example problems

Download Example Problems

If you can't read please download the document

Upload: erika-jenelle-balmores-burdeos

Post on 08-Sep-2015

24 views

Category:

Documents


1 download

DESCRIPTION

Sample Problems for Reinforced Concrete

TRANSCRIPT

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    EXAMPLES

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Sample No. 1 Determine the maximum positive moment and the negative moment at the fixed support.

    58

    7= 1.0879 6(

    58

    7) = 6.5278

    Cantilever M= 8.4482 x (1.0879)2/2

    MB= 5 kNm

    FEMs= 1

    12 (8.4482)(6.5278)2 = 30.000

    Mc = 30 +25

    2= 42.5

    Point of zero shear:

    =21.829

    8.4482= 2.5839

    =1

    2(21.829)(2.5839) 5 = .

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Sample No. 2 Determine the moment at point c.

    Columns steel pipe, outer = 300mm, thickness=10mm, G=200 GPa

    Rafters aluminum, I section, Flanges, 250 x 20mm, web 450 x 10 mm, G=83 GPa

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    =

    64(3004 2804) = 95.8891064

    =1

    12(2504903 2404503) = 628.521064

    =. 75 (

    200 95.8896

    )

    . 75 (20095.889

    6 ) +83628.52

    45

    = 0.29130

    = 0.7087

    =1

    12(10)(45)

    2= 66.6667

    = 66.667 +0.7087

    2(66.667 0) = .

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    WSD SINGLY

    Example 1. Determine the moment capacity of beam if the area of reinforcing bars is 1400

    mm2. If fs=120MPa and fc=20MPa.

    n = Es4.7fc

    = 200

    4.720= 9.5152 10

    n = Asbd n = 1400

    (200)(400)(10) = 0.17500

    k = n + (n2) + 2(n)

    k = 0.175 + (0.1752) + 2(0.175)

    k = 0.44195

    c = k d = 0.44195 x 400 = 176.78

    Itr = bc3

    3+ nAs(d c)

    2 = (200)(176.78)3

    3+ (10)(1400)(400 176.78)2

    = .

    Due to Concrete: Mcap = fcItr

    c

    Mcap = (0.45)(20)(1066.073)

    (176.78)= .

    Due to Steel: Mcap = fsItr

    (d c)(n)

    Mcap = (120)(1066.073)

    (400176.78)(10)= .

    = .

    As

    200 mm

    40

    0 m

    m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    80

    2 w

    1.7 w

    BOTTOM BARS TOP BARS

    70

    4-32

    2-20

    70

    4-32

    SECTION B

    A B C

    SECTION AB

    Example 2. Determine the maximum safe load w based on the following stresses, fc = 25 MPa

    and fs = 138 MPa.

    n = Es

    4.7fc=

    200

    4.725= 8.5106 9

    SECTION B:

    d = 4 x 322x 80

    4 x 322 + 2 x 202+ 375 = 441.93 mm

    n = Asbd

    n =

    4 (4 x 32

    2 + 2 x 202)

    (400)(441.93)(9) = 0.195776

    c = [n + (n2) + 2(n) ] d = 203.23 mm

    Itr = bc3

    3+ nAs(d c)

    2 = (400)(203.233)3

    3+ (9) (

    4) (4 x 322 + 2 x 202)(441.93 203.23)2

    = .

    5 m 4 m

    37

    5

    400

    45

    5

    400

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Due to Concrete: Mcap = fcItr

    c

    Mneg = (0.45)(20)(3091.057)

    (203.23)= .

    Due to Steel: Mcap = fsItr

    (d c)(n)

    Mneg = (138)(3091.057)

    (441.93203.23)(9)= .

    = .

    SECTION B:

    d = 455 mm

    n = Asbd

    n =

    4 (4 x 32

    2)

    (400)(455)(9) = 0.159082

    c = [n + (n2) + 2(n) ] d = 194.2768 m

    Itr = bc3

    3+ nAs(d c)

    2 = (400)(194.2768)3

    3+ (9) (

    4) (4 x 322)(455 194.2768)2

    = .

    Due to Concrete: Mcap = fcItr

    c

    Mpos = (0.45)(20)(2945.811)

    (194.2768)= .

    Due to Steel: Mcap = fsItr

    (d c)(n)

    M = (138)(2945.811)

    (455194.2768)(9)= .

    = .

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    = 1

    5

    15 +

    0.754

    = 0.51613

    = 0.48387

    FEMs:

    = 2

    12 (52) = 2.08334

    = 1.7

    12 (42) 1.5 = 3.4

    FINAL Ms:

    = 2.08334 (0.48387) + 3.4 (0.51613) = 2.76307

    = 2.08334 + 1

    2(2.08334 w 3.4 w)(0.51613) = 1.74355 w

    = 0

    =

    2+

    = 5.2039

    2() = 5.2039

    = 2.60195

    Mpos = (5.2039 2.60195

    2) (2.76307) = 4.00708 w

    4.00708 = 136.467

    = .

    Mneg = 171.1086

    2.76307 = 171.1086

    = .

