evolution of thermal desalination processes

Upload: sbalu12674

Post on 02-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Evolution of Thermal Desalination Processes

    1/78

    Saline Water Conversion CorporationSaline Water Desalination Research Institute (SWDRI)

    Evolution of Thermal Desalination

    Processes

    Dr. OSMAN AHMED HAMED

  • 8/11/2019 Evolution of Thermal Desalination Processes

    2/78

    OUTLINE

    Background

    Evolution of MSF desalination plantsEvolution of MED desalination plants

    Dual purpose power/water and hybriddesalination plants

    R&D Prospects

  • 8/11/2019 Evolution of Thermal Desalination Processes

    3/78

    Evolution of Installed membrane and thermalcapacity (cumulative ) 1980-2012

    Thermal33%

    Membrane 67%

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1980 1985 1990 1995 2000 2005 2008 2010 2012

    membrane

    thermal

    year

    m i l i o n m 3

    / d

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1980 1984 1988 1992 1996 2000 2004 2008 2012

  • 8/11/2019 Evolution of Thermal Desalination Processes

    4/78

    Breakdown of Total Worldwide Installedcapacity by technology

    Other (2%) Hybrid (1 %)

    ED (3 %)

    MED (8 %)

    MSF (23%RO (63%)

    74.8 million m 3 /d

  • 8/11/2019 Evolution of Thermal Desalination Processes

    5/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    6/78

    MULTI EFFECTDISTILLATION(MED)

    COMMONSEAWATERTHERMAL

    DESALINATIONPROCESSES

    MULTI STAGEFLASH (MSF)

    DISTILLATION

    Evolution of Thermal DesalinationProcesses

  • 8/11/2019 Evolution of Thermal Desalination Processes

    7/78

    The multi-stage flash

    (MSF) desalination process

  • 8/11/2019 Evolution of Thermal Desalination Processes

    8/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    9/78

    High reliability

    & availability.Life-time over 30years

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

  • 8/11/2019 Evolution of Thermal Desalination Processes

    10/78

    Life TimeCapacity(migd)

    YearPlantsS.#

    344x51979Jeddah-III1

    3210 x 51981Jeddah-IV2316 x 6.21982Al-Jubail-I33110 x 61982Al-Khobar-II43040 x 5.381983Al-Jubail-II5272 x 2.61986Al-Khafji-II62410 x 5.061989Shoaiba-I7244 x 6.51989Shuqaiq-I8

    325 x 51981 Yanbu-I9

    144 x 7.941999 Yanbu-II10128 x 7.52001Al-Khobar-III111110 x 102002Shoaiba-II12

  • 8/11/2019 Evolution of Thermal Desalination Processes

    11/78

    11

    90%

    7% 3%

    Availability

    Planned ShutdownForced Shutdown

    91%

    9%

    Water ProductionDesign Deficiency

    88%

    12%

    Power ProductionDesign Deficiency

    Average Availability for Al-Jubail Plant Phase II(1983-2012)

    Average Water and Power Load Factors for Al-Jubail Plant Phase II (1983-2012)

  • 8/11/2019 Evolution of Thermal Desalination Processes

    12/78

    12

    Reasons For high reliabilityand availability

    Selection ofHigh Design

    Fouling Factor

  • 8/11/2019 Evolution of Thermal Desalination Processes

    13/78

    13

    BHDesignFoulingFactors

    Al-Khobar III 0.264 m 2 oC/kW

    Al-Khobar II 0.160 m 2 oC/kW (1982)

    Shuaiba II 0.211 m 2 oC/kW

    Shuaiba I 0.30 m 2 oC//kW (1982)

    Tawaleh B 0.15 m 2 oC/kW

    Jebel Ali 0.12 m 2 oC/kW

    Al-Jubail II 0.176 m 2 oC/kW (1983)

  • 8/11/2019 Evolution of Thermal Desalination Processes

    14/78

    14

    Reasons For high reliabilityand availability

    Selection ofHigh Design

    Fouling Factor

    Effectivealkaline scale

    control

  • 8/11/2019 Evolution of Thermal Desalination Processes

    15/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    16/78

    16

    3

    4.5

    6.5

    9

    15

    0

    2

    4

    6

    8

    10

    12

    14

    16

    85 90 95 100 105 110 115 120

    A n t i s c a l a n t D o s e R a t e ( p p m )

