exotic spheres and topological modular formsmbehren1/presentations/exotic_spheres.pdfexotic spheres...

86
Exotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald)

Upload: others

Post on 20-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Exotic spheres and topological modular forms

Mark Behrens (MIT)

(joint with Mike Hill, Mike Hopkins, and Mark Mahowald)

Page 2: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Fantastic survey of the subject:

Milnor, β€œDifferential topology: 46 years later”

(Notices of the AMS, June/July 2011)

http://www.ams.org/notices/201106/

Page 3: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

PoincarΓ© Conjecture

Q: Is every homotopy n-sphere homeomorphic

to an n-sphere?

A: Yes!

β€’ 𝑛 = 2: easy.

β€’ 𝑛 β‰₯ 5: (Smale, 1961) h-cobordism theorem

β€’ 𝑛 = 4: (Freedman, 1982)

β€’ 𝑛 = 3: (Perelman, 2003)

Page 4: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Smooth PoincarΓ© Conjecture

Q: Is every homotopy n-sphere diffeomorphic to an n-sphere? A: Depends on n. β€’ 𝑛 = 2: True - easy. β€’ 𝑛 = 7: (Milnor, 1956) False – produced a smooth manifold

which was homeomorphic but not diffeomorphic to 𝑆7! [exotic sphere]

β€’ 𝑛 β‰₯ 5: (Kervaire-Milnor, 1963) – `often’ false. (true for 𝑛 = 5,6). β€’ 𝑛 = 3: (Perelman, 2003) True. β€’ 𝑛 = 4: Unknown.

Page 5: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Smooth PoincarΓ© Conjecture

Q: Is every homotopy n-sphere diffeomorphic to an n-sphere? A: Depends on n. β€’ 𝑛 = 2: True - easy. β€’ 𝑛 = 7: (Milnor, 1956) False – produced a smooth manifold

which was homeomorphic but not diffeomorphic to 𝑆7! [exotic sphere]

β€’ 𝑛 β‰₯ 5: (Kervaire-Milnor, 1963) – `often’ false. (true for 𝑛 = 5,6). β€’ 𝑛 = 3: (Perelman, 2003) True. β€’ 𝑛 = 4: Unknown.

Page 6: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Main Question

For which n do there exist exotic n-spheres?

Page 7: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {oriented smooth homotopy n-spheres}/h-cobordism

(note: if 𝑛 β‰  4, h-cobordant ⇔ oriented diffeomorphic)

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

Page 8: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {smooth homotopy n-spheres}/h-cobordism

(note: if 𝑛 β‰  4, h-cobordant ⇔ diffeomorphic)

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

Page 9: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {smooth homotopy n-spheres}/h-cobordism

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

Ξ˜π‘›π‘π‘

= subgroup of those which bound a

parallelizable manifold

πœ‹π‘›π‘  = stable homotopy groups of spheres

= πœ‹π‘›+π‘˜ π‘†π‘˜ for π‘˜ ≫ 0

𝐽: πœ‹π‘› 𝑆𝑂 β†’ πœ‹π‘›π‘  is the J-homomorphism.

Page 10: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {smooth homotopy n-spheres}/h-cobordism

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

Ξ˜π‘›π‘π‘

= subgroup of those which bound a

parallelizable manifold

πœ‹π‘›π‘  = stable homotopy groups of spheres

= πœ‹π‘›+π‘˜ π‘†π‘˜ for π‘˜ ≫ 0

𝐽: πœ‹π‘› 𝑆𝑂 β†’ πœ‹π‘›π‘  is the J-homomorphism.

Page 11: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {smooth homotopy n-spheres}/h-cobordism

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

Ξ˜π‘›π‘π‘

= subgroup of those which bound a

parallelizable manifold

πœ‹π‘›π‘  = stable homotopy groups of spheres

= πœ‹π‘›+π‘˜ π‘†π‘˜ for π‘˜ ≫ 0

𝐽: πœ‹π‘› 𝑆𝑂 β†’ πœ‹π‘›π‘  is the J-homomorphism.