    = .

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    3-36mm

    3-25mm

    WSD DOUBLY

    In the figure shown, determine the deflection at free end. d = 75mm, d = 595mm and b =

    360mm. Use fc = 35 MPa.

    =

    4.7=

    200

    4.735= 7.2 7

    Solve for As and As,

    =

    4(36)2 3 = 3053.632

    = 7 3053.63 = 21375 2

    =

    4(25)2 3 = 1472.6 2

    (2 1) = [(27) 1] 1472.6 = 1914.4 2

    Let A = b/2, = 360

    2= 180

    = (2 1) + = 1914.4 + 21375 = 40519

    = (2 1) + = (19144 75) + (21375 595) = 14153925

    Substitute A, B and C on the equation for c, we obtain

    c = 40519+ 405192+4(180+14153925)

    2 180= 189.61

    220 kN-m

    40 kN-m

    3.20 m

    360

    52

    0

    75

    7

    5

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Calculate Itr,

    Itr = 3

    3+ ( )

    2 + ((2 1))( )2

    = 360+189.612

    3+ 21375(370.39)2 + 1914.4(114.61) = 4582.31064

    Ec = 4700 = 470035 = 27806

    = 3

    3+

    4

    8=

    220(3.2)3(10)12

    3 27.806 4.5823102+

    40(3.2)4(10)12

    8 27.806 4.5823 1012

    = .

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    WSD IRREGULAR

    Example 1. Given L = 10m., find max w that the beam can carry safely

    kNmMcapTherefore

    mkNwmkN

    L

    MwwLMMcap

    MPafs

    kNmMcap

    MPafc

    mm

    I

    mmc

    mmC

    mm

    therefore

    or

    mmcAssume

    mmnA

    sayn

    tr

    s

    667.86

    /9333.6m-kN 122.59 667.86

    10

    667.8688

    8

    110

    )10)(56.173550(

    )101.2364(138

    138

    steelon Based

    59.1221056.173

    )101.2364(9

    92045.

    stresses allowable Concreteon Based

    101.2364

    )56.173550(125663

    )56.173(150)56.173)(100)(200()100)(200(

    12

    1

    56.173

    7911300)550(125662

    )200(100

    3256612566)200(100B

    75mm.150/2A

    sectionirregular:

    5654700175000

    )100550(1256650100 x 350

    .100

    125664)20(4

    10

    1052.9207.4

    200

    22

    26

    6

    6

    6

    46

    2

    3

    23

    3

    2

    2

    22

    55

    0

    75 75 200

    400

    100

    100

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    USD SINGLY

    USD DOUBLY

    USD IRREGULAR

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    ONE WAY SLAB

    1. SAMPLE PROBLEM a. Determine the required thickness of a prismatic one way slab shown below (round

    up to nearest cm). b. Determine the required spacing of the bars in the first interior support. Use grade 40, 10mm diameter bars and fc=25 MPa.

    a.

    24=

    3100

    24= 129.17mm.

    28=

    2900

    28= 103.57 .

    Reqd thickness= 129.17[0.4 +276

    700]

    T =102.60 say 110mm

    b. wu =1.4[5+(0.11 24)] + 1.7(3) = 15.796 kPa

    Mu = 1

    10(15.796)(3.1)2 = 15.180 (governs)

    Mu =1

    12(15.796)(2.9)2 = 11.070 d=110-20-

    10

    2= 85

    X=15.18

    0.91000(0.0852)276 = 0.03363

    m =276

    0.8525= 12.988

    =112

    = 0.0089822

    =1.4

    4= 0.00507 0.004289

    = 0.00507 <

    Reqd s= (10)2

    4(0.0089822)(85)= 102.87 ( 100)

    Smax = 3Ats or 450= 330 (governs) > Reqd s Adopt smallest S:

    S= 100 mm

    3.4 m 3.2 m 3.2 m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    STRINGERS

    Sample Problem No.1 Compute for the moment of the prismatic stringer shown below. Use superimposed dead load = 2.1 kPa and a live load of 2.4 kPa and a slab thickness = 110 mm. Assume beam width = 250mm. Also, assume that the dimension of the stringer is 200 x 500mm.

    1. Spans are more than two. 2. Check all the span lengths if it is okay to use the ACI Moment Coefficient:

    8

    7= 1.14286 ()

    7.2

    7= 1.02857 ()

    8.2

    7.2= 1.0 ()

    3. Convert Floor Load to Uniform Load:

    Total Dead Load:

    Superimposed Dead Load = 2.1 kPa

    Weight of Slab = 24 * 0.11

    = 2.64 kPa 4.74 kPa

    stringers

    8 @ 3.5 m = 28 m

    stringers

    Weight of Stringer = 24 * 0.2 * 0.5

    = 2.4 kN/m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Loading for 8m span: m = 3.5/8=0.4375

    WD = ( 4.74* 3.5)/8 ((3-(0.4375)^2)/2)*2 = 5.83661 kN/m + 2.4 kN/m = 8.23661 kN/m

