example roof truss analysis

6
CE 331, Fall 2010 Example: Roof Truss Analysis 1/ 6 In this example, a parallelchord steel roof truss is analyzed for typical dead and roof live loads. The photo below shows a truss girder (painted gray) supporting the roof of a gymnasium. Figure 1. Truss girders (gray) supporting bar joists (white) supporting metal roof deck for a gymnasium The truss girder in the photo is supported by columns (not seen in Figure 1) and supports bar joists at the panel points (chord connections) and midway between the panel points. A similar truss girder is analyzed in this example, except that the bar joists are located at the panel points only. Information about truss girder members is presented below. Table 1. Truss girder components. Type Member Shape Available Strength (φ P n ) Chords WT 6 x 20 160 k (compression) Diagonals LL 2.5 x 2.0 x 3/16 73 k (tension) Verticals LL 2.5 x 2.5 x 3/16 43 k (compression) The total weight of truss girder (self weight) is 4.05 k, and the bar joists weigh 9 plf. Other roof components are listed below. Roof & Ceiling: 20 ga metal deck Waterproof membrane with gravel 1” thick Perlite insulating roof boards Heating & cooling ductwork Steel suspended ceiling Acoustic Fiber Board

Upload: rasiduzzaman-rashid

Post on 03-Nov-2014

32 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Example Roof Truss Analysis

CE 331, Fall 2010  Example:  Roof Truss Analysis  1 / 6 

 

In this example, a parallel‐chord steel roof truss is analyzed for typical dead and roof live loads.  The photo below shows a truss girder (painted gray) supporting the roof of a gymnasium.  

 Figure 1. Truss girders (gray) supporting bar joists (white) supporting metal roof deck for a gymnasium 

 The truss girder in the photo is supported by columns (not seen in Figure 1) and supports bar joists at the panel points (chord connections) and midway between the panel points.  A similar truss girder is analyzed in this example, except that the bar joists are located at the panel points only.  Information about truss girder members is presented below.  Table 1.  Truss girder components. 

Type Member  Shape  Available Strength (φ Pn) 

Chords  WT 6 x 20  160 k (compression) 

Diagonals  LL 2.5 x 2.0 x 3/16  73 k (tension) 

Verticals  LL 2.5 x 2.5 x 3/16  43 k (compression) 

 The total weight of truss girder (self weight) is  4.05 k, and the bar joists weigh 9 plf.  Other roof components are listed below.  Roof & Ceiling: 

20 ga metal deck Waterproof membrane with gravel 1” thick Perlite insulating roof boards Heating & cooling ductwork Steel suspended ceiling Acoustic Fiber Board 

 

Page 2: Example Roof Truss Analysis

CE 331, Fall 2010  Example:  Roof Truss Analysis  2 / 6 

 

  

  

8 @ 10’

Plan View

Front Elevation  View

6’

bar joist

metal decking

Side

 Elevatio

n of Roo

f Framing 

8 @ 10’

6’

3 @ 25’

truss girder

bar joists

truss girder

column

3 @ 25’ 

Page 3: Example Roof Truss Analysis

Example Roof Truss Analysis 3 / 6

Stability & Determinacy

assume that truss is externally statically determinate for gravity loads

Num_Forces = 33 + 3 = 36Num_Eqns = 18 x 2 = 36

 therefore stable & determinate

Dead LoadRoof & Ceiling Wt: weight, psf

20 ga metal deck 2.5Waterproof membrane with gravel 5.5Fiberglass insulation 0.7Heating & cooling ductwork 4Steel suspended ceiling 2Acoustis Fiber Board 1

Total 15.7 psf    use 16 psf

Structural Model of Truss

truss girder self wt 4.05 k = 4.05 k / ( 80 ft  x 25 ft ) = 2.03 psf18.03 psf

bar joist wt 9 plf

PDint (dead load at an interior panel point)

= 18.025 psf  x 25 ft x10 ft = 4.51 k due roof, ceiling wt & truss girder= 9 plf  x 25 ft = 0.225 k due purlin wt

4.73 kPDext (dead load at an exterior panel point)

= 18.025 psf  x 25 ft x 10/2 ft = 2.25 k due roof, ceiling wt & truss girder= 9 plf  x 25 ft = 0.225 k due purlin wt

2.48 k

7 @ 4.73 k2.48 k 2.48 k

Structural Model of Truss

Dead Loads on Truss Girder

Page 4: Example Roof Truss Analysis

Example Roof Truss Analysis 4 / 6

Live LoadRoof live load = Lr = (20 psf) R1 0.6 <= R1 <= 1.0

R1 = 1.2 ‐ 0.001 At

At = 25 ft x 10 ft/panel x 8 panels =  2000 sf

R1 = 1.2 ‐ 0.001 x 2000 sf = 0.60

Lr = 20 psf x 0.6 = 12 psf

PLrint = 12 psf  x 25 ft x10 ft = 3.00 k due roof live load

PLrext = 12 psf  x 25 ft x 10/2 ft = 1.50 k due roof live load

7 @ 3 k1.5 k 1.5 k

Factored Load

Pu = 1.2 PD + 1.6 PLr

Live Loads on Truss Girder

Pu

PU_int = 1.2 (4.73 k ) + 1.6 (3 k) = 10.476 k

PU_ext = 1.2 (2.48 k ) + 1.6 (1.5 k) = 5.376 k

7 @ 10.476 k5.376 k 5.376 k

Live Loads on Truss Girder

Factored Loads on Truss Girder

Page 5: Example Roof Truss Analysis

Example Roof Truss Analysis 5 / 6

Maximum Chord Compressive Force

Draw deflected shape of loaded truss.  Identify chord with max. compressive force.

The top "fibers" of the beam are in compression, and

the fibers in the middle of the beam have the maximum compression.

Therefore, the top chord in the middle of the truss has the max. compressive force.

Calculate the force in the top chord of Panel #4

4 @ 10.476 k5 376 k

C

T

5.376 k

  5

R = [7 ( 10.476 k) + 2 ( 5.376 k) ] / 2  = 42.042 k

Σ M  about Pt   5 = 0:(f_top) ( 6 ft ) ‐ (42.042 k ‐ 5.376 k ) ( 4 x 10 ft) + (3 x 10.476 k) (20 ft) = 0

f_top 139.7 k  in panels at midspan

Check the strength of the chords

factored force in member (Pu)  <?  Available strength (φc Pn)

Pu 139.7 k

φC Pn 160 k OK

f_top

R

C

T

Page 6: Example Roof Truss Analysis

Example Roof Truss Analysis 6 / 6

Maximum Diagonal Tensile Force

Looking at the parallel‐chord truss as if it were a beam, the max. shear occurs near the supports

analagous beam (assume load is uniformly distributed along beam)

shear

bendingmoment

Therefore cut the truss in the first panel to calculate max diagonal forceTherefore, cut the truss in the first panel to calculate max. diagonal force

5.38 k

6 ft 11.66 ft

10 ft

42.04 k

Σ FV = 0: 42.042 k  ‐  5.376 k  ‐  6 / 11.66 x f_diag

f_diag 71.3 k  in end panels

Check the strength of the diagonalsTu 71.3 k

φT Pn 73 k OK

f_diag