Page 12: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire-Milnor

Ξ˜π‘› ≔ {smooth homotopy n-spheres}/h-cobordism

For 𝑛 β‰’ 2(4):

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ 0

For 𝑛 ≑ 2 4 :

0 β†’ Ξ˜π‘›π‘π‘

β†’ Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽→ β„€

2 β†’ Ξ˜π‘›βˆ’1𝑏𝑝

β†’ 0

Page 13: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Ξ˜π‘›π‘π‘

β€’ Trivial for n even

β€’ Cyclic for n odd

Page 14: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Ξ˜π‘›π‘π‘

β€’ Trivial for n even

β€’ Cyclic for n odd – Generated by boundary of an explicit parallelizable

manifold given by plumbing construction

Page 15: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Ξ˜π‘›π‘π‘

β€’ Trivial for n even

β€’ Cyclic for n odd:

Ξ˜π‘›π‘π‘

=

22π‘˜ 22π‘˜+1 βˆ’ 1 π‘›π‘’π‘š4π΅π‘˜+1

π‘˜ + 1, 𝑛 = 4π‘˜ + 3

β„€2 , 𝑛 ≑ 1(4), βˆƒπ‘€π‘›+1 π‘€π‘–π‘‘β„Ž Φ𝐾 = 1

0, 𝑛 ≑ 1 4 , βˆ„π‘€π‘›+1 π‘€π‘–π‘‘β„Ž Φ𝐾 = 1

Upshot: n even β‡’ bp gives no exotic spheres

𝑛 ≑ 3 (4) β‡’ bp gives exotic spheres (𝑛 β‰₯ 7)

𝑛 ≑ 1 (4) β‡’ bp gives exotic sphere only if there are no 𝑀𝑛+1 with Φ𝐾 = 1

Page 16: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

J-homomorphism

𝐽: πœ‹π‘›π‘†π‘‚ β†’ πœ‹π‘›π‘  β‰… Ω𝑛

π‘“π‘Ÿ

Given 𝛼: 𝑆𝑛 β†’ 𝑆𝑂, apply it pointwise to the standard stable framing of 𝑆𝑛 to obtain a non-standard stable framing of 𝑆𝑛. Homotopy spheres are stably parallelizable, but not uniquely so – only get a well defined map

Ξ˜π‘› β†’πœ‹π‘›

𝑠

πΌπ‘š 𝐽

Page 17: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

J-homomorphism

𝐽: πœ‹π‘›π‘†π‘‚ β†’ πœ‹π‘›π‘  β‰… Ω𝑛

π‘“π‘Ÿ

Page 18: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

πœ‹βˆ—π‘ 

Stable homotopy groups:

πœ‹π‘›π‘  ≔ lim

π‘˜β†’βˆžπœ‹π‘›+π‘˜(𝑆

π‘˜) (finite abelian groups for 𝑛 > 0)

Primary decomposition:

πœ‹π‘›π‘  = (πœ‹π‘›

𝑠)(𝑝)𝑝 π‘π‘Ÿπ‘–π‘šπ‘’ e.g.: πœ‹3𝑠 = β„€24 = β„€8 βŠ• β„€3

Page 19: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

β€’ Each dot represents a factor of 2, vertical lines indicate additive extensions

e.g.: (πœ‹3𝑠)(2) = β„€8, (πœ‹8

𝑠)(2) = β„€2 β„€2

β€’ Vertical arrangement of dots is arbitrary, but meant to suggest patterns

19

Computation: Mahowald-Tangora-Kochman Picture: A. Hatcher

Page 20: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

β€’ Each dot represents a factor of 2, vertical lines indicate additive extensions