    WL = ( 2.4* 3.5)/8 ((3-(0.4375)^2)/2)*2

    = 2.94902 kN/m Wu = 1.2 (8.23661) + 1.6 (2.94902) = 14.60236 kN/m Loading for 7m span: m = 3.5/7=0.5

    WD = ( 4.74 * 3.5)/7 ((3-(0.5)^2)/2)*2

    = 6.5175 kN/m + 2.4 kN/m = 8.9175 kN/m

    WL = ( 2.4* 3.5)/7 ((3-(0.5)^2)/2)*2

    = 3.3 kN/m Wu = 1.2 (8.9175) + 1.6 (3.3) = 15.981 kN/m Loading for 7.2m span: m = 3.5/7.2=0.48611

    WD = ( 4.74* 3.5)/7.2 ((3-(0.48611)^2)/2)*2

    = 6.368 kN/m + 2.4 kN/m = 8.768 kN/m

    WL = ( 2.4* 3.5)/7.2 ((3-(0.48611)^2)/2)*2 = 3.22431 kN/m Wu = 1.2 (8.768) + 1.6 (3.22431) = 15.680 kN/m Loading for 8.2m span: m = 3.5/8.2=0.42683

    WD = ( 4.74 * 3.5)/8.2 ((3-(0.42683)^2)/2)*2 = 5.70092 kN/m + 2.4 kN/m = 8.10092 kN/m

    WL = ( 2.4* 3.5)/8.2 ((3-(0.42683)^2)/2)*2

    = 2.88654 kN/m Wu = 1.2 (8.10092) + 1.6 (2.88654) = 14.33957 kN/m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    For 8m span: M = 1/10 Wuln2 = 1/10 (14.60236) (7.75)2 = 87.705 kN-m M = 1/14 Wuln2 = 1/14 (14.60236) (7.75)2 = 62.647 kN-m M = 1/24 Wuln2 = 1/24 (14.60236) (7.75)2 = 36.544 kN-m For 7m span: M = 1/11 Wuln2 = 1/11 (15.981) (6.75)2 = 66.194 kN-m M = 1/16 Wuln2 = 1/16 (15.981) (6.75)2 = 45.508 kN-m For 7.2m span: M = 1/11 Wuln2 = 1/11 (15.680) (6.95)2 = 68.853 kN-m M = 1/16 Wuln2 = 1/16 (15.680) (6.95)2 = 47.336 kN-m For 8.2m span: M = 1/10 Wuln2 = 1/10 (14.33957) (7.95)2 = 90.63 kN-m M = 1/14 Wuln2 = 1/14 (14.33957) (7.95)2 = 64.74 kN-m M = 1/24 Wuln2 = 1/24 (14.33957) (7.95)2 = 37.76 kN-m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    TWO WAY SLAB

    SAMPLE PROBLEM 1. Determine the required thickness of the slab shown in the figure. Assume

    all beam widths are 300mm x 600mm and all dimensions shown are center-to-center of beams.

    Use Gr.40 bars and fc' = 25MPa.

    Since the biggest panel is Panel C having clear spans of 4.9m x 4.2m, this is to be

    considered:

    = (0.8 +

    1400)

    36 + 9=

    4900(0.8 +276

    1400)

    36 + 9 (49004200)

    = 105.08 ~110

    = . ~

    5.0 m

    5.2 m

    5.0 m

    4.2 m 4.5 m 4.2 m

    A B

    C D

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 2.

    1.) Determine the reqd thickness of the floor using Grade 60 bars. 2.) Determine the design negative moment at the continuous edge in the long direction of

    the middle strip of slab A if total DL is 6.3 kPa and LL is 2.4 kPa. 3.) Determine the design negative moment at the discontinuous edge of slab B in the column

    strip in the short direction using the loads in problem 2. All beam widths = 300 mm

    mm 110.07 h dq'

    mm 991.1*90 mm 1500414 0.8 44001500

    fy 0.80 lnh 1.)

    :SOLUTIONS

    Re

    07.11010.1*

    5.3

    4.4*936

    936

    strip 1mm/ -kN

    5020.62.4*4.11*032333.0Mb

    032333.0005.0*2*33333.0029.0Cb

    83333.04.2

    3.5m

    4 CASE

    kPa 4.11 W

    84.34.2*6.1W6.1

    56.73.6*2.1W2.1

    .)2

    2

    neg

    neg

    U

    L

    D

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    m/m-kN 1.14023

    2*

    3

    5.1311Ma,

    Strip)(Column Edge ousDiscontinu

    1311.51339.29972.2Ma,

    1339.23.5*3.84*0.045364LL Ma,

    0.0453640.004*2*0.4545-0.049LL Ca,

    9972.23.5*7.56*0.032364DL Ma,

    0.0323640.004*2*0.4545-0.036DL Ca,

    8 CASE

    79545.04.4

    3.5m

    .)3

    neg

    pos

    2

    pos

    pos

    2

    pos

    pos

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 3.

    Design the exterior panel of the two-way slab using direct design method.

