evalua&ng)ammonium,)nitrate)and)sulfate)aerosols… ·...

1
Evalua&ng Ammonium, Nitrate and Sulfate Aerosols in 3Dimensions References Setup: 2° x 2.5° resolu-on, 40 ver-cal layers Fully interac-ve trop and strat chemistry Horizontal wind nudged: 6hourly NCEP SST and Ice Cover prescribed from obs Emissions: CMIP5 RCP4.5 (2005 onwards) Biomass burning: GFED3 Agricultural NH 3 imposed seasonality according to solar zenith angle MATRIX : microphysics model, tracks mixing state OMA : bulk aerosol, includes heterogeneous uptake on dust The effect aerosols have on climate and air quality is a func-on of their chemical composi-on, concentra-on and spa-al distribu-on. These parameters are controlled by emissions, heterogeneous and homogeneous chemistry, where thermodynamics plays a key role, transport, which includes stratospheric tropospheric exchange, and deposi-onal sinks. In this work we demonstrate the effect of some of these processes on the SO 4 NH 4 NO 3 system using the GISS ModelE2 Global Circula-on Model (GCM). Bauer and Koch (2005), J. Geophys. Res. Bauer et al. (2007a), J. Geophys. Res. Bauer et al. (2007b), Atmos. Chem. Phys. Bauer et al. (2008), Atmos. Chem. Phys. Fountoukis and Nenes (2007), Atmos. Chem. Phys. Fowler et al. (2015), Atmos. Chem. Phys. Koch et al. (2006), J. Geophys. Res. Atmos. Koch et al. (2007), J. Geophys. Res. Atmos. Lamarque et al. (2013), Atmos. Chem. Phys. Lamarque et al. (2010), Atmos. Chem. Phys. Metzger et al. (2002a), J. Geophys. Res. Atmos. Metzger et al. (2002b), J. Geophys. Res. Atmos. Schmidt et al. (2014), J. Adv. Model. Earth Syst. Shindell et al. (2001), J. Geophys. Res. Shindell et al. (2006), Atmos. Chem. Phys. Mo&va&on: NO 3 aerosol is poorly constrained throughout the troposphere, especially above surface level. Mission: Bridge this knowledge gap with a collec-on of surface and airborne data and aerosol models. Relevant studies: Bauer at al., 2007, Bellouin et al. , 2011, Aan de Brugh et al., 2012, Hauglustaine et al., 2014, Paulot et al., 2015 Figure 1: precursor sources and emissions (a compila-on of references) Objec&ve: evaluate the GISS ModelE2 aerosol schemes and pin point key process either included or missing in the model EQSAM : parameterized thermodynamics ISORROPIA II : calculates the thermodynamics During 20012011, 14 flight campaigns took place in the NH and measured SO 4 , NH 4 , HNO 3 , NO 3 (Figure 3). The flights were predominantly during spring and summer -me and deployed the AMS instrument. With a regional approach we parse out transit flights and for flights within the ARC, EUSA, WUSA regions we use the data within the regional boundaries to calculate a campaign mean per model layer. We sample our simula-ons according to the flight loca-on. Is there a spa&al paPern (Figure 4)? Surface concentra&ons show high concentra&ons in EUSA, EU and low concentra&ons in WUSA. The sta&s&cs shows (Figure 5): Performance is controlled by region more than aerosol scheme Systema&c underes&ma&on of aerosols in EUSA, EU Big differences for SO 4 with microphysics (MATRIX VS OMA) Overall good performance by the GCM (R>0.5) NO 3 annual cycle (Figure 6): Seasonality is reproduced in EUSA, EU Summer underes&ma&ons in all regions SO 4 , NH 3 , NH 4 , HNO 3 , NO 3 , RH, T SO 4 , NH 4 , NO 3 ,H 2 O gas/liquid/ par&cle par&&oning RH=a w Sensi&vity runs: (Result 3) we test the sensi-vity of NH 3 , NH 4 , HNO 3 , NO 3 to doubling and fivefold increase in agricultural NH 3 emissions. Take away: Missing aerosol mass, especially above the surface, could have important implica&ons to aerosol radia&ve forcing Good correla&ons (R>0.5) at surface in regions where seasonality is reproduced HNO 3 is sensi&ve to the heterogeneous sink – an important process to include in models HNO 3 and NO 3 par&&oning is strongly dependent on NH x par&&oning Need for more measurements: few campaigns measured NH 3 (CALNEX, TexAQ), no winter campaigns SO 4 [μg m 3 ] NO 3 [μg m 3 ] Arc&c (ARC) [55°90°N, 60°170°W] Eastern USA (EUSA) [30°50°N, 60°95°W] Western USA (WUSA) [30°50°N, 114°130°W] European Union (EU) [35°70°N, 10°W30°E] Figure 4: (above) Mean surface concentra-on (20002010) simulated