    Top Brine Temperature (oC)

    Dose Rate recommended in 1981

    Optimization Tests

    Improvement ofChemical

    Formulation

    Adoption of On-Line Sponge BallCleaning System

    1.5

    1 .75

    3.53

    2.5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    85 90 95 100 105 110 115 120

    Dose Rate Optimized in 1987

    SWCCs ACHIEVEMENTS IN CONTROLLING

    ALKALINE SCALE FORMATION

  • 8/11/2019 Evolution of Thermal Desalination Processes

    17/78

    17

    0.8 1

    2.521.5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    85 90 95 100 105 110 115 120

    Dose Rate Optimized in 2003

    3

    4. 5

    6.5

    9

    15

    0

    2

    4

    6

    8

    10

    12

    14

    16

    85 90 95 100 105 110 115 120

    A n t i s c a l a n t D o s e R a t e ( p p m )

    Top Brine Temperature (oC)

    Dose Rate recommended in 1981

    Optimization Tests

    Improvement ofChemical

    Formulation

    Adoption of On-Line Sponge BallCleaning System

    1.5

    1 .75

    3.53

    2.5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    85 90 95 100 105 110 115 120

    Dose Rate Optimized in 1987

    SWCCs ACHIEVEMENTS IN CONTROLLING

    ALKALINE SCALE FORMATION

    2010

  • 8/11/2019 Evolution of Thermal Desalination Processes

    18/78

    18

    Economic Impact of Antiscalant Dose RateReduction in SWCC MSF Plants

    7.86

    4.65

    3.21

    0 1 2 3 4 5 6 7 8 9

    Antiscalant Annual Operating cost as

    per 1987 dose rate

    Antiscalant Annual Operating cost as per current dose

    rate

    Annual Savings

    M i l l i o n U S $

  • 8/11/2019 Evolution of Thermal Desalination Processes

    19/78

    19

    Reasons For high reliabilityand availability

    Selection ofHigh Design

    Fouling Factor

    Effectivealkaline scale

    control

    GoodSelection ofMaterial of

    Construction

  • 8/11/2019 Evolution of Thermal Desalination Processes

    20/78

    20

    Section Material of Construction

    Brine Heater

    Shell Carbon steel (all plants)

    Tubes Either 70/30 o,90/10 Cu-Ni or modified 66/30/2/2Cu/Ni/Fe/Mn except Al-Jubail I (Titanium)

    Heat RecoverySection

    FlashChamber

    First high temperature stages Al-Jubail, Al-Khafji andthe first two modules of Jeddah IV cladded withstainless steel

    Al-Khobar II completely cladded with 90/10 Cu/Ni Al-Shuqaiq 1completely claded with stainless steel

    Tubes All plants except Yanbu and Al-Jubail I: 90/10 Cu Ni

    Jubail I: TitanuimYanbu 70/30 (1 to 10 stages)90/10 (11 to 21 stages)

    Heat Rejection Tubes All plants except Jeddah & Shoaiba : TitaniumJeddah II, III, IV 90/10 Cu/NiShoaiba 70/30 Cu Ni

  • 8/11/2019 Evolution of Thermal Desalination Processes

    21/78

    21

    Flash chamber of both recovery

    and heat rejection sections

    Carbon steel lined with stainless steel(floor lined with 317L, walls with316L and roof with either 316L or

    304.