    Given Data:

    fy= 276 MPa fc= 33 MPa

    g= 0.002

    max= 0.04173

    min= 0.0052 m= 9.8396 Bar size= 12mm Assumed beam width= 0.2m Assumed Depth= 0.4m Dead Load = 1.83kPa Live Load = 1.9kPa Concrete Cover = 20mm

    Span Length: Along z-direction=3m Along x-direction=2.15m Clear Span Length: Along z-direction=3-0.2= 2.8m Along x-direction=2.15-0.2= 1.95m

    Therefore: ln = 2.8m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Slab Thickness: Assume conventional slab with stiff beams ( > 2.0)

    = 2.8/1.95 = 1.4359

    = (0.8 +

    1400

    )

    36 + 9=

    2.8(0.8 +276

    1400)

    36 + 9(1.4359)= 57.07~60

    therefore: h=100mm since 100 is the minimum slab thickness

    Load Calculation: Total Factored Load= 1.2(1.83+24*.1)+1.6(1.9)= 8.12kPa At Z-direction End Span, Slabs with beams between all support

    Exterior Side Interior Side ln 2.8m 2.8m l1 3m 3m l2 1.075m 2.15m

    lB=bh^3/12 1.61094 2.131094 lS=bh^3/12 9x1074 1.791084

    Mo=2

    2

    8 3.28kN-m 13.13kN-m

    17.8605 11.9070 X1 = assumed beam width = 200mm Y1 = assumed depth = 400mm X2 = h = 100mm Y2 = smallest between 4h and Y1-h = 300mm

    = (1 0.63

    )

    3

    3

    = (1 0.63200

    400) (

    2003400

    3) + (1 0.63

    100

    300) (

    1003300

    3) = 8.11084

    =

    2= 1.6193

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Based from the NSCP 2010 Code Sec. 413.7.3.3; Since the kind of slab has beams between all supports, the Interior Neg. Moment is 0.7, the Positive Moment is 0.63 and the Exterior Neg. Moment is 0.16.

    Column strip for Exterior Negative Moment

    Exterior Side Interior Side Column strip 0.5375m 1.075m

    2 1 0.3583 0.7167 2 1 6.4 8.5333

    2 1 = 0 75 75 2 1 > 1 94.25% 83.5% Col. Strip 94.25% 83.5%

    Middle strip 5.75% 16.5% Moment 0.03kN-m 0.347kN-m

    Overall width 0.5375m 1.075m Moment 0.056 kN-m/m 0.322 kN-m/m

    Width of side 0.80625 m 0.5375 m Total Exterior Negative Moment = 0.1627 Column strip for Exterior Positive Moment

    Exterior Side Interior Side Column strip 0.5375m 1.075m

    2 1 0.3583 0.7167 2 1 6.4 8.5333

    2 1 = 0 60 60 2 1 > 1 94.25% 83.5% Col. Strip 94.25% 83.5%

    Middle strip 5.75% 16.5% Moment 0.108kN-m 0.108kN-m

    Overall width 0.5375m 1.075m Moment 0.2 kN-m/m 0.1 kN-m/m

    Width of side 0.80625 m 0.5375 m Total Exterior Positive Moment = 0.16013 At X-Direction End Span, Slabs with beams between all supports

    Left Side Right Side ln 2.8m 2.8m l1 2.15m 2.15m l2 2.75m 2.75m

    lB=bh^3/12 2.11094 21094 lS=bh^3/12 2.3x1084 21084

    Mo=2

    2

    8 21.48kN-m 21.48kN-m

    9.3091 9.3091

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    X1 = 200mm Y1 = 400mm X2 = 100mm Y2 = 300mm

    = (1 0.63

    )

    3

    3

    = (1 0.63200

    400) (

    2003400

    3) + (1 0.63

    100

    300) (

    1003300

    3) = 8.11084

    =

    2= 2.2595

    Based from the NSCP 2010 Code Sec. 413.7.3.3; Since the kind of slab has beams between all supports, the Interior Neg. Moment is 0.7, the Positive Moment is 0.63 and the Exterior Neg. Moment is 0.16. Column strip for Exterior Negative Moment

    Left Side Right Side Column strip 1.075m 1.075m

    2 1 0.3583 0.7167 2 1 6.4 8.5333

    2 1 = 0 75 75 2 1 > 1 94.25% 83.5% Col. Strip 94.25% 83.5%

    Middle strip 5.75% 16.5% Moment 0.198kN-m 0.567kN-m

    Overall width 0.5375m 1.075m Moment 0.368 kN-m/m 0.528 kN-m/m

    Width of side 0.5375 m 0.5375 m Total Exterior Negative Moment = 0.4476 Column strip for Exterior Positive Moment

    Left Side Right Side Column strip 1.075m 1.075m

    2 1 0.3583 0.7167

    2 1 6.4 8.5333 2 1 = 0 60 60

    2 1 > 1 94.25% 83.5% Col. Strip 94.25% 83.5%

    Middle strip 5.75% 16.5% Moment 0.108kN-m 0.108kN-m

    Overall width 0.5375m 1.075m Moment 0.2 kN-m/m 0.1 kN-m/m

    Total Exterior Positive Moment = 0.15012

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    DESIGN ALONG Z-DIRECTION For Bottom Bars Ext. Neg. Moment = 0.1627 d = h cc- .5db = 100 20 - 1.5(12) = 62mm