by MATRIXEQSAM overlaid by measurements Figure 6: (right) 20002010 NO 3 mean annual cycle. Error bars represent ± one standard devia-on. Figure 3: (above) Flight tracks of 14 flight campaigns used in this study Is the ver&cal consistent with the surface? Model underes&ma&on of aerosol concentra&on, especially in the boundary layer, more for NH 4 , NO 3 SO 4 : MATRIX simula&ons (microphysics included) show higher concentra&ons than the bulk scheme (OMA). Thermodynamic scheme makes a minor difference: green and red lines overlaying each other. The model overes&mates upper tropospheric HNO 3 : observed and aPributed in previous studies to overes&ma&on of strattrop exchange. Missing processes? (1) Heterogeneous chemistry sink on dust surfaces included in OMA, yields lower concentra&ons. (2) Homogenous chemistry: (i) Crustal (Mg, K, Li) and sea salt (Na, Cl) ions are not part of the thermodynamics implemented in the model. (ii) Thermodynamics do not take into account the different &me scales associated with par&cle size distribu&on. (iii) Organic nitrate forma&on, especially important in the summer over forested areas. Uncertainty in NH 3 emissions (go to 3). NO 3 (WUSA) NO 3 (EUSA) NO 3 (EU) Figure 7: (above) Mean regional profile correspo nding to ARCTAS spring, INTEXA, CALNEX and EU CCARI campaigns Figure 5: (below) Surface regional sta-s-cs (20002010); correla-on coefficient (R) and normalized mean bias (NMB) for the three simula-ons. Figure 8: (lei) Mean regional profile from ARCTAS spring, INTEXA, CALNEX and EUCCARI campaigns plojed against NH 3 emissions sensi-vity runs. Figure 9: (below) same as Figure 6, for EU with sensi-vity runs How does increasing agricultural NH 3 emissions affect the system? The added NH 3 acts as a sink to HNO 3 and source for NH 4 and NO 3 aerosols both at surface and above Surface NH 3 however, appears to be already overes&mated with normal NH 3 emissions Modeled and measured total NH x seem to match normal NH 3 emissions run. NH x is not par&&oning properly, leading to underes&ma&on of NO 3 and overes&ma&on of HNO 3 NO 3 (EU) NH 4 (EU) NH 3 (EU) SO 4 SO 4 SO 4 SO 4 NH 4 NH 4 NH 4 NH 4 HNO 3 HNO 3 HNO 3 NO 3 NO 3 NO 3 NO 3 N 2 O + hν NO What are the major sources of nitrate and sulfate precursors? 5 1 5 NO x TgN/y NH 3 TgN/y 6 5 40 57 15 6 25 9 1 SO 2 TgS/y SO 2 +H 2 OH 2 SO 3 (aq)+H 2 O (aq) HSO 3 +H + HSO 3 +H 2 O 2 (aq) + H + SO 2 4 +H 2 O(aq) + 2H + Figure 2: The processes controlling NO 3 forma-on How does NO 3 aerosol from? Henry’s Law 1. GAS PHASE H 2 O SO 2 →H 2 SO 4 * NH 3 NO x →HNO 3 3. Dissociate into ions 2H 2 O(aq) OH (aq) + H 3 O + (aq) H 2 SO 4 (g) + H 2 O(aq) HSO 4 (aq) + H 3 O + (aq) HNO 3 (g) + H 2 O(aq) NO 3 (aq) + H 3 O + (aq) NH 3 (g) + H 2 O(aq) NH 4 + (aq) + OH (aq) 2. Dissolve in water 4. Ionic solu&on – salt equilibrium HSO 4 (aq) + H 2 O(aq) SO 4 2 (aq) + H 3 O + (aq) NH 4 + (aq) + HSO 4 (aq) NH 4 HSO 4 (s) 2NH 4 + (aq) + SO 4 2 (aq) (NH 4 ) 2 SO 4 (s) NH 4 + (aq) + NO 3 (aq) NH 4 NO 3 (s) RH=water ac-vity The phase is controlled by: 1. Precursor abundance 2. Ambient Rela&ve humidity (RH) 3. Temperature Will (NH 4 ) 2 SO 4 or NH 4 NO 3 form? * Also in clouds 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.5 0 R NMB WUSA EU EUSA NH 4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.2 0.1 0 0.1 0.2 R NMB EU EUSA WUSA SO 4 NO 3 Monthly mean Surface data of SO 4 , NH 3 , NH 4 , NO 3 measured via the IMPROVE (USA) and EMEPNILU (EU) networks during 20002010 is used to compare against the simula-ons. From the climatological mean (Figure 4) we adopt a regional approach (black frames in Figures 3,4), where the mean, standard devia-on, normalized mean bias and correla-on coefficients are calculated for the sta-ons within a region along with their matching model grid boxes. 1 2 3 Keren Mezuman 1,2 , Susanne E. Bauer 3,2 , Kostas Tsigaridis 3,2 [1] Department of Earth and Environmental Sciences, Columbia University, New York, NY [2] NASA Goddard Ins&tute for Space Studies, New York, NY [3] Center for Climate Systems Research, Columbia University, New York, NY https://ntrs.nasa.gov/search.jsp?R=20150023478 2018-05-30T16:58:59+00:00Z

