formal connection to functional breakdown (SRS, SDS) -> limited precisio n of safety target apportionment

    Bayssian net

  • Risk analysis

    THR‘s, SIL‘s for

    Railway operation

    ApportionmentAccident

    Car in DZ Train in DZ Car in DZ Train in DZ

    Enter detfailed

    LX ctrlhazard

    Diagnfailed

    Warnung1 failed

    Warnung2 failed

    ABKfs

    ABKfs

    λΑ

    λΚ

    µ

    λΒλΒ 7

    2

    4

    5

    CommonSafety Methods

    Hazard list

    Preliminary hazard analysis

    Safety Targets

    Common Safety Indicators

    System functions Specification

    Functional System function

    Railway processHazard

    consequences

    Holistic model based safety requirements apportionment

    Functional safety requirements

    Component‘ssafety requirements

    System hazard analysis

    THR‘s, SIL‘s forfunctional

    assemblies

    THR‘s, SIL‘s for technical

    components

    Apportionment

    Technical implementation

    specification

    W a r n i n g 2 f a i l u r e

    W a r n i n g 1 f a i l u r e

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e

    L X c t r lh a z

    f a i l u r e

    I n i ts t a t e

    9 e - 6 %

    5 e - 6 %

    3 e - 7 %

    E n t e r d e tf a i l u r e

    D i a g nf a i l u r e 5 e - 1 3 %

    ABK

    ABKfs

    ABK

    ABKfs

    ABKfs

    ABKfs

    ABKABK

    ABK

    λΒ

    µR

    λΑ

    λΑ

    λΑ λΑλΒ

    λΒ

    λΚ

    λΚ

    λΚλΒ

    µR

    µR

    µR

    µR µΚ

    µR17

    3

    5

    6

    8 9

    10 11

    µΚ

    System design specification

    System design dependability

    Functional dependability

    System function specification

  • Railway process Hazard concequences

    Functionaldependability

    System functionspecification

    PROcess

    PROFUND: Holistic model based approach for safety analysis

    Implementation specification

    System design dependability

    FUNctionality Dependability

  • Used level crossing example

  • Extended deterministic and stochastic Petri nets (E DSPN)

    Applied class of Petri nets

    Hierarchical Petri net class extension

  • Hazard

    Fail-Safe

    Input state

    Ressource

    Function

    Function condition

    State

    Modelling approach Function-Ressource model [VDI 3682]

    Intact

    Output state

  • KollisionAuffaren

    v < vZug1 Zug22 Züge imStrecken-abschnitt

    Hazard Strecken-sicherung

    Hazard Zug-

    überwachung

    Hazard System Strecke

    Hazard System

    Zug

    FehlverhaltenFahrdienst-

    leiter

    FehlverhaltenLokführer

    HazardZugdetektion

    HazardSignalisierung

    HazardSystemlogik

    HazardGeschwindig-

    keitüber-wachung

    Hazard

    Strecke-ZugKommunikat.

    Funktions-

    verlässlichkeit

    Prozess

    Implementierungs-verlässlichkeit

    KollisionZusammen-

    stoß

    KollisionZusammen-

    prall

    KollisionFlankenfahrt

    Zug imGefahrraum

    Zug imAnnäherungs-

    bereich.

    Zug imAktivierungs-

    bereich.

    BÜSAaktiv

    Warnungwahr-

    genommen

    Räumungrechtzeitig

    JaNein Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    JaNein

    Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    KFZ im BÜ Annäherungs-

    bereich..

    Ja

    Nein

    Ja

    NeinNein

    Folge UrsacheEreignisse

    KFZ-Fahrer

    BÜSA

    KFZ-Fahrer

    KFZ-Fahrer

    Fahrweg-sicherung

    Zugsicherung

    Betriebs-steuerung

    Fahrweg-anforderung

    Fahrauftrag

    Infrastruktur Zugdynamik

    Befehle Meldungen BefehleMeldungen

    Zugposition

    Ortung

    Ortungs-meldung

    Ortungs-meldung

    Befehle

    Meldungen

    Funktionalität

    Prozess

    Funktionalität

    Prozess

    System-definition

    Funktiosan-forderungen

    Generisches Funktions-

    modell

    Generische Hazardliste

    Steuerungs-funktionen

    Prozess-Steuerung

    Schnittstelle

    Umwelt-einflüsse

    Sicherheits-relevante

    Funktionen

    Unfall-folgen

    Mögliche Unfälle

    Gefahren-identifikation

    Preliminary hazard analysis

    JaNein

    Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    Unfall

    Kein Unfall

    JaNein

    JaNein

    Unfall

    Ja

    Ja

    BÜSA

    BÜSA

    KFZ-Fahrer

    KFZ-Fahrer

    Betriebsan-forderungen

    System-grenzen

    Steuerungs-komponenten

    Funktionen

    Unfall-ursachen

    Sicherheits-relevante

    Komponenten

  • Funktion Ausfallart Auswirkung Gefährdung

    Zugerkennung im Aktivierungsbereich

    Verspätete oder keine Erkennung des Zuges

    Verspätete oder keine Sicherung des BÜ

    Ja

    Aktivierung Verspätete oder keine

    AktivierungVerspätete oder keine

    Aktivierung des BÜJa

    WarnungsanzeigeVerspätete,

    unausreichende oder keine Warnunganzeige

    Unausreichende Warnung des

    Straßenverkehrs

    Ja, insbesondere bei gleichzeitigem Ausbleiben

    aller Warnungsarten

    Erkennung der Räumung

    Verspätete oder keine Erkennung der BÜ-

    Räumung

    Verspätete oder keine Entsicherung des BÜ

    Möglich bei längerer Schließzeiten durch

    Mißachtung der Warnung

    DeaktivierungVerspätete oder keine

    DeaktivierungVerspätete oder keine Deaktivierung des BÜ

    Möglich bei längerer Schließzeiten durch

    Mißachtung der Warnung

    Zug imGefahrraum

    Zug imAnnäherungs-

    bereich.