    =

    2=

    (0.1627 106)

    0.91000622276= 0.0002

    = 1 1 2

    =

    1 1 2(9.8396)(0.0002)

    9.8396= 0.0002

    min= 0.0052

    Since min is greater than , therefore use min

    =

    = 122

    4

    0.0052(62)= 350.39~350

    Smax = 450 or 3h, whichever is lesser. Since 3h = 3x100, Therefore; Smax = 200mm Smax Since s is greater than Smax, therefore use Smax Spacing of the bottom bars is 200mm

    For Top Bars (z-direction) For the design of top bars, same procedure with the bottom bars. The only difference is the maximum moment. Ext. Neg. Moment = 0.16 d = h cc- .5db = 100 20 - 1.5(12) = 62mm

    =

    2=

    (0.16 106)

    0.91000622276= 0.0002

    = 1 1 2

    =

    1 1 2(9.8396)(0.0002)

    9.8396= 0.0002

    min= 0.0052

    Since min is greater than , therefore use min

    =

    = 122

    4

    0.0052(62)= 350.39~350

    Smax = 450 or 3h, whichever is lesser. Since 3h = 3x100, Therefore; Smax = 200mm Since s is greater than Smax, therefore use Smax Spacing of the top bars is 200mm

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    DESIGN ALONG X-DIRECTION For Bottom Bars Ext. Neg. Moment = 0.4476 d = h cc- .5db = 100 20 - 1.5(12) = 62mm

    =

    2=

    (0.4476 106)

    0.91000622276= 0.0005

    = 1 1 2

    =

    1 1 2(9.8396)(0.0005)

    9.8396= 0.0002

    min= 0.0052

    Since min is greater than , therefore use min

    =

    = 122

    4

    0.0052(62)= 350.39~350

    Smax = 450 or 3h, whichever is lesser. Since 3h = 3x100, Therefore; Smax = 200mm Since s is greater than Smax, therefore use Smax Spacing of the bottom bars is 200mm For Top Bars (x-direction) For the design of top bars, same procedure with the bottom bars. The only difference is the maximum moment. Ext. Neg. Moment = 0.15 d = h cc- .5db = 100 20 - 1.5(12) = 62mm

    =

    2=

    (0.15 106)

    0.91000622276= 0.0002

    = 1 1 2

    =

    1 1 2(9.8396)(0.0002)

    9.8396= 0.0002

    min= 0.0052

    Since min is greater than , therefore use min

    =

    = 122

    4

    0.0052(62)= 350.39~350

    Smax = 450 or 3h, whichever is lesser. Since 3h = 3x100, Therefore; Smax = 200mm Since s is greater than Smax, therefore use Smax Spacing of the top bars is 200mm

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SHEAR

    SAMPLE PROBLEM 1. Design the shear reinforcements of the beam shown using 10 mm dia., two legged stirrups. The beam width is 300 mm and effective depth is 630 mm. Use fc = 24 MPa & Gr. 60

    stirrups.

    kN 14.402V

    7

    500600

    7

    4250

    2

    770V

    kN 86.337V

    7

    600500

    7

    3250

    2

    770V

    BA

    BA

    AB

    AB

    mm 248.44242

    433.54s

    mm 600

    mm 300say (governs) mm 3152

    mm 630

    mm 54.433300

    27608.1573s

    kN 40.571Vc

    mm 08.5714

    102A 1063000324)1(17.0

    bdcf'17.0Vc

    min

    max

    2

    2

    V

    3

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    m .780770

    207.49-402.14

    W

    V-V x

    kN 0 V

    kN 86.708 630276157.08

    s

    dfA V

    entreinforcem shear minimum For

    kN 358.040.6370-402.14

    dW-V V

    :side rightof Design

    U

    UBA

    1

    U

    yV

    S

    UBCmax

    2

    49.207708.8640.15785.

    300

    mm 100 @rest mm, 50 @ 1 mm, 10 use

    mm 100say mm 103.53

    157.40-0.85

    358.04

    10630276157.08

    VV

    dfAs

    :support from d"" distance @

    3-

    CU

    yV

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 1. Determine the 2 legged stirrups, 10 mm stirrups, 2h from fixed

    support.

    WDL = 50

    2 PLL = 150

    2

    WLL = 30

    2 fc = 27

    PDL = 150

    2 Grade 40 rebars, cc = 40 mm.

    Main bars = 20 mm.