Upload: phamnhi

Post on 08-Apr-2018

245 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Evalua&ng)Ammonium,)Nitrate)and)Sulfate)Aerosols… · Evalua&ng)Ammonium,)Nitrate)and)Sulfate)Aerosols)in)38Dimensions)) References))) Setup: • 2°x2.5

Evalua&ng  Ammonium,  Nitrate  and  Sulfate  Aerosols  in  3-­‐Dimensions    

References  

   

Setup:    •  2°  x  2.5°  resolu-on,  40  ver-cal  layers  •  Fully  interac-ve  trop  and  strat  chemistry  •  Horizontal  wind  nudged:  6-­‐hourly  NCEP  •  SST  and  Ice  Cover  prescribed  from  obs  •  Emissions:    –  CMIP5  –  RCP4.5  (2005  onwards)  –  Biomass  burning:  GFED3  – Agricultural  NH3  imposed  seasonality                                                          according  to  solar  zenith  angle  

•  MATRIX:  microphysics  model,  tracks  mixing  state  

•  OMA:  bulk  aerosol,  includes  heterogeneous  uptake  on  dust  

The   effect   aerosols   have   on   climate   and   air   quality   is   a   func-on   of   their   chemical   composi-on,  concentra-on  and  spa-al  distribu-on.  These  parameters  are  controlled  by  emissions,  heterogeneous  and  homogeneous  chemistry,  where  thermodynamics  plays  a  key  role,  transport,  which  includes  stratospheric-­‐tropospheric   exchange,   and  deposi-onal   sinks.   In   this  work  we  demonstrate   the  effect  of   some  of   these  processes  on  the  SO4-­‐NH4-­‐NO3  system  using  the  GISS  ModelE2  Global  Circula-on  Model  (GCM).          