e.g.: (πœ‹3𝑠)(2) = β„€8, (πœ‹8

𝑠)(2) = β„€2 β„€2

β€’ Vertical arrangement of dots is arbitrary, but meant to suggest patterns

20

Page 21: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

21

Computation: Nakamura -Tangora Picture: A. Hatcher

Page 22: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

n

22

Computation: D. Ravenel Picture: A. Hatcher

Page 23: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

23

Adams spectral sequence

𝐸π‘₯𝑑𝐴𝑠,𝑑(β„€ 𝑝 , β„€ 𝑝) β‡’ πœ‹π‘‘βˆ’π‘ 

𝑠𝑝

πœ‹π‘‘βˆ’π‘ π‘ 

Page 24: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

24

Adams spectral sequence

𝐸π‘₯𝑑𝐴𝑠,𝑑(β„€ 𝑝 , β„€ 𝑝) β‡’ πœ‹π‘‘βˆ’π‘ 

𝑠𝑝

πœ‹π‘‘βˆ’π‘ π‘ 

-Many differentials -π‘‘π‘Ÿ differentials go back by 1 and up by r

Page 25: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

25

Adams spectral sequence

𝐸π‘₯𝑑𝐴𝑠,𝑑(β„€ 𝑝 , β„€ 𝑝) β‡’ πœ‹π‘‘βˆ’π‘ 

𝑠𝑝

πœ‹π‘‘βˆ’π‘ π‘ 

Page 26: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

26

Adams spectral sequence

𝐸π‘₯𝑑𝐴𝑠,𝑑(β„€ 𝑝 , β„€ 𝑝) β‡’ πœ‹π‘‘βˆ’π‘ 

𝑠𝑝

πœ‹π‘‘βˆ’π‘ π‘ 

Page 27: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire Invariant

Φ𝐾: πœ‹π‘›π‘  β†’ β„€ 2

Browder:

(Φ𝐾≠ 0) β‡’ 𝑛 = 2π‘˜ βˆ’ 2

27

Page 28: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire Invariant

Φ𝐾: πœ‹π‘›π‘  β†’ β„€ 2

Browder:

(Φ𝐾 π‘₯ β‰  0) ⇔ π‘₯ 𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑 𝑏𝑦 β„Žπ‘—2

𝑖𝑛 𝐴𝑆𝑆

28

Page 29: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire Invariant

Φ𝐾: πœ‹π‘›π‘  β†’ β„€ 2

Browder:

(Φ𝐾 π‘₯ β‰  0) ⇔ π‘₯ 𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑 𝑏𝑦 β„Žπ‘—2

𝑖𝑛 𝐴𝑆𝑆

Computation in ASS: Φ𝐾 β‰  0 for 𝑛 ∈ {2, 6, 14, 30, 62}

29

Page 30: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Kervaire Invariant

Φ𝐾: πœ‹π‘›π‘  β†’ β„€ 2

Browder:

(Φ𝐾 π‘₯ β‰  0) ⇔ π‘₯ 𝑑𝑒𝑑𝑒𝑐𝑑𝑒𝑑 𝑏𝑦 β„Žπ‘—2

𝑖𝑛 𝐴𝑆𝑆

Computation in ASS: Φ𝐾 β‰  0 for 𝑛 ∈ {2, 6, 14, 30, 62}

Hill-Hopkins-Ravenel:

Φ𝐾 = 0 for all 𝑛 β‰₯ 254

(Note: the case of 𝑛 = 126 is still open) 30

Page 31: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Summary: Exotic spheres

Ξ˜π‘› β‰  0 if:

β€’ Ξ˜π‘›π‘π‘

β‰  0:

o 𝑛 ≑ 3 (4) and 𝑛 β‰₯ 7

o 𝑛 ≑ 1 (4) and 𝑛 βˆ‰ {1,5,13,29,61,125? } [Kervaire]

β€’ Remains to check: is πœ‹π‘›

𝑠

πΌπ‘š 𝐽≠ 0 for

o 𝑛 even

o𝑛 ∈ {1,5,13,29,61,125? }

31

Page 32: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

32

Page 33: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Summary: Exotic spheres

Ξ˜π‘› β‰  0 if:

β€’ Ξ˜π‘›π‘π‘

β‰  0: o 𝑛 ≑ 3 (4) and 𝑛 β‰₯ 7 o 𝑛 ≑ 1 (4) and 𝑛 βˆ‰ {1,5,13,29,61,125? }

β€’πœ‹π‘›

𝑠

πΌπ‘š 𝐽≠ 0 for 𝑛 ≑ 2 (8)