    P

    W

    B = 300

    4m h = 600

    400 x 400

    4m 5m

    Solution:

    IAB = 44 = 256

    IBC = 3 63 = 648

    DFBA = 0.75

    256

    40.75 256

    4+

    648

    9

    = 0.4

    DFBC = 0.60

    WU = (1.4 50) + (1.7 30) = 121

    PU= = (1.4 150) + (1.7 80) = 345

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Fixed End Moments

    MBC = 121 92

    12 +

    346 4 52

    92 = 1243.91 kNm

    MB = 121 92

    12 +

    346 42 5

    92 = 1158.48 kNm

    Final Moments

    MB = 1243.91 0.4 = 497.56 kNm

    MC = 1158.48 + 0.6

    2 (1243.91) = 1531.65 kNm

    Shears

    VCB = 121 9

    2

    497.56 1531.65

    9 +

    4 ( 346 )

    9 = 813.18 kNm

    @ 2h = 2 60 = 1.2m from fixed support

    VC = 1

    627 300 540 10-3 = 140.29 kN

    d = 600 40 10 20

    2 = 540 mm

    AV = 2 102

    4 = 157.08 mm2

    Reqd S = 157.08 276 540

    667.98

    0.85 140.3

    10-3 = 36.265 mm

    Min S = 3 157.08 276

    2 27 300 = 41.717 mm > 36.265

    Reqd S not allowed. Increase web width!

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    TORSION

    SAMPLE PROBLEM 1.

    a. Determine Vu and Tu at 0.75h from the fixed support b. Determine the torsion can be neglected. c. Determine Tn @ 0.75h from the support. d. Assuming torsion to be considered, determine if the section is adequate for shear and torsion

    Span Length = 7m fc = 20 MPa Gr. 40 bars Concrete Cover = 50 mm 4-20 mm main bars 10 mm stirrups

    Load: WDL = 10 kPa WLL = 6 kPa

    Solution:

    a. Determine Vu and Tu at 0.75h from the fixed support

    Wu = 1.20 {(0.4*0.2 + 0.1*0.8) 24+10*0.10} + 1.60 (6*1.0)

    = 26.208 kN/m

    0.75*400 = 300 mm

    Vu @ 0.75h = 26.208 (7/2 0.30) = 83.866 kN

    Tu = 1.20 (0.1*24+10) +(1.60*6)*1.0*0.40 = 9.792 kN/m

    Tu @ 0.75h = 9.792 (7/2 0.30) = 31.334 kN-m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    b. Determine if torsion can be neglected

    Formula:

    Tu

    12 (

    2

    )

    0.75 1.0 20

    12 {

    (200 400 + 100 300).2

    200 + 400 + 500 + 100 + 300 + 300)

    = 1878.918 kN/mm or 1.879 kN/m < 31.334

    Torsion must be considered

    c. Determine Tn @ 0.75h from the support

    = 2

    = 45

    Ag = 0.85 Ao h = 0.85*90*290= 22185 mm

    =0.75 2 221 5

    3.14164 10

    2 276

    150

    = 4809.04 N-mm or 4.809 kN-m

    100 mm

    300 mm 400 mm

    200 mm

    400-2*(50-10) = 290 mm

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    a. Assuming torsion to be considered, determine if the section is adequate for shear and torsion.

    =

    2

    =31.334

    0.75 2 22.185 276

    = 3.41165

    d = 400-50-10-20/2 =330 mm

    = 0.17

    = 0.17 1.0 20 200 300

    = 501.770

    =

    =

    83.8660.75

    50.171

    276 330

    = 0.67682 s

    2At +Av =3.4116s +0.67682s = 7.500s

    Required s:

    =4

    3.14.16

    410

    7.50

    = 41.888

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 2.

    1. Determine the maximum design Vu and Tu.

    2. Determine if torsion needs to be considered.

    Stirrup size= 10 mm PL= 40 kN

    Main bar size= 25 mm fc= 26 MPa WD= 5 kPa (including slab and beam weight) fy= 276 Mpa

    WL= 3 kPa

    Concrete Unit Weight= 24 kN/ m3

    1.) WD = 5*1.3+(0.6*0.3+1*0.12)*24= 13.7 kN/m

    WU= 1.2*13.7+1.6*3*1.3= 22.68 kN/m

    PU= 1.28*100+1.6*40= 184 kN

    VA= 22.688

    2+ 184 [

    4.5

    8+

    3.54.5

    83 (4.5 3.5)]

    VA= 199.88 kN

    At d distance from A1

    d= 600 (40 + 10 +25

    2) = 537.5 mm

    VU= 199.88 22.68 0.5375 = 187.69 kN

    TU= PU e = 184 1.15 = 211.6 kN m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    TALA

    GJ=

    TBLBGJ

    TA =LBLA

    TB

    TA+ TB = TU

    TB =TU

    LBLA

    + 1=

    LATULA+LB

    = TLAL

    =TAL

    TA= TU b

    L+

    tU L

    2

    tU=w*e=[1.2(5*1.3+1.3*0.12*24)+1.6*3*1.3]*0.65= 12.046 kN-m/m

    TA= 211.6*4.5

    8+

    12.0468

    2=167.21 kN-m

    At d distance from A1,

    TU=167.21-0.5875*12.046

    TU=160.74 kN-m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SHORT COLUMNS

    SAMPLE PROBLEM 1. Determine the forces Pn and Mn for c=200mm using the section shown below.

    fc=24MPa and Gr. 60 bars.