Bauer  and  Koch  (2005),  J.  Geophys.  Res.  Bauer  et  al.  (2007a),  J.  Geophys.  Res.  Bauer  et  al.  (2007b),  Atmos.  Chem.  Phys.  Bauer  et  al.  (2008),  Atmos.  Chem.  Phys.  Fountoukis  and  Nenes  (2007),  Atmos.  Chem.  Phys.  Fowler  et  al.  (2015),  Atmos.  Chem.  Phys.  Koch  et  al.  (2006),  J.  Geophys.  Res.  Atmos.  

Koch  et  al.  (2007),  J.  Geophys.  Res.  Atmos.  Lamarque  et  al.  (2013),  Atmos.  Chem.  Phys.  Lamarque  et  al.  (2010),  Atmos.  Chem.  Phys.  Metzger  et  al.  (2002a),  J.  Geophys.  Res.  Atmos.  Metzger  et  al.  (2002b),  J.  Geophys.  Res.  Atmos.  Schmidt  et  al.  (2014),  J.  Adv.  Model.  Earth  Syst.  Shindell  et  al.  (2001),  J.  Geophys.  Res.  Shindell  et  al.  (2006),  Atmos.  Chem.  Phys.  

§  Mo&va&on:  NO3  aerosol  is  poorly  constrained  throughout  the  troposphere,  especially  above  surface  level.    §  Mission:  Bridge  this  knowledge  gap  with  a  collec-on  of  surface  and  airborne  data  and  aerosol  models.  •  Relevant  studies:  Bauer  at  al.,  2007,  Bellouin  et  al.  ,  2011,  Aan  de  Brugh  et  al.,  2012,  Hauglustaine  et  al.,  2014,  

Paulot  et  al.,  2015  

Figure  1:  precursor  sources  and  emissions  (a  compila-on  of  references)      

Objec&ve:  evaluate  the  GISS  ModelE2  aerosol  schemes  and  pin  point  key  process  either  included  or  missing  in  the  model  

•  EQSAM:    parameterized  thermodynamics  

•  ISORROPIA  II:  calculates  the  thermodynamics  

   

During   2001-­‐2011,   14  flight   campaigns   took   place   in   the   NH   and  measured   SO4,   NH4,   HNO3,   NO3   (Figure   3).   The   flights   were  predominantly   during   spring   and   summer   -me   and   deployed   the  AMS   instrument.   With   a   regional   approach   we   parse   out   transit  flights  and  for  flights  within  the  ARC,  EUSA,  WUSA  regions  we  use  the   data   within   the   regional   boundaries   to   calculate   a   campaign  mean  per  model  layer.  We  sample  our  simula-ons  according    to  the  flight  loca-on.    

Is  there  a  spa&al  paPern  (Figure  4)?  Surface  concentra&ons  show  high  concentra&ons  in  EUSA,  EU  and  low  concentra&ons  in  WUSA.    The  sta&s&cs  shows  (Figure  5):  •  Performance  is  controlled  by  region  more  than  aerosol  scheme  

•  Systema&c  underes&ma&on  of  aerosols  in  EUSA,  EU  

•  Big  differences  for  SO4  with  microphysics  (MATRIX  VS  OMA)  

•  Overall  good  performance  by  the  GCM  (R>0.5)  

NO3  annual  cycle  (Figure  6):    •  Seasonality  is  reproduced  in  EUSA,  EU  

•  Summer  underes&ma&ons  in  all  regions  

SO4,  NH3,  NH4,  HNO3,  NO3,  RH,  T  

SO4,  NH4,  NO3,  H2O  

 gas/liquid/par&cle  

par&&oning  RH=aw  

 

Sensi&vity  runs:  (Result  3)  we  test  the  sensi-vity  of  NH3,  NH4,  HNO3,  NO3  to  doubling  and  fivefold  increase  in  agricultural  NH3  emissions.  