    Zug imAktivierungs-

    bereich.

    BÜSAaktiv

    Warnungwahr-

    genommen

    Räumungrechtzeitig

    JaNein Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    JaNein

    Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    JaNein

    Unfall

    Kein Unfall

    Kein Unfall

    Ja

    Nein

    Ja

    NeinJaNein Unfall

    Kein Unfall

    Unfall

    Kein Unfall

    JaNein

    JaNein

    Unfall

    KFZ im BÜ Annäherungs-

    bereich..

    Ja

    Nein

    Ja

    Nein

    Ja

    Nein

    Folge UrsacheEreignisse

    KFZ-Fahrer

    BÜSA

    BÜSA

    BÜSA

    KFZ-Fahrer

    KFZ-Fahrer

    KFZ-Fahrer

    KFZ-Fahrer

    Prozess

    FMEA ETA

    Hazard BÜSA

    HazardZugdetektion

    HazardBÜ-

    Steuerung

    HazardBÜ-

    Warnung

    Funktionsverlässlichkeit

    Prozess

    Fehlverhalten KFZ-Fahrer

    FTA

    Function Component

    Train detection Track circuit

    Warning acitivation Control unit

    Warning 4 x red traffic light

    Train leaving detection Wheel detector

    Warning deactivation Control unit

    Technical implementation

    Preliminary hazard analysis for level crossing

  • (Train approaching area)Annäherungsbereich des Zuges

    Train

    (Car approaching area)Annäherungsbereich des KFZ

    EDSPN modelling of the railway traffic process on a level crossing

    Undesire event: contemporaneous occupancy of danger zone by a car and a train

  • (Train approaching area)Annäherungsbereich des Zuges

    Train Train

    (Car approaching area)Annäherungsbereich des KFZ

    EDSPN modelling of the railway traffic process on a level crossing

    Train_leaves_DZ

    Train_approaching Train_enters_DZ Train_in_DZ

    Train_enters_approaching_area

    Train_out_of_LX

  • Car _out_of_LX

    Car_enters_approaching_area

    Car_enters_DZCar_approaching Car_in_DZ

    Car_leaves_DZ

    Car_enters_Train_approach

    No_accident

    Accident

    Accident

    _no_train

    PROFUND: AnforderungsanalyseEDSPN Modellierung des Verkehrsprozesses (I)

    Train_leaves_DZ

    Train_approaching Train_enters_DZ Train_in_DZ

    Train_enters_approaching_area

    Train_out_of_LX

    Car_enters_Train_passNo_accident Accident

    removal

  • Car_enters_approaching_area

    Car_leaves_DZ

    Transition‘s parameter determination

  • Quantitative Analysis

    0,003

    Road Traffic Flow [Cars/h]

    RV9

    GS4

    U1

    Train_enters_approaching_area,Car_enters_approaching_area,

    Car_enters_DZ_IIITrain_enters_DZ

    Accident_removal

    Train_leaves_DZ,Car_leaves_DZ

    Qualitative and quantitative analysis of the traffic process on the level crossing

    QualitativeAnalysis

    0

    0,001

    0,002

    0,1 1 10 100 1000

    road traffic flow [car/h]

    indi

    vidu

    alris

    k[fa

    talit

    ies/

    pers

    on*y

    ear]

    ]

    4 trains/h

    2 trains/h

    0,25 trains/h

  • Process

    Function

    Process

    Accidents

    Road and railway

    operation

    Protection Function

    Function

    Process

    Function’s dependa

    bility

    Function

    Function’s dependa

    bility

    Function

    Protection systemfunction

    Protection system function‘s failures

    Car driver‘s behaviour

    EDSPN model for level crossing risk analysis

  • Car driver behavior risk analysis

  • Level crossing protection system risk analysis

  • Protection system implementation

    EDSPN model for level crossing system hazard analysis

    Protection system implementation‘s failures

  • Level crossing system hazard analysis(sensitivity analysis)

  • Results of system hazard analysis (after optimisation of safety requirements)

  • The holistic modelling by Petri nets allows describing:

    • the desired transport operation tackling theØ Transport processØ Control and protection functionsØ Control and protection equipment & devicesØ Control and protection staff

    • the undesired potential transport behaviour given by

    Holistic modelling approach (summary)

    • the undesired potential transport behaviour given byØ accidents and their possible consequencesØ unfulfilled operational functions including functional hazardsØ failures of technical subsystems and components including

    technical hazardsØ unintentional errors of the humans having responsibilities in regular

    or fall-back operation, in the maintenance or surveillanceØ intentional actions of external human misuse

  • Ø System hazard identification

    Ø Qualitative and quantitative safety analysis

    Ø Quantitative performance analysis

    Petri nets Modelling supports the introduction of the

    new safety philosophy of the latest European Standa rds

    Conclusions

    Ø Quantitative performance analysis

    Ø Integrated evaluation of all aspects of dependability (RAMSS)

    Ø Sensitivity and cost benefit analysis

    Ø Holistic approach to the safety analysis