    .30.393

    10*2

    1702001734)70200(*)76.76571.725(0

    .95.1693

    76.76571.72517340

    71.25710*25*4

    *4*24)*0.85-390()'85.0(

    414

    390600*200

    70200600*

    765.7610*25*4

    *4*390

    414

    390600*200

    200330600*

    173410*500*170*24*85.0)('85.0C

    170200*85.0

    3

    32

    32

    3

    C

    1

    mkNMn

    MnM

    mkNPn

    PnF

    kNAcffC

    MPa

    MPac

    dcf

    kNAfT

    MPa

    MPac

    cdf

    kNabcf

    mmca

    sscs

    sc

    ssts

    st

    200

    tsc st

    0.85 fc

    Cs

    Ts

    Cc

    200 130 70

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 2. Determine the values of Pno and Pn for the column section shown below using the following data:

    fc = 28MPa, 10mm ties and concrete cover of 40mm. Gr. 60 bars, fy = 414 MPa Axial factored compressive load Pu = 600 kN Pnx = 2250 kN and Pny = 1300kN

    Pno = 0.85fcAc + Astfy

    Pno = 0.85(28) [4002

    4252(8)] +

    4252(8)(414)

    = . .

    spiralcolumn w/ 0.75

    tiescolumn w/ 0.65;

    P

    1

    P

    1

    P

    1

    P

    1

    nonynxn

    )!(SAFE! kN P kN u 60081.713

    104009.11

    312.5340

    1

    1300

    1

    2250

    11

    3

    n

    n

    n

    P

    xP

    P

    kN 2027.3471

    )31182.5340(65.0

    )'85.0(65.0

    no

    no

    scno

    P

    P

    fyAcAfP

    400.00

    400.008-25

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    mm

    mm

    25

    75

    SAMPLE PROBLEM 3. Determine the required pitch of the 10mm spiral for the column section with a

    diameter of 600mm. Use concrete cover of 50mm and main bar diameter of 28mm. fc=30MPa Gr. 60

    bars.

    sch

    sp

    d

    As

    4 = mm791.43

    )550(01438.0

    ])10(4

    [4 2

    791.3310791.43

    Reqd. s=43.791mm

    014348.0414

    30*)144.1(*45.0

    44.154.196349

    34.282743

    54.196349

    )500(44

    34.282743

    )600(44

    '*145.0

    2

    22

    2

    22

    2

    s

    c

    g

    c

    cc

    g

    g

    ch

    g

    s

    A

    A

    mmA

    dA

    mmA

    DA

    fyt

    cf

    A

    A

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    LONG COLUMNS

    SAMPLE PROBLEM 1. Determine the design forces Pu and Mu. Use K=0.90 (effective length factor)

    SERVICE LOADS P Mtop (kN-m) Mbottom (kN-m)

    Dead Loads 750 kN 40 20

    Live Loads 450 kN 68 34 Solution r = 0.3(375) = 112.5 mm

    6.495.112

    6200*9.0

    r

    klu kNx

    PC 6.3340)6200*9.0(

    100539.1*2

    102

    5.02

    1 M

    M 138.1

    6.3340*75.016201

    4.0

    75.01

    C

    u

    m

    PP

    C

    columnslongr

    klu 40)5.0(1234 mkNMu 47.177686.1402.1138.1

    4.0)5.0(9.06.0 mC mkNMkNP uu 47.177;1620

    55556.01620

    )750(2.1

    1620)450(6.1)750(2.1

    d

    u

    B

    kNP

    GPaEc 870.24287.4

    210

    4

    100539.155556.01

    870.24*345*12

    1*4.0mmkNxEI

    mm375

    mm375

    tieslateralmm

    bars

    12

    326 topM

    ml 2.6 u

    bottomM

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 2. Determine if columns A (300x300) and B (400x400) are long or short under gravity

    and earthquake load combination.

    Beams are 300x600 mm

    Column A

    Lu = 5.0 0.3 = 4.7m

    R = 0.3 x 300 = 90 mm

    K = ?

    = 0

    =

    34

    5+

    33

    3362

    8

    = 0.533

    From nomograph with side sway

    =

    1.08 4700

    90= 56.4 > 22

    Column B

    Lu = 9-0.3 = 7.7 m

    R = 0.3 x 400 = 120 mm

    K = ?

    = 0

    =

    44

    8 +44

    3362

    7

    = 1.267

    From nomograph with side sway

    =

    1.2 7700

    1200= 77 > 22

    B A

    7 7 8

    3

    3

    5

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    SAMPLE PROBLEM 3.