Take  away:  Ø Missing  aerosol  mass,  especially  above  the  surface,  could  have  important  implica&ons  to  aerosol  radia&ve  forcing  Ø  Good  correla&ons  (R>0.5)  at  surface  in  regions  where  seasonality  is  reproduced    Ø  HNO3  is  sensi&ve  to  the  heterogeneous  sink  –  an  important  process  to  include  in  models    Ø  HNO3  and  NO3  par&&oning  is  strongly  dependent  on  NHx  par&&oning  Ø Need  for  more  measurements:  few  campaigns  measured  NH3  (CALNEX,  TexAQ),  no  winter  campaigns  

SO4  [μg  m-­‐3]  

NO3  [μg  m-­‐3]  

Arc&c  (ARC)   [55°-­‐90°N,  60°-­‐170°W]  Eastern  USA  (EUSA)   [30°-­‐50°N,  60°-­‐95°W]  Western  USA  (WUSA)     [30°-­‐50°N,  114°-­‐130°W]  European  Union  (EU)   [35°-­‐70°N,  10°W-­‐30°E]  

Figure  4:  (above)  Mean  surface  concentra-on  (2000-­‐2010)  simulated  by  MATRIX-­‐EQSAM  overlaid  by  measurements  

Figure  6:  (right)  2000-­‐2010  NO3  mean  annual  cycle.  Error  bars  represent  ±  one  standard  devia-on.  

Figure  3:  (above)  Flight  tracks  of  14  flight  campaigns  used  in  this  study  

Is   the   ver&cal   consistent   with   the  surface?  • Model   underes&ma&on   of   aerosol  concentra&on,   especially   in   the  boundary  layer,  more  for  NH4,  NO3  • SO4:  MATRIX  simula&ons  (microphysics  included)   show   higher   concentra&ons  than   the   bulk   scheme   (OMA).  Thermodynamic   scheme   makes   a  minor   difference:   green   and   red   lines  overlaying  each  other.  • The   model   overes&mates   upper  tropospheric   HNO3:   observed   and  aPributed   in   previous   studies   to  overes&ma&on  of  strat-­‐trop  exchange.  • Missing   processes?   (1)   Heterogeneous  chemistry   sink   on   dust   surfaces  included   in   OMA,   yields   lower  concentra&ons.   (2)   Homogenous  chemistry:  (i)  Crustal  (Mg,  K,  Li)  and  sea  salt   (Na,   Cl)   ions   are   not   part   of   the  thermodynamics   implemented   in   the  model.   (ii)   Thermodynamics   do   not  take   into   account   the   different   &me  scales   associated   with   par&cle   size  distribu&on.   (iii)   Organic   nitrate  forma&on,   especially   important   in   the  summer  over  forested  areas.  • Uncertainty  in  NH3  emissions  (go  to  3).  

NO3  (WUSA)   NO3  (EUSA)   NO3  (EU)  

Figure  7:  (above)  Mean  regional  profile  correspo-­‐nding  to  ARCTAS  spring,  INTEX-­‐A,  CALNEX  and  EU-­‐CCARI  campaigns  

Figure  5:  (below)  Surface  regional  sta-s-cs  (2000-­‐2010);  correla-on  coefficient  (R)  and  normalized  mean  bias  (NMB)  for  the  three  simula-ons.  

Figure  8:  (lei)  Mean  regional  profile  from  ARCTAS  spring,    INTEX-­‐A,  CALNEX  and  EUCCARI  campaigns  plojed  against  NH3  emissions  sensi-vity  runs.  Figure  9:  (below)  same  as  Figure  6,  for  EU  with  sensi-vity  runs  How  does  increasing  agricultural    

NH3  emissions  affect  the  system?  • The   added  NH3   acts   as   a   sink   to  HNO3   and   source  for  NH4  and  NO3  aerosols  both  at  surface  and  above  • Surface   NH3   however,   appears   to   be   already  overes&mated  with  normal  NH3  emissions  • Modeled   and  measured  total  NHx   seem   to  match   normal  NH3   emissions  run.  