    Water boxes Carbon steel lined with 90/10Copper-Nickel

    TubesBrine heater tubes modified 66/30/2/2

    Cu/Ni/Fe/Mn ; heat recovery tubes:

    Copper/Nickel (first four stages 70/30and remaining stages 90/10)

    Heat rejection tubes Titanium &modified 66/30/2/2 Cu/Ni/Fe/Mn

    Projects which were recently built use the following materials ofconstruction for the major components

  • 8/11/2019 Evolution of Thermal Desalination Processes

    22/78

    Increase in distillersize

    High reliability

    & availability.Life-time over 30years

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

  • 8/11/2019 Evolution of Thermal Desalination Processes

    23/78

    Historical Growth of MSF Distiller Size

    2.5

    5.1

    7.9

    10

    17.5

    20

    0

    5

    10

    15

    20

    25

    1973-1978 JeddahI&II kKhobar I

    1979-1988 Jeddah III&IV Yanbu I Jubail

    I&II Khobar II

    Shuaiba I

    1999-2001 Yanbu IIkhobar II

    2002 Shuaiba II 2003 UAE 2011 Ras Alkhair

    Low investment cost for auxiliary equipment such as interconnection and controlpiping .

    Operating and maintenance people depends on the number of unit installed. Savings in operational cost.

    Large unit size:

    23

  • 8/11/2019 Evolution of Thermal Desalination Processes

    24/78

    Reasons Constant Reduction of Investment per MIGD optimized use of material of construction. Reduction of redundant equipment. Optimized mechanical design of evaporator vessel. Optimized thermo-dynamic design parameters.

    8

    6 54

    12

    0

    2

    4

    6

    8

    10

    12

    14

    1985 1990 1995 2000 2004

    year

    $ / I G D

    Price Trend for turn-key complete MSF plants

    2010

  • 8/11/2019 Evolution of Thermal Desalination Processes

    25/78

    Use of thermallyefficient powergeneration cycles

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants

    Evolutionary

    Developmentsof MSF Plants Increase in distillersize

    High reliability

    & availability.Life-time over 30years

    Evolutionary

    Developmentsof MSF Plants

  • 8/11/2019 Evolution of Thermal Desalination Processes

    26/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    27/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    28/78

    2828

    After 1983 SWCC employed back-pressure turbine arrangement

    Condensate Pump

    MSF Distillers

    Deaerator

    Heater # 2 Heater # 1

    G

    Boiler

    Fuel

    Back PressureTurbine

    Ejector MoistureSeparator

    Power to water ratio 5 to 7.9 MW/MIGD

  • 8/11/2019 Evolution of Thermal Desalination Processes

    29/78

    After 1983 SWCC employed back-pressure turbine arrangement

  • 8/11/2019 Evolution of Thermal Desalination Processes

    30/78

    2012 Combined Gas-vapor power generation cycles coupled with MSF/RO desalinationplants

    Compressor GasTurbine

    CombustionChamber

    SteamTurbine

    Exhaustgases

    Air in

    RecoverySection

    GAS CYCLE

    STEAM CYCLE

    Waste Heat Boiler

    RejectionSection

    Product Water

    Blow downBrineHeater

    Fuel in

    Recycle Brine

    Power Output

    Power Output

    Seawater in

    CoolingSeawater

    Reject

    SWRO

    1100 oC

    613 oC539 oC

    140 oC, 2.89 Bar EjectorSteam

    18 bar, 50MW

    230 oC

    300,000m 3 /d 1,000,000 m 3 /d

    62.5 MW

    700,000m 3 /d

    81MWCommonEquipment

    Net 2400 MW

    5 x 129.7 MW

  • 8/11/2019 Evolution of Thermal Desalination Processes

    31/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    32/78

    Financial Benefits for Dual Purpose Plants

    Tremendous saving in fuel consumption related tothe desalting process

    Elimination of some equipment(power plant condenser)

    Dual purpose power/water plants have an overallfinancial gain against two single purpose plants.

    Sharing of some common equipment (boiler and its

    associated facilities, intake and outfall facilities).

  • 8/11/2019 Evolution of Thermal Desalination Processes

    33/78

    243 MW

    204 MW

    100Electrical

    Water Production15 MIGD

    DualPurpose

    DualPurpose

    =447 MWMW

    Fuelrequirements

    285 MW

    280 MW

    SinglePurpose

    SinglePurpose

    =565 MW

    Fuelrequirements

    Thermal Benefits of Cogeneration Plants

  • 8/11/2019 Evolution of Thermal Desalination Processes

    34/78

    ThermalProcesses

    MSF

    MED/TVC

    MED TVC

  • 8/11/2019 Evolution of Thermal Desalination Processes

    35/78

    MED_TVCoffers the best potential method of improving the performance of straight MED desalination plants and

    achieving high performance ratios and hence low water cost.

    or SteamTransformer

    GOR=61kg

  • 8/11/2019 Evolution of Thermal Desalination Processes

    36/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    37/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    38/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    39/78

    They provide higher overall heat transfer coefficients whencompared to multistage flash (MSF) desalination systems.