β€’ Remains to check: is πœ‹π‘›

𝑠

πΌπ‘š 𝐽≠ 0 for

o 𝑛 ≑ 0 (4) or 𝑛 ≑ βˆ’2 (8)

o𝑛 ∈ {1,5,13,29,61,125? }

33

Page 34: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Low dimensional computations

β€’ Limitation: only know πœ‹π‘›π‘ 

2 for 𝑛 ≀ 63

β€’πœ‹π‘›

𝑠

πΌπ‘š 𝐽 𝑝= 0 in this range for 𝑝 β‰₯ 7.

34

Page 35: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Low dimensional computations

35

Stem p = 2 p = 3 p = 5

4 0 0 0

8 e 0 0

12 0 0 0

16 h4 0 0

20 ΞΊbar Ξ²1^2 0

24 h4 Ξ΅ Ξ· 0 0

28 Ξ΅ ΞΊbar 0 0

32 q 0 0

36 t Ξ²2 Ξ²1 0

40 ΞΊbar^2 Ξ²1^4 0

44 g2 0 0

48 e0 r 0 0

52 ΞΊbar q Ξ²2^2 0

56 ΞΊbar t 0 0

60 kbar^3 0 0

Non-trivial elements in πΆπ‘œπ‘˜π‘’π‘Ÿ 𝐽: 𝑛 ≑ 0 (4)

Page 36: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Low dimensional computations

36

Stem p = 2 p = 3 p = 5

6 Ξ½^2 0 0

14 k 0 0

22 Ξ΅ k 0 0

30 ΞΈ4 Ξ²1^3 0

38 y Ξ²3/2 Ξ²1

46 w Ξ· Ξ²2 Ξ²1^2 0

54 v2^8 Ξ½^2 0 0

62 h5 n Ξ²2^2 Ξ²1 0

Non-trivial elements in πΆπ‘œπ‘˜π‘’π‘Ÿ 𝐽: 𝑛 ≑ βˆ’2 (8)

Page 37: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Low dimensional computations

37

Stem p = 2 p = 3 p = 5

1 0 0 0

5 0 0 0

13 0 Ξ²1 a1 0

29 0 Ξ²2 a1 0

61 0 Ξ²4 a1 0

Non-trivial elements in πΆπ‘œπ‘˜π‘’π‘Ÿ 𝐽:

𝑛 ∈ {1,5,13,29,61} [where Ξ˜π‘›π‘π‘

= 0 because of Kervaire classes]

Page 38: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Low dimensional computations

Conclusion

For 𝑛 ≀ 63, the only 𝑛 for which Ξ˜π‘› = 0 are: 1,2,3,4,5,6,12,61

38

Page 39: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Beyond low dimensions…

Strategy: try to demonstrate Coker J is non-zero in certain dimensions by producing infinite periodic families such as the one above.

Need to study periodicity in πœ‹βˆ—π‘ 

39

Page 40: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

40

Page 41: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

41

Page 42: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

42

Page 43: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

43

Page 44: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

44

Page 45: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

45

Page 46: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

46

Page 47: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

47

Page 48: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

48

Page 49: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

49

Page 50: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

50

Page 51: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

51

Page 52: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

52

Page 53: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

53

Page 54: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

54

Page 55: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

55

Page 56: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Periodicity in πœ‹βˆ—π‘ 

56

Page 57: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

v1 - periodic layer consists solely of a-family

period = 2(p-1) = 8

57

Page 58: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

v1 - periodic layer consists solely of a-family

period = 2(p-1) = 8

58

Page 59: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Greek letter notation: the 𝛼-family

59

Page 60: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

v2 - periodic layer = b-family

period = 2(p2 - 1) = 48

60

Page 61: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

61

Page 62: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

𝑣1-torsion in the 𝑣2-family

62

Page 63: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Greek Letter Names (Miller-Ravenel-Wilson) 63

Page 64: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

(ns)(5)

period = 2(p3 - 1) = 248

v3 - periodic layer = g-family

64

Page 65: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

β€’ 𝑣1-periodicity – completely understood

β€’ 𝑣2-periodicity – know a lot for 𝑝 β‰₯ 5

– Knowledge for 𝑝 = 2,3 is subject of current research.

