evolution of micro-structures on silicon substrates by ... · mullins equation for evolution of...

26
Evolution of micro-structures on silicon substrates by surface diffusion diffusion Koichi Sudoh Koichi Sudoh Th I i f S i ifi d I d i l R h The Institute of Scientific and Industrial Research Osaka University

Upload: others

Post on 31-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Evolution of micro-structures on silicon substrates by surface

diffusion diffusion

Koichi SudohKoichi Sudoh

Th I i f S i ifi d I d i l R hThe Institute of Scientific and Industrial ResearchOsaka University

Page 2: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Microstructure Fabrication applying Spontaneous Shape Transformation by Annealing

Collaboration with:Collaboration with:R. Hiruta, H. Kuribayashi, R. Shimizu Fuji Electric Groupj pH. Iwasaki Osaka University

Trench MOSFETSilicon-on-nothing

Useful in fabrication of 3D structures on Si surfacesTrench corner rounding

f

Useful in fabrication of 3D structures on Si surfaces

Formation of empty space in Si

Page 3: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Flattening of Surfacesg

(110) facet formation on id ll f fi t tsidewall of fin structures

T. Tezuka et al., Appl. Phys. Lett. 92, 191903 (2008).

Page 4: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Shape ModificationShape Modification

toroidal structure

M. M. Lee and M. C. Wu: J Microelectromech Sys 15 338 (2006)J. Microelectromech. Sys. 15, 338 (2006).

Page 5: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

OutlineOutline

I. Shape transformation of 1D gratingsTrench corner rounding during annealingMass transport mechanism for shape transformation

Analysis based on Mullins’ equation

II. Shpe transformation of  high –spect‐ratio hole patternspatterns

Void formation via shape transformationShape change of faceted voidsShape change of faceted voidsModeling of the evolution of faceted structures

Page 6: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Fabrication of 1D gratings on Si(001)g g ( )

1 m

6inchφN Si(100)

<110>

3 mN-Si(100)

2~3Ωcm

OF (1 1 0)-

Fabrication of a 1D trench arrayFabrication of a 1D trench arrayby reactive ion etching on Si(001)

Page 7: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Trench corner ro nding b annealingTrench corner rounding by annealing

for 3 min

1 min 3 min 10 min at 1000 C

Page 8: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Mechanism of Morphological Evolutionec a s o o p o og ca o ut o

Evaporation Condensation(EC)Evaporation‐Condensation(EC)Surface Diffusion (SD)

solid

C t D d f Ch i l P t ti l

Gibbs-Thomson EffectCurvature Dependence of Chemical Potential

(K) = K

KPeq )(

Curvature Dependence of Vapor Pressure: Peq(K)

KkTP

eq

0

)(ln

Page 9: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Mullins Equation for Evolution of Isotropic Surfaces 

vapor pressure: p0W. W. Mullins: J. Appl. Phys. 

u s quat o o o ut o o sot op c Su aces

1) Evaporation‐Condensation Case

KkT

vn exp10

Vnp(K)

KAAKAAvn 2121 exp1

Curvature

2) Surface Diffusion Case

2

2

2

22

sKB

sK

kTXD

v ssn

s Vn

Page 10: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Predictions from Scaling Argumented ct o s o Sca g gu e t

Time scaling of the trench corner radius: tR

1) Evaporation‐Condensation Case

Time scaling of the trench corner radius: tR

) p

RKvn

1

dR

2/1tR 1 R

dtdR

2) Surface Diffusion Case2Kv

2svn

3 RdR4/1tR

Rdt

Page 11: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Corner Rounding of 1D TrenchesCo e ou d g o e c es

1 min1 min

3 min

10 min

Page 12: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Annealing time dependence of curvatures oftrench corners

4/1tR Surface DiffusiontR Surface Diffusion

Page 13: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Shape Transformation  by Mullins Equation for EC and SDS ape a s o at o by u s quat o o C a d S

t = 0 001

t = 0

t = 10

t = 0

t = 0.001

t = 0.01

t = 10

t = 40

Evaporation‐Condensation Surface Diffusion

Page 14: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Difference between EC and SD 

evaporation

2/1tR

Evaporation and CondensationEvaporation and Condensation

4/1tR

S f ffSurface diffusion

Page 15: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Simulation using Mullins Equation

2 m2 m

Simulation

Bt = 0.14

SEM Images 4%H /A 760TSEM Images 4%H2/Ar 760Torr 1150 ºC5min

Page 16: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Square Array of Cylindrical Holes

D

P top view

Top ViewTop View3 m

cross section

D = 0.75 m, P = 1.0 m D = 0.75 m, P = 1.8 m

Page 17: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

V id F ti b Sh T f ti f H l AVoid Formation by Shape Transformation of Hole Array

Cross section

Top view

Page 18: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Silicon‐on‐Nothing (SON) StructureSilicon on Nothing (SON) Structure

0.8 m

SON structure

33 m

SON structure

Page 19: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Facets on the Void Surface

(111)(101) (011)

(113)

(111)

(113)(011)(101)

(311) (131) (131)(311)(131) (131)(311)(311)

(111)

(110) (010)(100)(110) (010)(100)

(111)

(131)(131)

(311)(311)

(101) (011)

(131)

(111)

(311)

(101) (011)

(131)(311)

(101) (011)(113)(113)

( )

Page 20: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Effects of the adjacent voidsEffects of the adjacent voids

P = 1.8 m P = 1.0 m

Shape change of individual voids occur independently without affected by the neighboring voids.

Page 21: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Evolution of void shape during annealing

at 1100 ºC in 60 Torr H2 gas

5 min 10 min 20 min 40 min

0.70 m3 0.70 m3 0.71 m3 0.72 m3

The volume of a void is preserved during shape change

Page 22: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Mean chemical potential of a facetp

Chemical potential of a faceted crystal(J. E. Taylor, Acta Metall. Mater. 40 (1992) 1475.)(J. E. Taylor, Acta Metall. Mater. 40 (1992) 1475.)

ii K 0i

lfK 1Weighted mean curvature

ij

ijiji

i lfS

K

21/f 21/ ijiijjij ccf

jiijc nn

ij

iji

i JS

vjiijiji

Page 23: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Numerical Simulation of Void Shape Change

Normal velocity of the i-th facet

Area of i-th facet: Si

vi

ijijij

ii Jl

Sv

y

l ij

i

jAtomic current from j-th to i-th facet

j

ij

ijij xkT

DcJ

0

j

jiij SSx M. Kitayama, J. Am. Ceram. Soc. 83(2000) 2561.

Page 24: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Simulation ResultsSimulation Results

0 1500 3000 5000

Page 25: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Annealing time dependence of the height and g p gwidth of voids

1 61.7

1 21.31.41.51.6

e (

m)

W H

0 80.91.01.11.2

Size

HW

0 10 20 30 40 50

0.8

Annealing time (min)

Page 26: Evolution of micro-structures on silicon substrates by ... · Mullins Equation for Evolution of Isotropic Surfaces W. W. Mullins: J. Appl. Phys. vapor pressure: p 0 usquat o outo

Summaryy

Shape transformation of 1D gratings

Dominant mass transport mechanism for the shape transformation is surface diffusion.

The evolution of trench profiles can be predicted by i l i l ti b d th M lli tinumerical simulation based on the Mullins equation.

Shape transformation of hole arraysEmpty  spaces can be created in the bulk Si by annealing of hole arrays.y

Modeling for the evolution of polyhedral crystals  reproduces the evolution of a faceted void in Si substrate.reproduces the evolution of a faceted void in Si substrate.