    MED does not employ recycling and are thus based on theonce through principle and have low requirements for

    pumping energy.The power consumption of MED/TVC plants is only around1.5 kWh/m 3 as there are no requirements to re-circulate largequantities of brine.

    Increase of MED unit capacity results in the decrease of theinvestment cost.

    Multi-effect distillation also offers the possibility of reducingthe plant size and footprint

    Factors responsible for the recent market emergence ofMED-TVC desalination plants

    EVOLUTION OF MED/TVC DESALINATION PLANTS

  • 8/11/2019 Evolution of Thermal Desalination Processes

    40/78

    0

    3

    69

    1215

    1990 2000 2009year

    u n i t c a p a c i t y

    M I G D

    MED UNIT CAPACITY GROWTH

    5MIGD

    8-10 MIGD

    EVOLUTION OF MED/TVC DESALINATION PLANTS

    1MIGD

    15MIGD

    2012

  • 8/11/2019 Evolution of Thermal Desalination Processes

    41/78

    1 2 3 4 5 6 7

    B

    A

    B

    A

    B

    A

    B

    A

    B

    A

    A A

    C C

    B B

    Steam

    ProducedSteam

    Distillate throughguillotine

    Distillate throughSaw line

    Distillate throughU pipe

    Brine suction

    Cell 1 / distillatesuction

    REB 5REB 3

    8

  • 8/11/2019 Evolution of Thermal Desalination Processes

    42/78

    HYBRID CONCEPTS

  • 8/11/2019 Evolution of Thermal Desalination Processes

    43/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    44/78

    Integrated Hybrid systemsthe plant is designed fromthe beginning

    as a combined plant .

    HYBRIDSYSTEMS

    Simple hybrid Systemsadding a stand- alone

    RO desalinationplant to an existing MSF complex

  • 8/11/2019 Evolution of Thermal Desalination Processes

    45/78

    Power Plant

    Electricity

    To main grid

    To RO Plant

    To MSF Plant

    MSF Unit

    CondensateReturn

    Steam to MSF

    Heat

    Rejection

    SeawaterOut

    CommonOutfallFacility

    BlendedProduct

    MSF Product

    MSFMake-up

    Brine

    Blow Down

    Single Pass

    RO Unit

    CommonIntakeFacility

    MSFFeed

    ROFeed

    Seawater FeedRO

    Product

    Schematic diagram of simple hybrid configuration

  • 8/11/2019 Evolution of Thermal Desalination Processes

    46/78

    ADVANTAGES

    Such arrangement allows to operate the RO unit with relativelyhigh TDS and consequently allows to lower the replacementrate of the membranes.

    If the useful life of the RO membrane can be extended from 3 to5 years the annual membrane replacement cost can be reducedby nearly 40 percent . Blending the products of the thermal andSWRO allows for the use of a single stage SWRO instead of thetwo stage SWRO plant normally employed in standalone SWROplants.

    Combining thermal and membranes desalination plant in thesame site will allow to use common intake and outfall facilitieswith less capital cost.

    An integrated pretreatment and post-treatment operation canreduce cost and chemicals.