– For Ξ˜π‘›, we will see 𝑝 = 2 dominates the discussion

β€’ 𝑣3-periodicity – know next to nothing!

65

Page 66: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

66

Page 67: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Exotic spheres from 𝛽-family

β€’ π›½π‘˜ = π›½π‘˜/1,1 exists for 𝑝 β‰₯ 5 and π‘˜ β‰₯ 1

[Smith-Toda]

Ξ˜π‘› β‰  0 for 𝑛 ≑ βˆ’2 𝑝 βˆ’ 1 βˆ’ 2 π‘šπ‘œπ‘‘ 2(𝑝2 βˆ’ 1)

67

Page 68: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

68

Coker J

n = 0 mod 4 n = -2 mod 8 (including Kervaire Inv 1) n = 2^k - 3 (where Θ_n^bp = 0 because of Kervaire class)

Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5

4 0 0 0 6 Ξ½^2 0 0 1 0 0 0

8 e 0 0 14 k 0 0 5 0 0 0

12 0 0 0 22 Ξ΅ k 0 0 13 0 Ξ²1 a1 0

16 h4 0 0 30 ΞΈ4 Ξ²1^3 0 29 0 Ξ²2 a1 0

20 ΞΊbar Ξ²1^2 0 38 y Ξ²3/2 Ξ²1 61 0 Ξ²4 a1 0

24 h4 Ξ΅ Ξ· 0 0 46 w Ξ· Ξ²2 Ξ²1^2 0 125? 0

28 Ξ΅ ΞΊbar 0 0 54 v2^8 Ξ½^2 0 0

32 q 0 0 62 h5 n Ξ²2^2 Ξ²1 0

36 t Ξ²2 Ξ²1 0 70 0 0

40 ΞΊbar^2 Ξ²1^4 0 78 Ξ²2^3 0

44 g2 0 0 86 Ξ²6/2 Ξ²2

48 e0 r 0 0 94 Ξ²5 0

52 ΞΊbar q Ξ²2^2 0 102 Ξ²6/3 Ξ²1^2 0

56 ΞΊbar t 0 0 110 0

60 kbar^3 0 0 118 0

64 0 0 126 0

68 <a1,Ξ²3/2,Ξ²2> 0 134 Ξ²3

72 Ξ²2^2 Ξ²1^2 0 142 0

76 0 Ξ²1^2 150 0

80 0 0 158 0

84 Ξ²5 Ξ²1 0 166 0

88 0 0 174 0

92 Ξ²6/3 Ξ²1 0 182 Ξ²4

96 0 0 190 Ξ²1^5

100 Ξ²2 Ξ²5 0 198 0

104 0 206 Ξ²5/4

108 0 214 Ξ²5/3

112 0 222 Ξ²5/2

116 0 230 Ξ²5

120 0 238 Ξ²2 Ξ²1^4

124 Ξ²2 Ξ²1 246 0

128 0 254 0

132 0 262 0

136 0 270 0

140 0 278 Ξ²1

144 0 286 Ξ²3 Ξ²1^4

148 0 294 0

152 Ξ²1^4 302 0

156 0 310 0

160 0 318 0

Page 69: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Cohomology theories

β€’ Use homology/cohomology to study homotopy

β€’ A cohomology theory is a contravariant functor

𝐸: {Topological spaces} {graded ab groups}

𝑋 πΈβˆ—(𝑋)

β€’ Homotopy invariant:𝑓 ≃ 𝑔 β‡’ 𝐸 𝑓 = 𝐸(𝑔)

β€’ Excision: 𝑍 = 𝑋 βˆͺ π‘Œ (CW complexes)