    A. Determine the design forces in the column shown fc= 20mPa Gr. 40

    B. Determine the tie spacing requirements.

    DFbc=

    25503

    425503

    4+

    3504

    10

    = 0.83887

    DFba= 0.16113 (Solving for Distribution factor to use in solving the Final Moments) FEMs:

    Mbc= 42[180

    20+

    120

    30] =

    Mcb= 42[180

    30+

    120

    20] =

    (Solving the FEMs of the given system, will be multiply to DF to get the Final Moments) Final Moments: Mb= 208*0.16113=35.515 kN-m (Mu2)

    Mc= 192+ 0.83887

    2 208=279.24 kN-m

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Ma= 35.515

    2=16.758 kN-m (Mu1)

    Pu= Vbc= 4

    6(2 180 + 120) +

    33.515279.24

    4= . (Solving for axial load)

    lu= 10,000 500

    2= (lu must be decreased by the half of the beam thickness)

    a= 0 (because it is fix)

    b= 354

    10

    25503/4= . (using the equation in the 1st example)

    From chart of non-sway frames, k= 0.54 r= 0.3*350mm=105mm (for rectangular columns 0.3h)

    klu/r= 0.54 9750

    105= . (using the formula for non-sway frames)

    34 12[2/1] = 34 12 (1

    2) = < .

    Therefore: LONG COLUMN

    Cm= 0.6 + 0.4 (1

    2) = .

    EI= 470020

    1

    123504

    1+0.7 0.4 = .

    PC= 2

    ()2= 2

    6.18461013

    (0.549750)2 103 =

    =Cm

    1 Pu

    0.75Pc

    = . < 1.0

    Therefore: = . Therefore the design forces are: Pu= 258.57 kN Mu1= 16.758 kN-m Mu2= 33.515 kN-m

    B. Required spacing of 10mmties 16db=16 20 = () 48dbt=48 10 = 480 Least column dimension= 350mm (rounding it up to the nearest 50)

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    DEVELOPMENT LENGTH

    SAMPLE PROBLEM 1. A cantilever beam is reinforced with four 28-mm diameter bar with fy = 276 MPa.

    Use fc = 27.6 MPa and assume side, top, and bottom cover to be greater than 65mm. Determine the

    required development length if a 90 hook is used.

    Using the Eq.1.8-1 from the development of standard hooks in tension and the modification factor no. 1

    we will solve for the development length of standard hooks. Then check for ldh limits,

    Using a 90 hook:

    =

    .24

    ldh = (0.24*1*276/1 27.6)*28

    ldh = 353.04mm

    which ldh shall not be less than 8db which is 224mm or less than 150mm.

    Modification factor for 90 hook (NSCP 2010 Sec. 412.6.3)

    m = 0.70

    Required development length, ldh = 353.04*0.70

    Required development length, ldh = 247.13, say ldh = 250mm

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    Wu = 117 kN/m

    3-28 mm 2-28 mm

    SAMPLE PROBLEM 2. A rectangular beam having a width of 400 mm has an effective depth of 535 mm.

    It is reinforced with 3-28 mm bars extend 100 mm past the centerline of supports.

    = 1.0 (bottom bars), = 1.0 (uncoated reinforced), = 1.0 (normal weight concrete). The beam

    carries a factored uniform load of Vu = 117 kN/m. The beam has a span between supports equal 6m.

    Using fc = 20.7 MPa, fy = 414.7 MPa.

    a.) Compute the required development length. b.) Compute the nominal moment capacity of the beam. c.) Compute the furnished development length and indicate if it is properly anchored at the

    support or not.

    a.) We can compute for the development length by using the Formula (see NSCP 412.3.2) given below and the factor that you can found in NSCP 412.3.4.Since the diameter of the bar is larger than 25 mm, we will use the formula in the table in that can see in NSCP. = 1.0 = 1.0 = 1.0 Ld = 3fy = 9 (414.7) (1) (1) (1) db 5 fc 10 20.7

    3-28 mm

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    The db is the diameter of the bar which is 28 mm. Substitute it And we can get the development length. Ld = 54.69 db Ld = 54.69 (28) Then, the value of development length will be: Ld = 1531.29 mm b.) Nominal moment capacity: At first we must compute for the area in order to compute the moment capacity.

    As = (28)2 (3) = 1847 mm2 4 T=Asfy And the, we can now compute for the value of a. T = 0.85fcab Asfy = 0.85fcab 1847 (414.7) = 0.85(20.7) (a) (400) a = 108.83 mm By getting the unknown value, we can now substitute it to compute for the moment capacity of the reinforced concrete. Mn = Asfy (d a/2) Mn = 1847(414.7)(535 108.83/2) Mn = 368 x 106 kN.m. (nominal moment strength).

  • REINFORCED CONCRETE DESIGN Engr. ALBERTO C. CAETE

    EXAMPLES Copyright 2013

    c.) Furnished development length: In getting the furnished development, we must got first the shear value to substitute in the formula. Vu = WL/2 =117(6) = 3541 kN 2 We use 1.3 because we must increase 30 percent in the value Mn/Vu when the ends of reinforcement are confined by a compressive reaction. It must not greater than the development that we computed for us to say it was properly anchored. Ld < 1.3Mn + La Vu Ld < 1.3(368) + 0.100 351 Ld < 1.463 mm 1531.29 mm > 1463 mm (not ok!) The furnished development length is less than the required development length and because of this we can say that the beam is not properly anchored at the supports.