  • 8/11/2019 Evolution of Thermal Desalination Processes

    47/78

    Hybridsystems

    Simple hybrid

    IntegratedHybrid

  • 8/11/2019 Evolution of Thermal Desalination Processes

    48/78

    Schematic diagram of fully integrated hybrid configuration

    Power Plant

    Electricity

    To main grid

    To RO Plant

    To MSF Plant

    MSF Unit

    CondensateReturn

    Steam to MSF

    Heat

    Rejection

    SeawaterOut Common

    OutfallFacility

    BlendedProduct

    MSF Product

    MSFMake-up

    Brine

    Blow Down

    Single Pass

    RO Unit

    CommonIntakeFacility

    MSFFeed

    ROFeed

    Seawater Feed RO

    Product

    Common PostTreatment

    Facility

  • 8/11/2019 Evolution of Thermal Desalination Processes

    49/78

    Commercially AvailableHybrid Desalination

    Plants

    JeddahMSF/SWRO

    YanbuMSF / SWRO

    Al-Jubail

    MSF/SWRO

    Ras Al KhairMSF/SWRO

    Product blended with MSF Product

    SWRO 28.16 MIGD

    Phase II MSF 40 MIGD

    20 MIGD

    Comman intake/outful with MSF

    Product blended with MSF

    1989 , Phase ISingle stage , 12.5 MIGD

    1994 , Phase II

    Single stage , 12-5 MIGD

  • 8/11/2019 Evolution of Thermal Desalination Processes

    50/78

    HHGas

    turbine

    system

    HRSG

    Steamturbine

    MSFplant

    SWROplant

    Natural gas

    P=10*199.7 MW

    P=5*129.7 MW

    P= 10*199.7 MW Pnet2400 MW

    P MSF

    P RO

    300000m3/d

    700000m3/d

    1000000m3/d

    P RO

    Fluegases

    SteamSteam

    Condensatereturn

    Block diagram of the combined power cycle integratedwith the hybrid MSF/SWRO desalination plant

    P aux

  • 8/11/2019 Evolution of Thermal Desalination Processes

    51/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    52/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    53/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    54/78

    R&DPROSPECTS IN

    THERMAL DESALINATION

    Address the shortcomingsOf currently employed thermal

    desalination processes

    Development of desalination conceptsThat have not been fully explored and

    Applied in commercial scale

    Development of new desalination concepts

  • 8/11/2019 Evolution of Thermal Desalination Processes

    55/78

    R&DPROSPECTS IN

    THERMAL DESALINATION

    Address the shortcomingsOf currently employed thermal

    desalination processes

  • 8/11/2019 Evolution of Thermal Desalination Processes

    56/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    57/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    58/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    59/78

    NF Reject

    SeawaterNF Unit

    NF Product

    Ca = 481

    Mg = 1507

    TH = 7406HCO3 = 145

    SO4 = 3257

    TDS =45400

    Ca = 72

    Mg = 63

    TH = 440HCO3 = 51

    SO4 = 23

    TDS =32060

    NF/RO/MSF or NF/RO/MED Tri -hybird System

    RO Reject

    SWRO UnitRO Product

    Ca = 281

    Mg = 437

    TH = 2502

    HCO3 = 101

    SO4 = 124

    TDS = 61080

    Ca = 1

    Mg = 2

    TH = 9HCO3 = 4

    SO4 = -

    TDS = 660

    MSF/MED UnitMSF/MED Product

  • 8/11/2019 Evolution of Thermal Desalination Processes

    60/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    61/78

    61

    CONCEPTUAL DESIGN OF THE HIGHTEMPERATURE AND UNIT CAPACITYMED-TVC DESALINATION PLANT

  • 8/11/2019 Evolution of Thermal Desalination Processes

    62/78

    S h i fl di f MED

  • 8/11/2019 Evolution of Thermal Desalination Processes

    63/78

    63

    Schematic flow diagram of MEDunit of Tri-Hybrid Desalination Plant

    The impact of energy cost in $/bbl oil equivalent on the water production cost

  • 8/11/2019 Evolution of Thermal Desalination Processes

    64/78

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 10 20 30 40 50 60 70 80 90 100

    W a t e r C o s t ( S R

    / m 3 )

    ($/bbl)

    Standalone MED

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 10 20 30 40 50 60 70 80 90 100

    W a t e r C o s t ( S R

    / m 3 )

    ($/bbl)

    Standalone MED

    MED+Power Plant

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 10 20 30 40 50 60 70 80 90 100

    W a t e r C o s t ( S R

    / m 3 )

    ($/bbl)

    Standalone MED

    MED+Power Plant

    StandaloneNF/RO/MED(70-30)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 10 20 30 40 50 60 70 80 90 100

    W a t e r C o s t ( S R

    / m 3 )