β‹― β†’ πΈβˆ— 𝑍 β†’ πΈβˆ— 𝑋 βŠ• πΈβˆ— π‘Œ β†’ πΈβˆ— 𝑋 ∩ π‘Œ β†’

69

Page 70: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Cohomology theories

β€’ Use homology/cohomology to study homotopy

β€’ A cohomology theory is a contravariant functor

𝐸: {Topological spaces} {graded ab groups}

𝑋 πΈβˆ—(𝑋)

β€’ Homotopy groups:

πœ‹π‘› 𝐸 ≔ πΈβˆ’π‘›(𝑝𝑑)

(Note, in the above, n may be negative)

70

Page 71: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Cohomology theories

β€’ Example: singular cohomology – 𝐸𝑛 𝑋 = 𝐻𝑛(𝑋)

– πœ‹π‘› 𝐻 = β„€, 𝑛 = 0,0, else.

β€’ Example: Real K-theory – 𝐾𝑂0 𝑋 = 𝐾𝑂 𝑋 = Grothendieck group of ℝ-vector bundles over 𝑋.

– πœ‹βˆ—πΎπ‘‚ = (β„€, β„€ 2 , β„€ 2 , 0, β„€, 0, 0, 0, β„€, β„€ 2 , β„€ 2 , 0, β„€, 0, 0, 0… )

71

Page 72: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Hurewicz Homomorphism

β€’ A cohomology theory E is a (commutative) ring theory if

its associated cohomology theory has β€œcup products”

πΈβˆ—(𝑋) is a graded commutative ring

β€’ Such cohomology theories have a Hurewicz

homomorphism:

β„ŽπΈ: πœ‹βˆ—π‘  β†’ πœ‹βˆ—πΈ

Example: 𝐻 detects πœ‹0𝑠 = β„€.

72

Page 73: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Example: KO (real K-theory)

73

Page 74: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

β€’ To get more elements of Ξ˜π‘›, need to start

looking at 𝑣2-periodic homotopy.

β€’ Need a cohomology theory which sees a

bunch of 𝑣2-periodic classes in its

Hurewicz homomorphism

β€’ π‘‘π‘šπ‘“βˆ— 𝑋 - topological modular forms!

74

Page 75: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Topological Modular Forms

KO

β€’ 𝑣1-periodic – 8-periodic

β€’ Multiplicative group

β€’ Bernoulli numbers

TMF

β€’ 𝑣2-periodic – 576-periodic

β€’ Elliptic curves

β€’ Eisenstein series

(modular forms)

192-periodic at 𝑝 = 2

144-periodic at 𝑝 = 3

75

Page 76: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Topological Modular Forms

β€’ There is a descent spectral sequence:

𝐻𝑠 ℳ𝑒𝑙𝑙; πœ”βŠ—π‘‘ β‡’ πœ‹2π‘‘βˆ’π‘ π‘‡π‘€πΉ

β€’ Edge homomorphism:

πœ‹2π‘˜π‘‡π‘€πΉ β†’ Ring of integral modular forms

(rationally this is an iso)

β€’ πœ‹βˆ—π‘‡π‘€πΉ has a bunch of 2 and 3-torsion, and the descent spectral sequence is highly non-trivial at these primes.

76

Page 77: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

𝐻𝑠 ℳ𝑒𝑙𝑙; πœ”βŠ—π‘‘ β‡’ πœ‹2π‘‘βˆ’π‘ π‘‡π‘€πΉ The decent spectral sequence for TMF

(p=2)

77

Page 78: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Exotic spheres from 𝛽-family

β€’ π›½π‘˜ = π›½π‘˜/1,1 exists for 𝑝 β‰₯ 5 and π‘˜ β‰₯ 1

[Smith-Toda]

Ξ˜π‘› β‰  0 for 𝑛 ≑ βˆ’2 𝑝 βˆ’ 1 βˆ’ 2 π‘šπ‘œπ‘‘ 2(𝑝2 βˆ’ 1)

β€’ π›½π‘˜ exists for 𝑝 = 3 and π‘˜ ≑ 0,1,2,3,5,6 9

[B-Pemmaraju]