Ø NHx   is   not   par&&oning   properly,  leading   to   underes&ma&on   of   NO3  and  overes&ma&on  of  HNO3  

NO3  (EU)  

NH4  (EU)  NH3  (EU)  

SO4  

SO4  

SO4  

SO4  

NH4  

NH4  

NH4  

NH4  

HNO3  

HNO3  

HNO3  

NO3  

NO3  

NO3  

NO3  

N2O  +  hν  "  NO  

What  are  the  major  sources  of  nitrate  and  sulfate  precursors?  

5

1 5NOx  TgN/y  

NH3  TgN/y  6

5 40  

57  

15   6

25  

9

1

SO2  TgS/y  

SO2+H2O"H2SO3(aq)+H2O  (aq)  "  HSO-­‐3  +  H+    

HSO-­‐3  +  H2O2(aq)  +  H+  "  SO-­‐2

4  +  H2O(aq)  +  2H+    

Figure  2:  The  processes  controlling  NO3  forma-on  

How  does  NO3  aerosol  from?   Henry’s  Law  

1.  GAS  PHASE                        H2O  SO2→H2SO4  

*  

                     NH3  NOx→HNO3    

                                                           3.  Dissociate  into  ions                                              2H2O(aq)  ⇌  OH-­‐(aq)  +  H3O+(aq)    H2SO4(g)  +  H2O(aq)  ⇌  HSO4

-­‐(aq)  +  H3O+(aq)  HNO3(g)  +  H2O(aq)  ⇌  NO3

-­‐(aq)  +  H3O+(aq)      NH3(g)  +  H2O(aq)  ⇌  NH4

+(aq)  +  OH-­‐(aq)    

2.  Dissolve  in  water  

4.  Ionic  solu&on  –  salt  equilibrium  HSO4

-­‐(aq)  +  H2O(aq)  ⇌  SO42-­‐(aq)  +  H3O+(aq)  

         NH4+(aq)  +  HSO4

-­‐(aq)  ⇌  NH4HSO4  (s)            2NH4

+(aq)  +  SO42-­‐(aq)  ⇌  (NH4)2SO4  (s)  

             NH4+(aq)  +  NO3

-­‐(aq)  ⇌  NH4NO3  (s)  

RH=water  ac-vity  

The  phase  is  controlled  by:    1.   Precursor  abundance  2.   Ambient  Rela&ve  humidity  (RH)  3.   Temperature    

Will  (NH4)2SO4  or  NH4NO3  form?    

*  Also  in  clouds  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  

-­‐1   -­‐0.5   0  

R  

NMB  

WUSA  

EU  

EUSA  

NH4  

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  

-­‐0.3   -­‐0.2   -­‐0.1   0   0.1   0.2  

R  

NMB  

EU  

EUSA  

WUSA  

SO4  NO3  

Monthly  mean  Surface  data  of  SO4,  NH3,  NH4,  NO3  measured  via  the  IMPROVE  (USA)  and  EMEP-­‐NILU  (EU)  networks  during  2000-­‐2010  is  used   to   compare   against   the   simula-ons.   From   the   climatological  mean   (Figure   4)   we   adopt   a   regional   approach   (black   frames   in  Figures  3,4),  where  the  mean,  standard  devia-on,  normalized  mean  bias   and   correla-on   coefficients   are   calculated   for   the   sta-ons  within  a  region  along  with  their  matching  model  grid  boxes.    

1  

2  

3  

Keren  Mezuman1,2,  Susanne  E.  Bauer3,2,  Kostas  Tsigaridis3,2  [1]  Department  of  Earth  and  Environmental  Sciences,  Columbia  University,  New  York,  NY    [2]  NASA  Goddard  Ins&tute  for  Space  Studies,  New  York,  NY    [3]  Center  for  Climate  Systems  Research,  Columbia  University,  New  York,  NY  

https://ntrs.nasa.gov/search.jsp?R=20150023478 2018-05-30T16:58:59+00:00Z