    ($/bbl)

    Standalone MED

    MED+Power Plant

    StandaloneNF/RO/MED(70-30)

    NF/RO/MED (70-30)+Power Plant

  • 8/11/2019 Evolution of Thermal Desalination Processes

    65/78

    Schematic flow diagram of trihybrid NF/RO/MSF desalination system

    RO Unit

    RO ProductBlendedProduct

    MED/TVC Unit

    MED Product

    Steam

    Cooling Seawater out

    Cooling Seawater in

    CondensateReturn

    RO Reject

    NF Unit

    NF Reject

    Seawater Intake

    NF Product

    Pretreatment

    Make-up Seawater

    MED Brine

    RO Unit

    RO ProductBlendedProduct

    MED/TVC Unit

    MED Product

    Steam

    Cooling Seawater out

    Cooling Seawater in

    CondensateReturn

    RO Reject

    NF Unit

    NF Reject

    Seawater Intake

    NF Product

    Pretreatment

    Make-up Seawater

    MED Brine

    MSF

    MSF

    The impact of TBT on water production and energy consumption

  • 8/11/2019 Evolution of Thermal Desalination Processes

    66/78

    66

    The impact of TBT on water production and energy consumption

  • 8/11/2019 Evolution of Thermal Desalination Processes

    67/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    68/78

    Comparison between the standalone MSF and

    MSF combined with NF/RO configuration

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    Standalone MSF MSF Wthin Trihybrid Scheme

    Ad*102( m2 /kg/hr )

    34%

    Pumping Power (kWh/m3) 10% 42 %

    Mc/Md23 %

    Mr/Md17 %PR

    39 %

    68

    Saline Water Conversion Corporation (SWCC)

  • 8/11/2019 Evolution of Thermal Desalination Processes

    69/78

    Prospects of reduction of operational cost

    of SWCC small scale thermal desalinationplants using solar energy

    Saline Water Conversion Corporation (SWCC)

    Synergy between desalination and solar energy

  • 8/11/2019 Evolution of Thermal Desalination Processes

    70/78

    Electricity

    RO ED MVC

    RO = Reverse OsmosisED = Electrodialysis (ED)MVC = Mechanical vapor compressionTVC = Thermal Vapor compressionMED = Multieffect distillationMSF = Multistage flash distillation

    TVC MED MSFRO ED MVC

    Heat

    TVC MED MSF

    HeatElectricityThermal power

    cycle

    Thermalenergy

    Electricity togrid

    Synergy between desalination and solar energySolar desalination combinations

    Concentrating solarcollector field,

    Photovoltaic cells(PV)

    Solar energy drivendesalination processes

    solar ponds,evacuated tube , flat

    plate,parabolic trough

    SWCC-SWDRI/HITACHI ZOSEN Joint Solar Research Project

  • 8/11/2019 Evolution of Thermal Desalination Processes

    71/78

    j

    Schematic diagram of the solar assisted thermal desalinationexperimental set-up

    l

  • 8/11/2019 Evolution of Thermal Desalination Processes

    72/78

    SWDRISWCC

    Solar En ergy for

    Desal inat ion Plants

  • 8/11/2019 Evolution of Thermal Desalination Processes

    73/78

    R&DPROSPECTS IN

    THERMAL DESALINATION

    Address the shortcomingsOf current thermal desalination processes

    Development of desalination conceptsThat have not been fully explored and

    Applied in commercial scale

  • 8/11/2019 Evolution of Thermal Desalination Processes

    74/78

    R&D PROSPECTS

    Development ofdesalination conceptsThat have not beenfully explored and

    Applied in commercialscale

    Membrane distillation

    Freezing processes

  • 8/11/2019 Evolution of Thermal Desalination Processes

    75/78

  • 8/11/2019 Evolution of Thermal Desalination Processes

    76/78

    W a t e r

    P r o

    d u c t i o n

    C o s

    t

    Year

    Step Change

    Evolutionary change

  • 8/11/2019 Evolution of Thermal Desalination Processes

    77/78

    Thank You

    77

  • 8/11/2019 Evolution of Thermal Desalination Processes

    78/78