Ξ˜π‘› β‰  0 for 𝑛 ≑ βˆ’6, 10, 26, 42, 74, 90 mod 144

78

Page 79: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Exotic spheres from 𝛽-family

β€’ π›½π‘˜ = π›½π‘˜/1,1 exists for 𝑝 β‰₯ 5 and π‘˜ β‰₯ 1

[Smith-Toda]

Ξ˜π‘› β‰  0 for 𝑛 ≑ βˆ’2 𝑝 βˆ’ 1 βˆ’ 2 π‘šπ‘œπ‘‘ 2(𝑝2 βˆ’ 1)

β€’ π›½π‘˜ exists for 𝑝 = 3 and π‘˜ ≑ 0,1,2,3,5,6 9

[B-Pemmaraju]

Ξ˜π‘› β‰  0 for 𝑛 ≑ βˆ’6, 10, 26, 42, 74, 90 mod 144

79

Page 80: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Hurewicz image of TMF (p = 3)

80

Page 81: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

81

Coker J

n = 0 mod 4 n = -2 mod 8 (including Kervaire Inv 1) n = 2^k - 3 (where Θ_n^bp = 0 because of Kervaire class)

Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5

4 0 0 0 6 Ξ½^2 0 0 1 0 0 0

8 e 0 0 14 k 0 0 5 0 0 0

12 0 0 0 22 Ξ΅ k 0 0 13 0 Ξ²1 a1 0

16 h4 0 0 30 ΞΈ4 Ξ²1^3 0 29 0 Ξ²2 a1 0

20 ΞΊbar Ξ²1^2 0 38 y Ξ²3/2 Ξ²1 61 0 Ξ²4 a1 0

24 h4 Ξ΅ Ξ· 0 0 46 w Ξ· Ξ²2 Ξ²1^2 0 125? 0

28 Ξ΅ ΞΊbar 0 0 54 v2^8 Ξ½^2 0 0

32 q 0 0 62 h5 n Ξ²2^2 Ξ²1 0

36 t Ξ²2 Ξ²1 0 70 0 0

40 ΞΊbar^2 Ξ²1^4 0 78 Ξ²2^3 0

44 g2 0 0 86 Ξ²6/2 Ξ²2

48 e0 r 0 0 94 Ξ²5 0

52 ΞΊbar q Ξ²2^2 0 102 Ξ²6/3 Ξ²1^2 0

56 ΞΊbar t 0 0 110 0

60 kbar^3 0 0 118 0

64 0 0 126 0

68 <a1,Ξ²3/2,Ξ²2> 0 134 Ξ²3

72 Ξ²2^2 Ξ²1^2 0 142 0

76 0 Ξ²1^2 150 0

80 0 0 158 0

84 Ξ²5 Ξ²1 0 166 0

88 0 0 174 Ξ²1^3 0

92 Ξ²6/3 Ξ²1 0 182 Ξ²3/2 Ξ²4

96 0 0 190 Ξ²2 Ξ²1^2 Ξ²1^5

100 Ξ²2 Ξ²5 0 198 0

104 0 206 Ξ²2^2 Ξ²1 Ξ²5/4

108 0 214 Ξ²5/3

112 0 222 Ξ²2^3 Ξ²5/2

116 0 230 Ξ²6/2 Ξ²5

120 0 238 Ξ²5 Ξ²2 Ξ²1^4

124 Ξ²2 Ξ²1 246 Ξ²6/3 Ξ²1^2 0

128 0 254 0

132 0 262 0

136 0 270 0

140 0 278 Ξ²1

144 0 286 Ξ²3 Ξ²1^4

148 0 294 0

152 Ξ²1^4 302 0

156 0 310 0

160 0 318 Ξ²1^3 0

Page 82: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

𝑣2-periodicity at the prime 2

82

Page 83: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

𝑣2-periodicity at the prime 2

83

Page 84: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Thm: (B-Mahowald)

The complete Hurewicz image:

The decent spectral sequence for TMF

(p=2) 84

Page 85: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

Hurewicz image of TMF (p = 2)

85

Page 86: Exotic spheres and topological modular formsmbehren1/presentations/Exotic_spheres.pdfExotic spheres and topological modular forms Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins,

86

Coker J

n = 0 mod 4 n = -2 mod 8 (including Kervaire Inv 1) n = 2^k - 3 (where Θ_n^bp = 0 because of Kervaire class)

Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5 Stem p = 2 p = 3 p = 5

4 0 0 0 6 Ξ½^2 0 0 1 0 0 0

8 e 0 0 14 k 0 0 5 0 0 0

12 0 0 0 22 Ξ΅ k 0 0 13 0 Ξ²1 a1 0

16 h4 0 0 30 ΞΈ4 Ξ²1^3 0 29 0 Ξ²2 a1 0

20 ΞΊbar Ξ²1^2 0 38 y Ξ²3/2 Ξ²1 61 0 Ξ²4 a1 0

24 h4 Ξ΅ Ξ· 0 0 46 w Ξ· Ξ²2 Ξ²1^2 0 125? w kbar^4 0

28 Ξ΅ ΞΊbar 0 0 54 v2^8 Ξ½^2 0 0 = in tmf

32 q 0 0 62 h5 n Ξ²2^2 Ξ²1 0 = not in tmf, not known to be v2-periodic

36 t Ξ²2 Ξ²1 0 70 <kbar w,Ξ½,Ξ·> 0 0 = not in tmf, but v2-periodic

40 ΞΊbar^2 Ξ²1^4 0 78 Ξ²2^3 0 = Kervaire

44 g2 0 0 86 Ξ²6/2 Ξ²2 = trivial

48 e0 r 0 0 94 Ξ²5 0

52 ΞΊbar q Ξ²2^2 0 102 v2^16 Ξ½^2 Ξ²6/3 Ξ²1^2 0

56 ΞΊbar t 0 0 110 v2^16 k 0

60 kbar^3 0 0 118 v2^16 Ξ·^2 kbar 0

64 0 0 126 0

68 v2^8 k Ξ½^2 <a1,Ξ²3/2,Ξ²2> 0 134 Ξ²3

72 Ξ²2^2 Ξ²1^2 0 142 v2^16 Ξ· w 0

76 0 Ξ²1^2 150 (v2^16 Ξ΅ kbar)Ξ·^2 v2^9 0

80 kbar^4 0 0 158 0

84 Ξ²5 Ξ²1 0 166 0

88 0 0 174 beta32/8 Ξ²1^3 0

92 Ξ²6/3 Ξ²1 0 182 beta32/4 Ξ²3/2 Ξ²4

96 0 0 190 Ξ²2 Ξ²1^2 Ξ²1^5

100 kbar^5 Ξ²2 Ξ²5 0 198 v2^32 Ξ½^2 0

104 v2^16 Ξ΅ 0 206 k Ξ²2^2 Ξ²1 Ξ²5/4

108 0 214 Ξ΅ k Ξ²5/3

112 0 222 Ξ²2^3 Ξ²5/2

116 2v2^16 kbar 0 230 Ξ²6/2 Ξ²5

120 0 238 w Ξ· Ξ²5 Ξ²2 Ξ²1^4

124 v2^16 k^2 Ξ²2 Ξ²1 246 v2^8 Ξ½^2 Ξ²6/3 Ξ²1^2 0

128 v2^16 q 0 254 0

132 0 262 <kbar w,Ξ½,Ξ·> 0

136 <v2^16 k kbar,2,Ξ½^2> 0 270 0

140 0 278 Ξ²1

144 v2^9 0 286 Ξ²3 Ξ²1^4

148 v2^16 Ξ΅ kbar 0 294 v2^16 Ξ½^2 v2^18 0

152 Ξ²1^4 302 v2^16 k 0

156 <Ξ”^6 Ξ½^2,2Ξ½,Ξ·^2> 0 310 v2^16 Ξ·^2 kbar 0

160 0 318 Ξ²1^3 0